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Abstract. Gastrointestinal stromal tumors (GISTs) are the 
most commonly observed mesenchymal tumors of the diges-
tive tract, and they originate from the interstitial cells of Cajal. 
GISTs can be divided into KIT/PDGFRA‑mutant GISTs 
and wild‑type GISTs based on the presence or absence of 
KIT/PDGFRA mutations. Wild‑type GISTs can be divided 
into succinate dehydrogenase complex (SDH)‑deficient GISTs 
and non‑SDH‑deficient GISTs. Downstream signaling path-
ways activated by these mutations serve a pivotal role in the 

development of GISTs and are associated with the biological 
behavior, including risk stratification, clinical prognosis and 
drug resistance. Accurate medical care requires accurate 
molecular diagnosis, which in turn prolongs the survival of 
patients with GISTs and makes GIST a chronic disease. At 
present, there is a lack of effective treatment for imatinib/suni-
tinib/regorafenib resistant patients and KIT/PDGFRA‑WT 
GISTs, which is undoubtedly a major challenge for future 
research. The present review summarizes the molecular 
pathogenesis of GISTs and the progress of related research.
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1. Introduction

Gastrointestinal stromal tumors (GISTs) are found in the 
stomach (56%), small intestine (32%), colon and rectum (6%), 
esophagus (0.7%), and other areas, such as the omentum, intes-
tinal membrane, pelvis and retroperitoneum (5.5%) (1). The 
symptoms of GISTs are often non‑specific, and dependent on 
the size and location of the mass. Many small GISTs (<2 cm) 
are frequently found by endoscopy or radiographic examina-
tion, and these patients typically have no symptoms. The 
most common symptom observed is gastrointestinal bleeding, 
which is observed in ~50% of patients, followed by abdominal 
pain (20‑50% of patients) and gastrointestinal obstruction 
(10‑30%  of patients). Other symptoms include melena, 
hematemesis, feeling satiated and a palpable abdominal mass. 

Clinical significance of the molecular heterogeneity 
of gastrointestinal stromal tumors and related 
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Proximal gastric stromal tumors may cause difficulty in swal-
lowing, while tumors located in the pylorus may present as a 
gastric outlet obstruction (2,3). At initial diagnosis, ~20% of 
patients present with metastases (4), which typically occur 
in the abdominal cavity or liver, whereas lung, bone or 
brain metastases are rare. Lymph node metastasis occurs in 
20‑60% of children with GISTs and Carney's triad, whereas 
other types are rare (<10%) (5,6). In addition, GIST‑induced 
expendable hypothyroidism and IGF‑II production‑related 
non‑islet cell tumor hypoglycemia have also been reported. 
Therefore, patients with endocrine and metabolic symptoms 
should also be included in differential diagnosis (7,8).

There are numerous molecular subtypes of GISTs (Fig. 1). 
In ~85‑90% of patients with GISTs, KIT (KIT proto‑oncogene, 
receptor tyrosine kinase) or PDGFRA (platelet derived growth 
factor receptor α) gene mutations are present which alter cell 
proliferation, adhesion, apoptosis, survival and differentiation 
by regulating downstream signaling pathways, including the 
RAS/RAF/mitogen‑activated protein kinase (MAPK) and 
PI3K/AKT/mTOR signaling pathways (Fig. 3A and B) (9). 
The remaining 10‑15% of GISTs, which do not possess KIT 
or PDGFRA gene mutations, are referred to as wild‑type 
GISTs (10).

Studies have shown that non‑coding RNAs [long 
non‑coding RNAs (lncRNA) and microRNAs (miRNAs)] are 
associated with the invasion, proliferation and drug resistance 
of GIST cells (11,12). Detection of circulating (ct)DNA may 
also contribute to the early diagnosis of GISTs (13).

The global incidence of GISTs (1‑1.5 cases/100,000 indi-
viduals) and the prevalence rate (13 cases/100,000 individuals) 
are low (14). Incidence rates in Shanghai, Hong Kong and 
Norway are relatively higher (1.9‑2.1 cases/100,000 individ-
uals), whereas the incidence in the Shanxi Province is relatively 
lower (4.3 cases/1,000,000 individuals). The median age of 
diagnosis is 60 years (range, 10‑100), but may be diagnosed at 
any age; ~50% of cases are identified in individuals aged 30‑59, 
there is no significant difference in occurrence between males 
and females, and the incidence in individuals <20 years is rare 
(<0.5% of all cases) (15,16).

2. KIT mutation

There are two types of KIT receptors; the wild‑type (145 kDa) 
and the mutant‑type (125 kDa) receptor (17). The human KIT 
gene is a proto‑oncogene located on chromosome 4q12‑13. Its 
products belong to the receptor tyrosine kinase class III family, 
which also includes PDGFRA, PDGFRB, CSF1R and FLT3 
receptor (18). The receptor tyrosine kinase class III family 
is characterized by an extracellular ligand binding domain, 
which consists of five immunoglobulin‑like regions. In addi-
tion, the kinase structure includes a transmembrane domain, a 
juxtamembrane membrane domain and an intracellular kinase 
domain (Fig. 2). KIT is associated with many human malignan-
cies, including small cell lung cancer, malignant melanoma, 
colorectal cancer and GISTs. More than 500 different KIT 
mutations have been discovered in human tumors but only a 
few of these are considered driver mutations (19). As a KIT 
ligand, stem cell factor (SCF) can induce receptor dimeriza-
tion and activation of intrinsic tyrosine kinase activity after 
binding to the receptor, thus creating docking sites for signaling 

