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Abstract. Circulating tumor cells (CTCs), are tumor cells that 
diffuse into the circulating blood and serve an important role 
in the progress of cancer. During the early stages of cancer, 
CTCs undergo an epithelial‑mesenchymal transition and 
obtain a more invasive phenotype. Subsequently, the tumor 
cells enter the circulating blood with the aid of immune cells, 
and enter a dormant state upon reaching distal organs. As the 
tumor progresses, metastasis may occur under certain condi-
tions. The capture technologies available for CTCs are based 
on antibody‑based capture, or capture based on the physical 
properties of CTCs, as well as modern technologies that inte-
grate both these methods. Emerging modern technologies have 
increased the accuracy and efficiency of tumor cell capture, 
and have thus improved our understanding of tumor cells, and 
the molecular mechanisms underlying their properties. CTCs 
serve an important role in disease progression, prediction of 
patient prognosis and individualized treatment.
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1. Introduction

The metastasis of cancer is a complex procedure, ultimately 
resulting in patient death (1). During metastasis, malignant 

tumor cells detach from the primary tumor and enter the circu-
latory system during the early stages of cancer, and when these 
circulating tumor cells (CTCs) reach a distal organ, they enter 
a dormant state or form a metastatic tumor (2‑4). Metastasis 
contributes to ~90% of all cancer‑associated deaths  (5,6). 
In recent years, with advances in capture and identification 
technologies, our understanding of CTCs and the associated 
mechanisms underlying their action has become more accurate. 
In 2017, the American Joint Committee on Cancer included 
the presence of CTCs in the M0(i+) classification stage in 
breast cancer (7). CTCs represent the metastatic capacity of 
cancer, and may allow for an earlier diagnosis compared with 
imaging and clinical evidence. Thus, in the present review the 
physiological processes, of CTCs including, engendering and 
spread to distant organs, and the analytical tools available, as 
well as CTC research methods are described.

2. Physiological processes of CTCs

Tumor cells gain invasive ability and enter the circula-
tory system. CTCs arise from the tumor cells of primary 
tumors, metastases, lymph nodes or disseminated tumor 
cell pools  (5,8). Before tumor cells enter the circulating 
system, a series of phenotypical and genotypical changes 
occur, including cytoskeletal reorganization, protease secre-
tion, changes to the expression profile of adhesive proteins 
and receptors, and these changes allow CTCs to acquire 
an invasive phenotype and detach from the primary tumor 
(Fig. 1A) (9,10). Epithelial‑mesenchymal transition (EMT) 
serves a key role in the loss of cell polarity and decrease of 
cell‑cell adhesion resulting in an increase in the invasiveness 
of tumor cells (11,12). Predisposing factors of EMT include 
transforming growth factor‑β (TGF‑β), interleukin‑35 and 
interleukin‑6 which are secreted by macrophages, activation 
of the WNT signaling pathway and platelet‑derived growth 
factor, and exposure to nicotine, alcohol and ultraviolet light 
also exacerbate this process (12‑17). Epidermal growth factor 
(EGF) and hepatocyte growth factor, which are secreted by 
monocytes and neutrophils, and the presence of inflammation 
are also strong predisposing factors for EMT (18). Additionally, 
Twist, SNAIL, Zeb and other genes have also been shown to 
serve a crucial regulatory role in EMT (19‑21). As tumor cells 
undergo EMT, the number of intercellular junctions reduce 
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notably, as well as the expression of epithelial markers, such 
as keratin, E‑cadherin and epithelial cell adhesion molecule 
(Ep‑CAM)  (22). Conversely, expression of mesenchymal 
markers such as vimentin are increased, and subsequently the 
morphology of the cells are altered allowing for detachment 
from the primary tumor, and ultimately becoming inva-
sive (14,23). Centrosome amplification and CTC clusters are 
also hypothesized to confer invasive and metastatic properties 
to tumor cells (24,25).