molecules containing SRC homologous domain 2 (SH2). The 
SH2 domain is present in numerous signal transduction mole-
cules and consists of ~100 amino acids. It can regulate cell 
growth by binding phosphorylated tyrosine residues, including 
Tyr 568, Tyr 570, Tyr 703, Tyr 721, Tyr 730, Tyr 823, Tyr 900 
and Tyr 936. Phosphorylated tyrosine, together with adjacent 
amino acid residues, forms a specific binding site for down-
stream signaling molecules and activates specific downstream 
signaling pathways, including the MAPK and PI3K/AKT 
pathways. The former results in the upregulation of transcrip-
tion factors, such as MYC, ELK, CREB and FOS, whereas the 
latter results in the downregulation of cell cycle inhibitors and 
the enhancement of anti‑apoptotic effects (20). Phosphorylation 
of Tyr 568 serves an important role in the activation of KIT 
and downstream signaling pathways. Phosphorylated Tyr 568 
activates the SRC family kinase and in turn promotes activa-
tion of the KIT gene (21). SRC activity in tumors of patients 
with GISTs is significantly higher compared with that noted in 
normal tissues (22). Inhibition of SRC family kinase activity 
weakens KIT activation, suggesting that the activity of the 
SRC family kinase is necessary for the complete activation of 
KIT. In addition, SRC family kinases activate SHC to activate 
the downstream RAS/RAF/MEK/MAPK signaling pathway, 
which is involved in KIT‑mediated cell proliferation  (21). 
Another important KIT phosphorylation site is Tyr 721, which 
serves as a docking site for the regulatory subunit p85 of 
PI3K (23). Tyr 703 and Tyr 936 serve as binding sites of Grb2 
which are recruited to activate the downstream PI3K/AKT and 
RAS/RAF/MEK/MAPK signaling pathways (24).

The signal transducers and activators of transcription 
(STAT) family of proteins is also associated with KIT 
signaling (25). Binding of SCF to the KIT receptor results in 
binding of JAK2 to c‑kit, followed by autophosphorylation 
leading to phosphorylation of STAT1, STAT3 and STAT5. 
Phosphorylated STAT subsequently translocates to the nucleus 
where it binds to the promoter region of target genes to regulate 
transcription (26). At present, it is hypothesized that cell cycle 
disorders caused by genomic inactivation of cell cycle regula-
tory genes are a common mechanism during the transition 
from low‑risk to high‑risk metastatic GISTs (27).

The majority of GISTs (70‑80%) have KIT gene mutations, 
which result in activation of c‑Kit without SCF binding, thus 
increasing the activity of downstream signaling pathways (28). 
Mutations have been identified in exon 11 (70‑80%) which 
encodes the juxtamembrane domain; exon 9, (10%) which 
encodes the extracellular domain; exon 13, which encodes 
the TK  I domain  (1%); and exon  17  (1%), which encodes 
the TK II domain (29,30). Mutations in the juxtamembrane 
domain affects the regulatory function of itself and increases 
auto‑activation of the kinase. Mutations in the extracellular 
domain may disrupt the anti‑dimerization motif and lead to 
homodimerization of the receptor (31).

Mutations in exon 11 are concentrated in the hot spots of 
codon 550‑560 at the 5' end. The most frequently observed 
type of mutation is deletion at codon 557‑558 at the 5' end, 
followed by deletion mutations at codon  559 and point 
mutations resulting in V575A (32). Imatinib has desirable 
therapeutic effects in the majority of patients with GISTs 
with mutations of the KIT gene. However, exon 11 mutations 
involving codon 557‑558 deletion have also been demonstrated 



ONCOLOGY REPORTS  43:  751-764,  2020 753

to increase the malignant potential of a tumor and reduce 
recurrence‑free survival (RFS) (33‑35). A European multi-
center analysis showed that deletion mutations in exon 11 of 
the KIT gene at codon 557‑558 may be used as a reference 
factor predicting a less favorable prognosis (36). In another 
retrospective study, moderate‑risk patients with KIT exon 11 
deletion mutations had similar recurrence‑free survival 
(RFS) to those with high‑risk diseases, whereas those with 
no KIT exon 11 deletion mutation exhibited similar clinical 
manifestations to those of very low‑risk and low‑risk patients. 
These findings also help to assess the prognosis of patients at 
moderate risk with deletion mutations in exon 11 deletion (37). 
Patients with KIT exon 11 mutations exhibit improved drug 

responses and higher overall survival compared with patients 
with KIT exon 9 mutations and those lacking KIT or PDGFRA 
mutations (31). This was also verified in phase I and phase II 
trials in Europe (38).

Patients with exon 9 mutations, characterized by codon 
502‑503 duplication had a higher recurrence and metas-
tasis rate, were significantly associated with larger tumor 
morphology, tumor growth site (located in the small intestine) 
and spindle cell type tumor cells (39). There is also a relatively 
higher incidence of exon 9 mutations in men (40). In a Japanese 
population‑based study, 4 patients with exon 9 mutations were 
also found to be at high risk and all died of metastasis. These 
results also suggest that mutation in exon 9 is associated with 

Figure 2. Structure of KIT and PDGFRA receptors. The main mutation sites and phosphorylation sites of KIT and PDGFRA in sporadic GISTs. GISTs, 
gastrointestinal stromal tumors; KIT, KIT, KIT proto‑oncogene, receptor tyrosine kinase; PDGFRA, platelet derived growth factor receptor α.

Figure 1. Classification of GISTs. GISTs, gastrointestinal stromal tumors; KIT, KIT, KIT proto‑oncogene, receptor tyrosine kinase; PDGFRA, platelet derived 
growth factor receptor α; SDH, succinate dehydrogenase BRAF, B‑Raf proto‑oncogene, serine/threonine kinase; NF1, neurofibromin 1.
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a less favorable prognosis. However, 75% of Japanese patients 
with exon 9 mutations possessed a GIST located in the stomach, 
and the conclusion that this mutation type is more common 
in the small intestine suggested by Losata et al (41) was not 
observed, which may be related to different ethnicities (42). 
Controversially, no other studies have found any association 
between exon 9 mutations and a poor prognosis (43). Mutation 
screening for exon 9 is considered to have guiding significance 
for GIST treatment since these claim a higher dose of imatinib 
to be effective, and thus also is of great significance for the 
treatment. Besides after progression to imatinib resistance, 
GISTs with KIT mutations at exon 9 and wild‑type GISTs 
seem to respond better to sunitinib (44).