Once cells detach from the primary tumor, the tumor cells 
near the neovascular site enter blood vessels through the sparse 
vascular endothelium under increased pressure of tumor tissue 
growth which facilitates extrusion (26). Additionally, changes in 
the extracellular matrix increase the synthesis of key components 
such as collagen and fibronectin, and simultaneously promote 
the development of abnormal structures in the extracellular 
matrix, through increased activity of members of the cathepsin 
and matrix metalloproteinases families of proteins, which are 
secreted by neutrophils and mast cells (27,28). Macrophages 
and inflammatory monocytes enhance the migration of tumor 
cells by increasing the synthesis and cross‑linking of collagen 
and fibronectin (29,30). Natural killer cells reduce the expres-
sion of fibronectin by secreting interferon‑γ, thereby limiting 
the migration of tumor cells (31). These changes all contribute 
to the breakdown of the extracellular matrix and intravasation 
of tumor cells into blood vessels. Subsequently, tumor cells use 
chemotaxis to migrate to sites of high vascular permeability 
to intravasate (Fig. 1A), and macrophages serve an essential 
role in this process. Macrophages alter vascular structures and 
increase permeability by secreting a series of growth factors 
such as the vascular endothelial growth factor (VEGF), fibro-
blast growth factor, and placenta‑derived growth factor, which 
facilitate migration of tumor cells through the vascular endo-
thelium (32,33). Additionally, macrophages recruit tumor cells 
via the epidermal growth factor (EGF) paracrine loop to sites 
where vascular permeability is higher and thus more readily 
penetrable (34). This paracrine loop is regulated by the secretion 
of colony‑stimulating factor (CSF‑1) from tumor cells. CSF‑1 
regulates macrophages, increasing the production of EGF, and 
these macrophages are recruited to blood vessels, forming a 
chemical concentration gradient of EGF to guide the tumor cells 
towards the blood vessels (35,36). This macrophage‑mediated 
chemotaxis can be antagonized by T cells (37).

CTCs survive in the bloodstream and extravasate from the 
blood vessels at specific locations. CTCs in the blood face 
three challenges to survive, blood flow shear, anoikis, and 
immune cell identification and killing (38). Blood flow shear 
force is a double‑edged sword. Under certain conditions, blood 
flow shear can increase the invasive and metastatic capacity 
of CTCs by activating yes‑associated protein 1, as well as the 
ability to adhere to and penetrate blood vessels (39). Conversely, 
CTCs can be physically destroyed by blood flow shear (40), 
and the longer CTCs are present in the blood circulation, the 
lower their proliferative capacity becomes, and eventually 
the cells enter dormancy (41). Tumor cells undergoing EMT 
exhibit an improved ability to resist the blood flow shear 
force (42). When the tumor cells detach from their original 
microenvironment, the original extracellular matrix is unable 
to provide the necessary cytokines and signals for growth and 

survival resulting in death. This programmed death of the 
tumor cells is called anoikis. In CTCs, activation of the Akt 
pathway triggers tropomyosin‑related kinase B and inhibits 
caspase‑related apoptosis to counter anoikis (43). Furthermore, 
the Akt signaling pathway is activated in tumor cells and 
resists apoptosis induced by tumor necrosis factor‑related 
apoptosis‑inducing ligand, and this is mediated by vascular 
cell adhesion factor‑1 (VCAM‑1) (44). Platelets serve a crucial 
role in the resistance of CTCs to immune cell‑mediated 
killing (Fig. 1B). Platelets can adhere to CTCs, forming an 
armor to resist blood flow shear (45), and natural killer (NK) 
cells recognize and kill the CTCs (46,47). However, platelets 
induce EMT in CTCs via the NF‑κB and TGF‑β signaling 
pathways (48), and as mentioned earlier, CTCs which have 
undergone EMT are more resistant to blood flow shear (42). 
Platelets may also prevent CTCs from NK cell recognition by 
transferring major histocompatibility complex 1 molecules to 
CTCs and secreting TGF‑β to decrease the expression of NK 
cell NK Group 2D (49,50). Furthermore, platelets act as a link 
between CTCs and CD11+ macrophages to form cell clusters 
which help CTCs survive in the bloodstream (51). Additionally, 
CTCs selectively express Programmed death‑ligand 1 (PD‑L1), 
CD47 and Fas/Fasl which reduce the elimination of CTCs by 
immune cells (52‑55).