Typically, primary mutations occur in exons 9 and 11, 
whereas secondary mutations most frequently occur in 
exon 13 encoding the TK I domain and exon 17 encoding the 
TK II domain. Most cases of metastatic secondary mutated 
GISTs have multiple mutations at the same time, both between 
different metastases and within the same metastatic deposit. 

Of the secondary mutations in KIT, ~30‑40% are secondary 
KIT exon 17 mutations, accounting for resistance to imatinib 
or sunitinib in patients with GIST (45,46). In these patients, 
regorafenib shows therapeutic efficacy  (47). Conversely, 
patients with secondary exon 13 mutations typically respond 
to sunitinib but not regorafenib (48).

The majority of mutations in exon 13 of KIT in GISTs are 
K642E mutations caused by base substitution (c.1945A>G; 
c.1948G>A) (49). These base substitution mutations result in 
constitutive activation of tyrosine phosphorylation, indepen-
dent of ligand binding, which activates specific downstream 
signaling transduction pathways and promotes cell prolif-
eration (50). The majority of mutations in exon 17 of KIT in 
GISTs are N822K (70%), which also result in maintenance 
of tyrosine phosphorylation activity  (50). Less frequently 
observed mutations (N822Y, N822K, N822H, D816F, D816Y, 
D820Y, D820V, D816V and Y823D) have been identified 
in exon 17  (40,49). D816V has also been found in several 
other human malignant tumors, including acute myeloid 

Figure 3. Key signaling pathways in GISTs. (A) KIT or PDGFRA oncogenic mutations in GISTs initiate a related signaling pathway leading to activation of 
STAT, MAPK and PI3K signaling pathways. The NF1 protein regulates the RAS signaling pathway by catalytically activating GTP hydrolysis to inactive GDP. 
The PTEN tumor‑suppressor gene terminates the signaling pathway by dephosphorylation of inositol PIP3 into PIP2. (B and C) SDH deficiency causes the 
accumulation of succinic acid which inhibits the activity of PHD caused by the accumulation of hypoxia‑inducible factor α (HIF1α). HIF1α enters the nucleus 
and binds to HIF1β to induce overexpression of glycolytic and angiogenic genes (including IGF and VEGF), which in turn acts on the RAS/RAF/MAPK 
and PI3K/AKT signaling pathways promoting the development of GISTs. GISTs, gastrointestinal stromal tumors; KIT, KIT, KIT proto‑oncogene, a receptor 
tyrosine kinase; PDGFRA, platelet derived growth factor receptor α; JAK2, Janus kinase 2; STAT3, signal transducer and activator of ttranscription 3; GDP, 
guanosine diphosphate; GTP, guanosine triphosphate; RAF, RAF proto‑oncogene serine/threonine‑protein kinase; MEK, mitogen‑activated protein kinase 
kinase; MAPK, mitogen‑activated protein kinase; PI3K, phosphoinositide 3‑kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; PIP3, 
phosphatidylinositol‑3,4,5‑triphosphate; PIP2, phosphatidylinositol‑4,5‑bisphosphate; PTEN, phosphatase and tensin homolog; BAD, BCL2 associated agonist 
of cell death; SDH, succinate dehydrogenase; HIF1, hypoxia‑inducible factor; IGF, insulin‑like growth factor; VEGF, vascular endothelial growth factor.
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leukemia (51), mastocytosis (52), germ cell tumors (53), sinus 
natural killer/T cell lymphoma  (54) and intracranial tera-
toma (55), but is relatively rare in GISTs. Mutations at codon 
816 result in constitutive activation of the receptor, which 
activates the downstream PI3K/AKT signaling pathway. Most 
KIT exon 13 or exon 17 mutants have spindle‑cell morphology, 
and fewer tumors have epithelioid cell characteristics. Gastric 
tumors with KIT exon  13 mutations are associated with 
increased invasiveness, whereas small intestine tumors with 
KIT exon 13 and exon 17 mutations did not result in any 
significant differences in behaviors compared with other 
mutant small intestine GISTs (49).

Furthermore, deletion mutations in chromosomes  14q 
and 22q are considered early events in the progression of 
KIT/PDGFRA mutant GISTs. Inactivation of dystrophin is 
hypothesized to be a late event in the progression of GISTs. 
Dystrophin is a tumor suppressor which is inactivated in 
96% of metastatic GISTs but not in low‑risk GISTs (27).

3. PDGFRA mutations

KIT mutations and PDGFRA mutations are mutually exclu-
sive in GISTs. However, GISTs expressing KIT or PDGFRA 
oncoprotein exhibit similar mechanisms of tumorigenesis 
and progression (56). PDGFRA mutations exist in 10‑15% of 
GISTs and are found in exon 12 which encodes the membrane 
proximal domain  (1%), exon  14 which encodes the TK  I 
domain (N659Y, N659K; <1%) and exon 18 which encodes the 
TK II domain (D824V, D842Y; 5%, I843_del, I843‑H845_del, 
I843_del, I843‑H845_del, D842‑H845_del, D842‑M844_del, 
D842‑H845_del, D842‑M844_del; 1%). Secondary muta-
tions associated with secondary resistance occur primarily 
in exons 14 and 18. The majority of the PDGFRA mutations 
affect the TK Ⅱ domain. These mutations alter the activa-
tion loop, modulating the ATP binding pocket and causing 
kinase activation leading to downstream signal transduction 
pathways that promote cell survival and proliferation (56,57). 
Protein kinase B (Akt), MAPK, and STAT1 and STAT3 in 
PDGFRA‑mutant GISTs are uniformly activated, resulting in 
the activation of the same signaling pathways as KIT‑mutant 
GISTs. PDGFRA‑mutant GISTs are primarily epithelioid and 
are predominantly present in the stomach (58). Expression 
of CD117 in these tumors is weak or absent  (56,59). 
PDGFRA‑mutant GISTs are less invasive, accounting for only 
2.1% of metastases in patients with GISTs (4,60).