Extravasation of CTCs from blood vessels is associated 
with several factors, such as the vascular endothelium linkage 
state, blood circulation state, capillary structure and adhesion 
of CTCs to the vessel wall (56‑59). When CTCs pass through 
the capillaries, the flow rate decreases and CTCs adhere to 
the vascular endothelium with the assistance of platelets and 
neutrophils (60,61). Mononuclear macrophages are recruited 
to the vascular endothelium, and CTCs adhere through C‑C 
Motif Chemokine Ligand 2, and subsequently secrete VEGF, 
increasing the permeability of vascular endothelium and thus 
assisting extravasation of CTCs (62,63).

Dormancy and activation of tumor cells. CTCs do not imme-
diately contribute to metastasis, but remain dormant possibly 
for several years following extravasation and colonization of a 
distant site (Fig. 1B) (64). However, the processes underlying the 
ability of tumor cells to survive and enter a dormant state are 
complex. Myeloid cells, monocytes and macrophages, including 
neutrophils and the factors secreted by these cells accumulate 
at the metastatic site, producing an inhibitory environment for 
immune responses, thus assisting the tumor cells entry into 
dormancy prior to the arrival of tumor cells at the dissemination 
site (34,65,66). Additionally, tumor cells resist apoptosis through 
activation of the Akt signaling pathway and thus improving 
tumor viability (4,44,67). Tumor cells enter dormancy and are 
divided into three stages, angiogenesis dormancy, immune 
dormancy and tumor cell dormancy  (64). Tumor growth 
requires a large number of new blood vessels to ensure a suffi-
cient supply of nutrients (68,69). During the dormant phase, 
angiogenesis is not activated (64). Proliferating tumor cells are 
in equilibrium with tumor cells that die due to a lack of oxygen 
and other nutrients due to the angiogenesis dormancy (68,70). 
In terms of immune dormancy, it has been confirmed in animal 
models that the presence of lymphocytes, particularly CD8+ 
T  cells, can maintain tumor dormancy and reduce metas-
tasis (71). The deletion of CD8+ T cells results in a 100% tumor 
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metastasis rate (72). In addition, EMT in tumor cells (26), and 
disruption of the balance between extracellular signal‑regulated 
kinases and p38 mitogen‑activated protein kinases (73), alters 
the expression of urokinase plasminogen activator receptor and 
integrin‑β1 (74), activation of TGF‑β2 signaling pathway (75) 
and expression changes in Myc gene (64), which all regulate 
the entry of tumor cells into a dormant state. When tumor 
cells enter dormancy, immune cells and conventional cyto-
toxic chemotherapy does not kill these cells; in conditions of 
post‑operative stress, such as ischemia‑reperfusion, sympathetic 
excitation, inflammation and hypercoagulability, these dormant 
cells may be activated, resulting in recurrence and metastasis in 
patients who underwent primary tumor resection (34,76). Exit 
from dormancy is also a complicated process. Tumor cells exit 
dormancy and gain proliferative capacity, when they undergo 
mesenchymal‑epithelial transition (26), and this process involves 
tumor necrosis factor‑α, interleukin‑6 (77), integrin, activation 
of the Fak signaling pathway (78) and prostaglandin E2 (79). 
TGF‑β receptor antagonists awaken tumor cells from dormancy 
by blocking the bone morphogenetic protein signaling pathway 
and thus improving tumor stem cell characteristics (80).