The most common mutation type of PDGFRA in GISTs 
is D842V mutation in exon 18 (accounting for 9.8% of all 
mutations and 65% of exon 18 mutations in PDGFRA). The 
substitution of a valine at codon 842 by aspartic acid leads 
to resistance to first‑ and second‑line tyrosine kinase inhibi-
tors (TKIs) such as imatinib and sunitinib in patients, and 
therefore, these patients do not benefit from treatment with 
TKIs (61). It is also worth noting that in gastric tumors with 
a PDGFRA mutation, the vast majority of the advanced cases 
carry the exon 18 PDGFRA D842V mutation (36). Avapratinib 
(BLU‑285) is a novel inhibitor that specifically targets KIT 
exon 17 and PDGFRA D842 mutations. The results of the 
phase I NAVIGATOR trial showed that the overall response 
rate (ORR) of patients with PDGFRA D842V mutation was 
84% and treatment caused tumor shrinkage in 98% of cases. 

The NAVIGATOR phase I trial included four different groups 
of patients with GISTs: i) GISTs treated with second‑line 
therapeutics; ii) GISTs being treated with third‑ or fourth‑line 
therapeutics that were regorafenib‑naïve; iii) GISTs being 
treated with fourth‑line or more advanced line therapeutics; 
and iv) PDGFRA D842V‑mutated GISTs. In the second‑line 
treatment group, the reported avapritinib ORR was 25%. In 
patients being treated with third‑ or fourth‑line therapeutics 
that were regorafenib‑naïve, avapritinib was associated with 
an ORR of 26%. In the patients being treated with fourth‑line 
or more advanced line therapeutics, ORR was 20%. In addi-
tion, in vitro studies have shown that crenolanib exhibited 
improved antiproliferative effects compared with imatinib for 
patients with this type of mutation. Phase III clinical trials 
of crenolanib (Randomized Trial of Crenolanib in Subjects 
with D842V Mutated GIST; clinicaltrials.gov identifier, 
NCT02847429), and phase III randomized trials of avapri-
tinib and regorafenib (VOYAGER, NCT03465722) are also 
on‑going (62). The majority of GISTs with PDGFRA mutations 
excluding D842V mutation still respond to imatinib, therefore 
mutation screening is of great significance for the treatment of 
GIST (63).

PDGFRA mutations are also found in exon 12 (juxtamem-
brane domain; JM) and exon 14 (TK I domain), but are relatively 
rare (64). Among these, exon 12 point mutation V561A is the 
second most common type of PDGFRA mutation (65). The 
majority of the exon 14 mutations of PDGFRA are N659K 
point mutations. Clinical data showed that most tumors with 
this mutation were located in the stomach, and most of these 
were epithelioid cells with relatively good prognosis (66).

4. Familial GISTs

The majority of KIT and PDGFRA mutations are sporadic 
and are only found in GIST tissues. However, there are 
also patients with rare familial GISTs with autosomal 
dominant inheritance, and affected family members have a 
100% penetrance rate (67). Clinical manifestations include 
dysphagia, excessive skin pigmentation, urticaria pigmenta-
tion and mastocytosis. These patients have the same type of 
germline KIT and PDGFRA mutations as the somatic mutant 
GISTs. KIT mutations in familial GIST patients have been 
found in exon 11 (V559A, W557R, D579 del) (68‑70) , exon 17 
(D820Y) (71) and exon 8 (D419 del) (72). The PDGFRA muta-
tion was also found in exon 18 (D846Y) (73). Histologically, 
familial GISTs are basically the same as that of patients with 
sporadic GISTs, but there are multiple lesions, primarily from 
the proliferation of interstitial cells of Cajal. Identification 
of patients with familial GISTs is important as the clinical 
management patterns are different from those of GISTs with 
somatic mutations. Nevertheless, currently there are no specific 
treatment options for such patients. Considering the presence 
of multiple lesions, conservative resection is often adopted in 
most medical institutions.

5. Wild‑type GISTs

Most GISTs are driven by oncogenic KIT or PDGFRA receptor 
tyrosine kinase activating mutations. However, ~10‑15% of 
GISTs lack KIT and PDGFRA mutations, and are referred 
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to as wild‑type GISTs. Wild‑type GISTs can be divided 
into succinate dehydrogenase complex (SDH)‑deficient 
and non‑SDH‑deficient GISTs  (63). Mutations of any of 
the four SDH subunits or of members of the RAS pathway 
[(K/N/H‑RAS, BRAF, neurofibromatosis type 1 (NF1)] have 
been observed in wild‑type GISTs.

Whole‑genome sequencing revealed that the genome of 
wild‑type GISTs exhibit a low mutation frequency, and only 
~25% of patients have chromosomal imbalances. Mutations 
in the 14q23.1 region of KIT/PDGFRA‑mutant GISTs result 
in downregulation of tumor suppressor RTN1, DAAM1 and 
DACT1, but mutations in the same region in wild‑type GISTs 
does not result in these effects (74). Wild‑type GISTs tend 
to develop in younger patients; ~85% of GISTs in patients 
<23 years of age are wild‑type. Lesions are primarily present 
in the stomach, and the volume of the tumor is often small, but 
lymph node metastases are more common. TKIs are often less 
effective in these cases (75‑77).

SDH‑deficient GISTs. Succinate dehydrogenase complex 
(SDH; also known as mitochondrial complex II) deficiency 
is more common in wild‑type GISTs, accounting for ~5% of 
all GISTs. The lack of SDH is considered to be an impor-
tant feature of several human tumor subtypes, including 
GISTs, paraganglioma, renal cell carcinoma and pituitary 
adenomas (78). SDH is a complex of enzymes located on the 
mitochondrial inner membrane, and consists of four subunits 
(SDHA, SDHB, SDHC and SDHD) and two kinds of succinate 
dehydrogenase assembly factors (SDHAF1 and SDHAF2), 
which are components of the tricarboxylic acid cycle and the 
respiratory electron transport chain.

Approximately 50% of subunit mutations are found in 
SDH‑deficient GISTs, and the most frequently observed being 
SDHA which are primarily germline mutations, accounting 
for ~30% of all mutations, with mutations in other subunits 
accounting for the remaining ~20%  (79). SDHA‑mutant 
GISTs can be individually identified by SDHA immunohis-
tochemistry. In the other 50% of cases, no subunit mutation 
is observed, but immunohistochemistry showed a significant 
decrease or deletion of SDHB protein expression, and the 
respiratory chain complex II enzyme activity was lost as well. 
This may be due to epigenetic modifications or related protein 
defects involved in maintaining stability (80).

Defects in any of the subunits, particularly defects in 
SDHB, will result in instability of the SDH complex, which 
in turn affects the function of the complex. When the SDH 
complex is dysfunctional, there is an accumulation of succinic 
acid in the cytoplasm which results in the accumulation of 
hypoxia inducible factor 1 subunit α (HIF1α). HIF1α transcrip-
tionally upregulates hypoxia‑related tumorigenic processes 
and angiogenesis. Thus, defects in energy metabolism are 
key carcinogenic mechanisms (81). Therefore, if any of the 
SDH subunits are mutated/inactivated, immunohistochemical 
staining of SDHB is absent, and as such SDHB‑negative 
staining is now considered to be a highly sensitive marker for 
any SDH subunit germline mutation (80,82).

SDH‑deficient GISTs occur primarily in children and 
patients with Carney‑Stratakis syndrome and Carney triad 
which affects children and younger adults. Patients are 
usually <40 years of age, while other GISTs are rarely seen 

in younger individuals. SDH‑deficient GISTs account for 
two‑thirds of  cases in the 20‑29  age group and are more 
common in females (16). Lesions are almost always located 
in the stomach, and the antrum is the most common location, 
followed by the posterior wall of the stomach and the fundus, 
and they have a tendency for lymphatic invasion and lymph 
node metastasis compared with other mutant GIST types (83). 
Immunohistochemically negative SDHA GISTs are rare 
in children, are more common in males, and lack of SDHA 
staining is associated with an increased rate of metastasis to the 
liver; however, there is no difference in tumor size or mitosis 
rate (79).

The Carney triad includes GISTs, pulmonary chondromas 
and extra‑adrenal paraganglioma. It was first described as a 
triad of gastric leiomyosarcoma in 1977, and only few patients 
exhibit a complete Carney triad. In the majority of cases, 
only  two of these tumors are observed  (84). Patients with 
Carney triad are typically younger women who are suscep-
tible to various tumors, including pheochromocytoma and 
other non‑functional bilateral or unilateral adrenal adenomas. 
Although the Carney triad‑associated GISTs lack mutations in 
any of the SDH subunits, the function of the SDH complex is 
still impaired and may be associated with hypermethylation of 
the SDHC promoter (85).

Carney‑Stratakis syndrome, first described in 2002, is a 
rare hereditary syndrome inherited by autosomal dominant 
inheritance with incomplete penetrance. It is characterized by 
multifocal gastric GISTs and multicentric paraganglioma (86). 
Germline mutations in SDHB, SDHC, SDHD have been iden-
tified in patients with Carney‑Stratakis syndrome (87) and no 
mutations in the coding sequence of the SDHA gene have been 
identified (88).

Upregulation of insulin like growth factor  1 receptor 
(IGF1R) expression in SDH‑deficient tumors is considered to 
be a feature of SDH‑deficient GISTs (89). IGF1R is part of the 
insulin‑like growth factor family of proteins, which consists 
of two ligands (IGF1 and IGF2), two receptors (IGF1R and 
IGF2R) and six IGF binding proteins (IGFBPs). Binding of 
IGF and IGFR activates downstream signaling, including the 
RAS/RAF/MAPK and PI3K/AKT pathways (Fig. 3C) (90). 
Dysfunction of SDH leads to the accumulation of succinic 
acid, which in turn inhibits the activity of proline hydroxy-
lase, resulting in the accumulation of HIF1α, translocation of 
HIF1α to the nucleus and dimerization of HIF1β to form an 
active transcription factor that induces expression of glycolytic 
and angiogenic genes (including IGF and VEGF), which in 
turn promotes cell proliferation via the RAS/RAF/MAPK 
and PI3K/AKT signaling pathways (57,91‑93). IGF1R expres-
sion has been observed in 88.75% of SDH‑deficient GISTs, 
whereas only in 1% of SDHB‑positive patients. Thus detection 
of IGF1R can help to identify SDH defective GISTs. IGF1 
has been shown to promote cell proliferation in vitro. Animal 
experiments have shown that inhibiting IGF signaling reduced 
tumor growth (94). Epidemiological evidence suggests that 
IGF1 levels are associated with cancer risk and prognosis (95). 
At present, upregulation of IGF1R is observed in a number of 
different types of cancer. Because of its role in the metabolism 
of cancer cells and its potential correlation with the survival 
of malignant cells, IGF1R has become a target of anticancer 
therapy  (96‑98). In a phase  I clinical trial, patients with 
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solid tumors were treated with IGF1R monoclonal antibody 
R1507 (also known as RO4858696) and chemotherapeutics 
or targeted drugs. One of these patients did not receive the 
full treatment, but the partial response to the disease reached 
3 years (99). However, the complexity of the IGF1R pathway 
and its interaction with other signaling pathways has not been 
fully elucidated. Further preclinical research is required to 
understand the complex mechanisms to develop improved 
therapeutic options.