3. Isolation and detection of CTCs

In general, there are 1‑10 CTCs per 1 billion blood cells, 
and these extremely rare CTCs are heterogeneous (81). This 
combined heterogeneity and rarity poses a great challenge 
for separating and detecting CTCs, as separation and detec-
tion technologies must exhibit specificity, repeatability and in 
particular sensitivity (2,82). At present, there are various CTC 
detection and separation techniques which can be crudely 

divided into two categories (Fig. 2A). The first method relies 
on specific markers on the surface of CTCs to separate them 
using antibody capture (83,84). The second method relies on 
the physical properties of CTCs, such as size, density, and 
electrophysiological characteristics (2,85). In addition, certain 
more recent techniques have combined the use of antibody 
capture with separation based on physical properties, such as 
preliminary isolation by size of CTCs, and further screening 
of CTCs using Ep‑CAM antibody capture (86). Downstream 
DNA, RNA and protein levels can be analyzed to confirm that 
the captured cells are indeed CTCs (8). 

The CellSearch system is the only technology approved by 
the US Food and Drug Administration (FDA) for capture of 
CTCs, and is a cell‑specific marker antibody capture and sepa-
ration technology. This system uses Ep‑CAM antibody‑coated 
immunomagnetic beads for capture of CTCs, similar to 
AdnaTest (87,88) and IsoFlux (89). In addition to coating of 
magnetic beads with an Ep‑CAM antibody, it is also coated on 
a microfluidic chip microcolumn (90), herringbone lumen (91) 
or wavy herringbone lumen (92), and the inner wall of the 
microfluidic chip. After the blood sample has passed through, 
CTCs are captured and retained on these devices for additional 
verification. Furthermore, the Ep‑CAM antibody is coated 
on a functionalized medical line (CellCollector)  (93), and 
the antibody‑coated line is left in a patients vein for 30 min 
to obtain CTCs from the body, which are verified following 
isolation. Flow cytometry can isolate CTCs from the blood 
samples using fluorescein‑labeled Ep‑CAM antibodies (94). 
However, this method has certain limitations as not all CTCs 
express Ep‑CAM (83). As mentioned above, most of the tumor 
cells undergo EMT, which results in the downregulation of 

Figure 1. Biology of CTCs. (A) Tumor cells enter blood circulation through gaps between neovascular endothelial cells or vessels with greater permeability. 
CTCs counteract blood flow shear, anoikis and resist immune‑mediated killing during circulation. (B) When CTCs flow through the capillaries of the distal 
organs, they eventually extravasate and enter dormancy. Under certain conditions, tumor cells exit this dormant state to form a metastasis. CTC, circulating 
tumor cell; EMT, epithelial‑mesenchymal transition.
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cell‑surface epithelial markers such as Ep‑CAM and keratin, 
and simultaneously, expression of mesenchymal markers, such 
as vimentin, are increased (12). This results in only 80% of 
solid tumors expressing Ep‑CAM (95). Therefore, other types 
of antibodies have been adapted for capture of non‑epithelial 
CTCs, such as the mesenchymal antibodies N‑cadherin (96), 
Vimentin (97), and stem cell‑specific antibodies CD44 (98). 
Heterogeneity of CTCs leads to inefficient capture of CTCs 
in different patients, and even in the same patient when only 
one antibody is used (82). Therefore, a negative screening 
technique was introduced. By enriching and discarding white 
blood cells expressing CD45, the remaining cells were identi-
fied to be CTCs, expressing different markers using tools such 
as Diagnostic Leuk Apheresis (99) and RosetteSep (100).

In addition to capturing CTCs using antibodies, it is 
possible to isolate CTCs based on their physical properties. 
Systems to isolate CTCs from blood cells based on size include 
ISET (101), CanPatrol (102), ScreenCell (103), Parsortix (104), 
CelSee (105) and microcavity array system (106). However, 
this method has certain drawbacks as not all CTCs are larger 
than white blood cells (90). Using the differences in density 
between CTCs and blood cell, CTCs can be obtained by 
centrifugation, for example by using Ficoll density gradient 
separation  (107) and OncoQuick  (108). Other techniques 
for capturing CTCs include separation based on electro-
physiological features, such as dielectrophoretic field‑flow 
fractionation (109) and dielectrophoretic array platform (110). 
In addition to the above separation methods, there are several 
novel detection methods, such as the multifunctional Branched 
Nanostraw‑electroporation platform (111), which can capture 
CTCs, and also puncture the cell membrane without damaging 