Non‑SDH‑deficient GISTs. Non‑SDH‑deficient GISTs include 
NF1 correlation, BRAF mutation, RAS gene mutation and 
quadruple wild‑type. GISTs with BRAF/RAS or NF1 muta-
tions can be collectively called RAS pathway‑mutant GISTs. 
The demographic characteristics of non‑SDH‑deficient 
GISTs are similar to those of KIT/PDGFRA‑mutant GISTs, 
and are more frequently observed in adults and primary 
exhibit a spindle‑cell morphology  (100). However, unlike 
KIT/PDGFRA‑mutant GISTs, non‑SDH‑deficient wild‑type 
GIST are primarily located in the small intestine.

NF1 gene mutation. NF1, also known as von Recklinghausen 
disease, is an inherited cancer susceptibility syndrome, caused 
by a biallelic deletion of the NF1 gene and is characterized 
by neurological, cutaneous and skeletal lesions. It is one of 
the most common genetic syndromes with an incidence of 
1/2,500‑3,000 individuals (101). Patients with NF1 type have 
a higher risk of developing GISTs, and ~7% of NF1 patients 
have concurrent GISTs, which is considerably higher than the 
normal population (102). Patients with NF1‑related GISTs 
are usually younger, and the lesions are primarily located 
in the duodenum and small intestine and exhibit a slower 
clinical progression. However, 15‑20%  of patients with 
NF1‑related GISTs exhibit malignant clinical outcomes. The 
tumors are small in size, with a high positive rate of CD117 
and CD34 expression. Tumor tissues are composed of cells 
with a spindle‑cell like morphology, with a low mitotic 
rate (100,103).

The neurofibromin protein encoded by the NF1 gene 
regulates the RAS signaling pathway by catalytically acti-
vating Ras‑GTP hydrolysis to inactive Ras‑GDP. Mutation 
of the NF1 gene results in loss of neurofibromin function 
leading to constitutive activation of RAS, which increases 
downstream signaling of receptors via the MAPK pathway. 
This is considered to be an important mechanism for the 
pathogenesis of NF1‑related GISTs (103). Unlike common 
GISTs, the JAK‑STAT3 and PI3K‑AKT pathways are less 
active in NF1‑related GISTs  (102). NF1‑related GISTs do 
not respond well to imatinib (104); however, there have been 
reports of therapeutic response to sunitinib (105). Given that 
NF1‑related GISTs increases signaling through the MAPK 
pathway, this increases the likelihood of treatment with MEK 
inhibitors.

BRAF gene mutations. The BRAF (B‑Raf proto‑oncogene, 
serine/threonine kinase) gene encodes serine/threonine protein 
kinases which belong to the RAF family. These kinases serve 
a role in regulating the MAPK/ERK signaling pathway and 
can affect cell cycle progression, cell division and differentia-
tion (106). Pathogenic mutations in the BRAF gene cause the 

RAF protein to be constitutively activated, resulting in uncon-
trolled cell growth and proliferation. Additionally, BRAF 
mutations cooperate with Rac1b, AKT3 and other signaling 
molecules, which also promote the viability and proliferation 
of cancer cells (107). BRAF mutations are observed in many 
benign and malignant tumors, such as benign congenital and 
acquired melanocytic nevus, malignant melanoma, papillary 
thyroid cancer, non‑small cell lung cancer and colorectal 
adenoma (108).

BRAF gene mutations account for ~4% of the wild‑type 
GISTs, and the most common mutation is V600E of exon 15, 
and the BRAF V600E site mutation is considered to be exclu-
sive of KIT and PDGFRA mutations (109). Hostein et al (110) 
analyzed GIST pathology from the Bergonie Institute from 
2004 to 2008 and found that the lesions of GISTs with BRAF 
mutations were mostly located in the small intestine (5/9; 56%), 
followed by the stomach (2/9; 22%). There was no significant 
association between tumor location, tumor size and mitosis 
between wild‑type GISTs with or without BRAF mutations. 
However, the sample size in this study was too small, thus the 
results may not be reliable. MEK inhibitors and RAF inhibi-
tors are used to inhibit pathogenic consequences of mutations 
of BRAF. MEK inhibitors inhibit the downstream MEK 
protein of BRAF, while RAF inhibitors inhibit the active RAF 
protein to control the uncontrolled MAPK/ERK signaling 
pathway. Currently, the FDA approved MEK inhibitors 
include trametinib and cobimetinib, while RAF inhibitors are 
dabrafenib and vemurafenib. Patients with BRAF mutations 
in GISTs have a longer overall survival and a better clinical 
outcome (111).

RAS gene mutation. The RAS protein acts as a molecular 
switch that switches between its active GTP binding state and 
inactive GDP binding state. The majority of RAS mutations are 
observed in codons 12, 13 or 61. Mutations of the RAS gene or 
its regulatory factors cause the RAS protein to remain active, 
leading to tumorigenesis. Activated alleles of HRAS, NRAS 
and KRAS have been shown to possess a similar phenotype 
to activated BRAF, CRAF, MEK1 or MEK2‑driven alleles in 
human tumors (112). Miranda et al (113) identified codon 12 
(G12D) and codon 13 (G13D) mutations in the KRAS gene in 
~5% of patients with GISTs. G12D‑mutant tumors are accom-
panied by deletion mutations in KIT exon 11 (570‑576 and 579), 
whereas patients with G13D mutations are accompanied by 
PDGFRA gene D842V mutation. Additionally, KRAS and 
BRAF mutations may affect the response of imatinib‑sensitive 
KIT mutants to imatinib therapy, thus it was suggested that 
KRAS and BRAF mutation analysis should be introduced in 
clinical diagnosis of patients with GISTs.

Quadruple wild‑type GISTs. Quadruple wild‑type GISTs 
are not associated with SDH mutations, BRAF mutations 
or RAS mutations  (114). Nannini et al  (115) analyzed the 
genome of patients with quadruple wild‑type GISTs and found 
that they had significantly different genome profiles from 
KIT/PDGFR mutation or SDH‑deficient GISTs. Molecular 
markers CALCRL and COL22A1, and specific oncogenes, 
including NTRK2 and CDK6, and ETS were found in both 
small intestine quadruple wild‑type GISTs. Brenca et al (116) 
found an ETV6‑NTRK3 fusion in a patient with rectal 
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Table I. Characteristics of each molecular subtype of GISTs.

	 Genetic	
Subtype	 alteration	 Mutation	 Frequency	 Localization	 Features

KIT (70‑80%)	 Exon 11 (JM)	 W557‑K558_del	 70‑80%	 Whole GI tract	 Malignant potential Imatinib
		  V559_del V575A			   (responsive)
	 Exon 9 (EC)	 Insertion	 10%	 Small intestine	 Higher recurrence and
		  AY502‑503		  and colon	 metastasis rates; Imatinib
					     (partially resistant) Sunitinib 
					     (responsive)
	 Exon1 3 (TK I)	 K642E	 1%	 Whole GI tract	 Secondary mutations; Imatinib
					     (responsive)
	 Exon 17 (TK II)	 N822K D816V	 1%	 Whole GI tract	 Secondary mutations (30‑40%);
					     Imatinib or 
					     sunitinib resistant; Regorafenib
					     (responsive)
PDGFRA (10‑15%)	 Exon 12 (JM)	 V561A		  Stomach	 Imatinib (responsive)
	 Exon 14 (TK I)	 N659Y N659K	 <1%		  Imatinib (responsive) 
					     Relatively good prognosis;
	 Exon 18 (TK II)	 D824V, D842Y	 5%	 Whole GI tract 	 Imatinib resistant; avapratinib, 
		  (I843_del			   crenolanib responsive;
		  I843‑H845_del
		  I843_del
		  I843‑H845_del
		  D842‑H845_del	 1%
		  D842‑M844_del
		  D842‑H845_del
		  D842‑M844_del)
SDH‑deficient GISTs		  SDHx mutation	 ≈5%	 Stomach	 Children and young adults 
					     Female predilection; High rate 
					     of liver metastasis; 
					     Overexpression of IGF1R; 
					     Imatinib resistant
Non‑SDH‑deficient		  NF1	 <1%	 Generally	 Younger age; High positive
GISTs				    duodenum and	 rates of CD117 and CD34; 
				    small intestine	 Imatinib resistant
	 Exon 15	 BRAF (V600E)	 ≈4%	 Unknown	 Longer overall survival and 
					     better clinical outcome; 
					     Imatinib resistant
	 KRAS	 G12D G13D	 ≈5%	 Unknown	 May affect the response of 
					     imatinib‑sensitive KIT mutants 
					     to imatinib therapy
Quadruple		  ETV6‑NTRK3	 Unknown	 Unknown	 Activation of IGF1R
wild‑type GISTs		  FGFR1‑HOOK3			   signaling
		  FGFR1‑TACC1
		  Somatic gene
		  mutations (TP53,
		  MEN1, MAX,
		  FGFR1, CTNND2,
		  CHD4)

GISTs, gastrointestinal stromal tumors; KIT, KIT proto‑oncogene, receptor tyrosine kinase; PDGFRA, platelet derived growth factor receptor α; 
JM, juxtamembrane; EC, extracellular domain; TK, TKⅠ domain (ATP‑binding pocket); TKⅡ, TKⅡ domain (activation loop); SDH, succinate 
dehydrogenase; NF1, neurofibromatosis type 1; GI, gastrointestinal.
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quadruple wild‑type GISTs. Shi et al (117) found a fusion of 
the FGFR1 gene (FGFR1‑HOOK3 and FGFR1‑TACC1) in 
quadruple wild‑type GISTs. NF1 gene inactivation was also 
observed in quadruple wild‑type GISTs, but the patient did not 
show neurofibromatosis type 1 symptoms (118). In addition, 
somatic gene mutations such as TP53, MEN1, MAX, FGFR1, 
CTNND2 and CHD4 were found in quadruple wild‑type 
GISTs (119). These findings may assist in the identification 
of new therapeutic targets. In vitro experiments indicate that 
ETV6‑NTRK3 fusion is associated with activation of down-
stream IGF1R signaling and that tumor cells are susceptible 
to IGF1R inhibition. In addition, ALK inhibitors, a target 
drug for ETV6‑NTRK3 gene fusion, have shown thera-
peutic potential (116). The Murine double‑minute 2 inhibitor 
can inhibit the growth of TP53 wild‑type GIST cells and 
enhance the therapeutic response of GIST cells to TKI. This 
suggests that the regulation of the p53 gene may be a potential 
effective therapeutic strategy (120).