the cell to assess the intracellular environment and transport 
drug molecules into the CTCs. Optofluidic flow cytometer 
can be used for consecutive CTC separation, 3D focusing and 
single‑cell phenotypic counting (112). The Cytophone plat-
form uses an in vivo photoacoustic flow cytometry platform 
with a high pulse rate laser and focused ultrasound transducers 
for label‑free detection of CTCs (113). Furthermore, there 
are separation methods that combine antibody capture with 
physical properties, such as CTC‑iCHIP (86) and 3D‑printed 
microfluidic devices  (114), which capture CTCs more effi-
ciently by combining antibody beads with CTC size filtration.

CTC detection technology. After CTCs have been isolated 
using one of the above methods, confirmation of their identity 
needs to be verified, and a series of tests are performed to assess 
the cells and obtain information regarding the original tumor 
information from which the CTCs were derived (Fig. 2B). 
Immunocytochemistry is used to determine the expression of 
specific markers, thereby defining the identity of the CTCs. 
For example, in CellSearch, cells ≥4 µm, 4,6‑diamino‑2‑phe-
nylindole (DAPI+), keratin+ and CD45‑ are used as criteria for 
determining CTCs (115), and the expression of molecules on 
the surface of CTCs may also be analyzed by this technique, 
such as by staining for EMT‑associated molecules  (116). 
The classification of CTCs may also be confirmed using 
a 4‑color fluorescence detection system (112). If cells are 
isolated and cultured, the proteins secreted by the cells can 
be detected using EPISPOT, to determine the identity of the 
CTCs (117). PCR can also be used for the identification of 
CTCs and for profiling the transcript of tumors, EMT, stem 
cell characteristics such as Ep‑CAM, aldehyde dehydroge-

Figure 2. CTC separation and detection methods. (A) Separation methods of CTCs are divided into two types, antibody capture and physical capture. In antibody 
capture, the most commonly used antibody is Ep‑CAM; Vimentin and leukocyte antibody CD45 are used for negative isolation. Physical capture primarily uses the 
difference in size and density of cells to separate CTC by filtration or centrifugation. One method combines both antibody capture with physical capture. (B) CTCs 
can be identified and analyzed based on DNA, RNA and protein expression, after obtaining CTCs. FISH, WGA are commonly used for DNA analysis, single‑cell 
RNA sequencing is commonly used for RNA analysis, and ICC is commonly used for protein expression analysis. CTC, circulating tumor cell; Ep‑CAM, epithelial 
cell adhesion molecule; FISH, fluorescence in situ hybridization; WGA, whole‑genome amplification; ICC, immunocytochemistry; WGBS, whole‑genome bisulfite 
sequencing; Nuc‑Seq, whole‑genome and exome single cell sequencing approach; NGS, next generation sequencing; EPISPOT, epithelial immunospot.
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nase 1 and Twist1 (118). With the emergence of whole‑genome 
amplification (119), whole‑genome bisulfite sequencing (120), 
whole‑genome and exome single‑cell sequencing  (121), 
next‑generation sequencing  (117), third‑generation 
sequencing (120) and low‑pass whole genome and targeted 
next‑generation sequencing (121), our understanding of CTC 
gene mutations has increased notably. In addition to the 
single‑cell level, the association between the CTC phenotype 
and gene mutations can be visualized using fluorescence in situ 
hybridization (FISH) (122), without the need to separate indi-
vidual cells by micromanipulation following CTC enrichment. 
For RNA, the emergence of technologies such as single‑cell 
RNA sequencing  (8) and digital droplet PCR  (123), have 
allowed for a deeper understanding of the biological changes 
of CTCs at the transcriptional level. Furthermore, other novel 
technologies allow for assessment of the changes in protein 
expression levels from an individual CTC. For example, single 
CTC resolution western blot analysis can quantify 12 proteins 
simultaneously, this technology, when combined with flow 
cytometry, can quantify >40 proteins, significantly improving 
screening efficiency (124,125). Fluctuations in pH or detection 
of lactate concentrations have been employed in a microfluidic 
device to identify the metabolic status of CTCs (126).

4. CTC associated research methods

Research on CTCs can be divided into two categories, research 
at the cell and animal level, and clinical research focusing on 
the clinical prognosis of patients. Examination of phenotypes, 
characteristics, gene mutation sites and drug susceptibility of 
CTCs are primarily studied by culturing CTCs‑associated cell 

lines and using cell biology and molecular biology techniques, 
and subsequently verified using in vivo experiments (127‑129). 
In clinical trials, evaluation is performed by combining the 
number, type, and protein expression profiles of CTCs in 
patients' blood with clinical prognosis and personalized treat-
ment (123,130). At present, the primary clinical value of CTCs 
includes the assessment of disease‑free survival and overall 
survival prognosis  (131), surveillance of minimal residual 
lesions, recurrence and metastasis (8,132), and to personalize 
treatment and determine the effects of the treatment (133,134).

Cell and animal research. Due to the rarity of CTCs, and 
the difficulty in isolating CTCs whilst simultaneously main-
taining their survival outside of the body, certain studies 
are performed at the cellular or animal level compared with 
clinical studies of CTCs. In the case of patients with relatively 
high concentrations of CTCs, cell and animal research of 
their CTCs is possible (Fig. 3A). In a patient with colorectal 
cancer, the CTC concentration was >300/7.5 ml, thus blood 
was enriched and cultured, and a cell line based on their CTCs 
was successfully obtained (127). Studies on gene transcription, 
protein expression and secretion levels demonstrated that CTCs 
have primitive tumor cell and stem cell characteristics, mixed 
epithelial and mesenchymal phenotypes, and strong tumori-
genic ability in animal experiments. In breast cancer, CTCs 
obtained from patients have mutations in the gene of PIK3CA, 
estrogen receptor 1, fibroblast growth factor receptor 2, and 
drug sensitivity to the mutations (128). Another study showed 
that CTCs with human epidermal growth factor receptor 
2/epidermal growth factor receptor/Heparanase/Notch1+ 
have a tendency to metastasize to the brain in animal experi-
ments  (129). Similar studies have also been performed in 
prostate cancer (135), non‑small cell lung cancer (136), and 
small cell lung cancer (137,138), and the tumorigenicity, drug 
resistance, and mutation sites of CTCs having been confirmed. 
Through these studies, a more comprehensive understanding 
of the relationship between CTCs and the metastatic tendency 
of different organs can be determined (139), and this indi-
vidualized treatment (128) and the mechanisms underlying 
increased invasion and metastasis may be elucidated (140).

Clinical research. In clinical studies, research can be broadly 
divided into two categories, bivariate studies, and multivariate 
studies. In bivariate studies, the two variables are CTC‑related 
data and patient clinical follow‑up data (Fig. 3B). CTC‑related 
data includes the number of CTCs, and protein, DNA and 
RNA expression profiles. Patient follow‑up data primarily 
include disease‑free survival, overall survival, chemotherapy 
medication and methods, and recurrence. CTCs are used as 
a predictor of clinical prognosis, chemoresistance, and for 
detection of tumor metastasis and recurrence. For example, in 
advanced pancreatic ductal adenocarcinoma, the number of 
CTCs is an important predictor of disease‑free survival and 
overall survival prior to, and following first‑line chemotherapy; 
the higher the number of CTCs, the shorter the disease‑free 
survival and overall survival of patients (123). However, the 
mRNA expression levels of activated leukocyte cell adhesion 
molecule, POU Class 5 Homeobox 1B and smoothened are 
increased in CTCs, and this is associated with less favor-
able overall and disease‑free survival  (123). In metastatic 