6. ctDNA and GISTs

Extracellular DNA fragments in different body f luids 
(plasma, serum, urine, and saliva) are referred to as cell free 
DNA (cfDNA). The primary part of cfDNA in the blood is 
adsorbed to the surface of white blood cells or red blood 
cells, and its half‑life is short because it is easily degraded 
by nucleases (121,122). Among these, cfDNA derived from 
tumor cells is called ctDNA, which may be produced by apop-
tosis or necrosis of cancer cells (123). cfDNA is primarily 
composed of ctDNA, and normal extracellular DNA accounts 
for only a small portion of cfDNA (124,125). The feasibility 
report of plasma‑based ctDNA analysis for tumors in GISTs 
was first published at the ASCO annual meeting in 2013. The 
report showed that the consistency of mutations in exon 9 
and 11 of KIT between tumor tissue and plasma was 84%. 
In particular, the consistency of KIT mutations of exon 9 
was 100%, whereas that of KIT exon 11 was only 79%. It 
is also noteworthy that a higher KIT mutation rate (47% vs. 
12%) was detected in plasma by BEAMing compared with 
tumor tissue (13). Maier et al (126) subsequently confirmed 
the presence of KIT/PDGFRA mutant ctDNA in the 
plasma, and the quantity of mutant ctDNA was associated 
with the clinical course of the disease. Namløs et al (127) 
found that the detection rate of tumor ctDNA mutations in 
the plasma of high‑risk patients or patients with metastatic 
diseases was higher compared with patients with localized, 
or moderate‑ or low‑risk GISTs. Jilg et al (128) confirmed 
that tumor‑specific KIT and PDGFRA mutations could 
be detected in the ctDNA of patients with active GISTs 
and were positively correlated with disease activity. Other 
mutations indicating disease progression, including BRAF, 
NRAS, PIK3CA, PTEN and CTNNB1 mutations, are found 
in ctDNA, which can influence treatment regimens. All the 
above studies have demonstrated that ctDNA detection in 
plasma has important guiding significance for the diagnosis 
and prognosis of GISTs. However, liquid biopsy technology 
as a complement to other commonly used clinical techniques 
still has many limitations, and it is far from ready for use in 
clinical practice; however, the prospects of this technology 
is promising.

7. Non‑coding RNAs and GISTs

Non‑coding RNA refers to RNA that does not encode proteins. 
It has been found that various miRNAs and lncRNAs are 
associated with the occurrence and development of GISTs.

MicroRNAs (miRNAs) are small non‑coding RNAs 
which participate in the regulation of post‑transcriptional 
gene expression (129). Dysregulation of various miRNAs has 
been identified in many different types of cancer, including 
gastric cancer  (130), colorectal cancer  (131), pancreatic 
cancer (132), and childhood glioma (133). miRNAs regulate 
target gene expression by acting on key molecular pathways 
and mediate cell invasion, migration, proliferation, apoptosis 
and drug resistance. A German study found that miR‑221 and 
miR‑222 were downregulated in wild‑type and mutant GISTs, 
and in vitro experiments, they confirmed that the expression of 
these miRNAs induced apoptosis through a KIT/AKT/BCL2 
signaling pathway  (134). miR‑17  (135), miR‑20a  (135), 
miR‑21 (136), miR‑133b (137), miR‑137 (138), miR‑152 (139), 
miR‑218 (140), miR‑494 (141), miR‑518a (117), have all been 
confirmed to be downregulated in GISTs. Overexpression of 
miR‑218 also inhibits the PI3K/AKT pathway and thereby 
increases the sensitivity of GIST cells to imatinib  (140). 
Conversely, miR‑125a and miR‑196a were found to be upregu-
lated in GISTs. Overexpression of miR‑125a is associated 
with imatinib resistance (142). Overexpression of miR‑196a 
increases the invasiveness of cancer cells (143) , and is asso-
ciated with high risk classification, a high rate of metastasis 
and reduced survival rates  (144). In addition, studies have 
shown that circulating miRNAs can be used as biomarkers 
for detection of various types of malignant tumors, including 
gastric cancer (145), colorectal cancer (146), and pancreatic 
cancer (147). Serum circulating miR‑518e‑5p has been found 
to be a potential non‑invasive biomarker for early detection 
and diagnosis of secondary imatinib‑resistant GISTs (148).

lncRNAs works by interacting with other cellular molecules, 
including DNA, RNA binding protein and RNA. lncRNAs serve 
an important role in the diagnosis, monitoring, prognosis and 
evaluation of therapeutic reactivity of tumors (149). HOTAIR 
is one of the most widely studied carcinogenic lncRNAs. 
Overexpression of HOTAIR is associated with an increase in 
invasiveness of GIST cells and knockdown of HOTAIR can 
inhibit the invasiveness of GIST cells (143). HOTAIR also regu-
lates the progression of GISTs by inducing methylation of the 
promoter of the pro‑cadherin 10 gene in GIST cells (11). HOTAIR 
is upregulated in invasive GISTs and mediates gene‑specific 
DNA methylation. This further confirms the role of HOTAIR in 
GISTs (150). Yan et al (151) confirmed that CCDC26 enhances 
the sensitivity of imatinib by downregulating IGF‑1R expression, 
and showed that CCDC26 may be used as a therapeutic target to 
reverse imatinib resistance in patients with GISTs.

8. Conclusion

The progress made in the field of molecular biology in 
the past 20  years has provided a deeper understanding 
of the pathogenesis of GISTs. The characteristics of each 
molecular subtype are summarized in Table I. Receptor TKIs 
currently used to treat patients with GISTs are based on these 
subtypes and the use of these drugs significantly prolong life 
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expectancy. Nevertheless, resistance to second‑line therapeu-
tics is becoming increasingly common. Additionally, there is 
no specific treatment for patients with wild‑type GISTs. Thus 
an improved understanding is required to further understand 
the molecular mechanisms underlying the different subtypes 
of GISTs to develop improved therapeutic options.
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