Figure 3. CTC associated research methods. (A) CTC associated cell and 
animal methods. A large number of CTCs are obtained from patients with 
high CTC counts, which are directly injected into nude mice for in vivo 
analysis, or cultured into cell lines for in vivo or in vitro studies. (B) Clinical 
trials of CTCs. The value of CTCs for prognosis was tested by combining 
CTC‑associated detection and patient follow‑up data.
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castration‑resistant prostate cancer patients, patients with 
CTCs expressing nuclear localization androgen receptor splice 
variant 7 (ARV7) exhibit improved responses to taxanes and 
androgen receptor inhibitors; conversely androgen receptor 
inhibitors result in improved outcomes compared with taxanes 
in patients whose CTCs do not express nuclear localization 
of ARV7  (133). In breast cancer, CTCs expressing Notch 
signaling pathway markers are closely associated with brain 
metastasis  (132). Related bivariate studies have also been 
performed on non‑small cell lung cancer  (131), colorectal 
cancer  (141), liver cancer  (130) and kidney cancer  (116). 
However, studies on hepatic carcinoma have rarely yielded 
a negative result, counts of CTCs and types of EMT are not 
associated with clinical stage and predictive recurrence of 
hepatic carcinoma (130). In addition, CTCs and solid tumor 
DNA (142) or protein analysis (143) were used as two elements 
for correlation analysis to compare the variation of primary 
tumors and CTCs. However, in patients with lung cancer, there 
was no correlation between PD‑L1 on CTCs and in tumor 
tissues (106).

In multivariate studies, in addition to the aforementioned 
CTC data and patient follow‑up data, TNM staging  (144) 
or other liquid biopsy markers, such as circulating tumor 
DNA  (145) and extracellular vesicles  (146), can be used 
together as predictors of prognosis to improve prediction 
accuracy. For example, in colorectal cancer, postoperative 
CTC counts are more valuable than preoperative counts, and 
TNM staging, and postoperative CA724 and CTCs counts 
are more accurate for predicting disease‑free survival of 
patients, and there is a model to predict early recurrence and 
postoperative survival rate using postoperative CA724, CTCs 
counts, which can include or exclude TNM staging (141). As 
mentioned above, CTCs are closely associated with platelets 
and immune cells in the circulatory system; therefore, by 
combining CTC data, immune‑inflammatory cell counts in 
circulating blood, coagulation status and other factors with 
patient follow‑up data, the accuracy of predicting prognosis 
and assessing risk can be improved. In metastatic breast 
cancer, the ratio of CTCs to blood inflammatory cells, such as 
the ratio of CTCs to monocytes and lymphocytes, can be used 
as a predictor of prognosis (147). Also in metastatic breast 
cancer, by combining CTC data with thrombin‑anti‑thrombin 
III, fibrinogen, D‑dimer and patient follow‑up data, it has been 
shown that the hypercoagulable state contributes to tumor cell 
metastasis (148).

5. Conclusion

Tumor metastasis and recurrence is a major cause of 
cancer‑associated death, and CTCs serve an important role 
in this process. During tumor cell detachment from solid 
tumors, cells enter the blood stream form distant metastases, 
and acquire an invasive phenotype, resisting the killing effect 
of the immune‑inflammatory cells through EMT and various 
other mechanisms. During these complex and varied mecha-
nisms, CTCs become heterogenous and unique. Therefore, the 
requirements for accurate separation and isolation of CTCs 
should be stringent. Traditional antibody capture technologies 
serve as the standard operating procedure, and these methods 
are relatively simple. Emerging capture technologies have 

greater sensitivities and specificities by combining antibody 
capture with CTC physics. However, these methods are 
time‑consuming and expensive. Thus, developing a method 
that is simple, has a high capture rate and is accurate is 
required. Initially, CTCs were primarily used to predict the 
prognosis of patients based on their counts. CTC research is 
now focused on the molecular characteristics and the func-
tions of the various molecular features of CTCs. With the use 
of CTC animal experiments, our understanding of biological 
behavior and mechanisms of CTCs has improved vastly and 
the development of tumor progression surveillance, prognosis 
assessment and individualized treatment has improved as a 
result.

In conclusion, CTCs possess value for prognosis assess-
ment, metastasis surveillance and personalized treatment. 
They may be used to assess the presence of tumor metastases 
and recurrence, thus improving the prognosis of cancer 
patients, and reduce tumor‑related mortality.
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