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Abstract. Changes in energy metabolism may be potential 
biomarkers and therapeutic targets for cancer as they frequently 
occur within cancer cells. However, basic cancer research has 
failed to reach a consistent conclusion on the function(s) of 
mitochondria in energy metabolism. The significance of energy 
metabolism in the prognosis of ovarian cancer remains unclear; 
thus, there remains an urgent need to systematically analyze 
the characteristics and clinical value of energy metabolism in 
ovarian cancer. Based on gene expression patterns, the present 
study aimed to analyze energy metabolism-associated charac-
teristics to evaluate the prognosis of patients with ovarian cancer. 
A total of 39 energy metabolism‑related genes significantly 
associated with prognosis were obtained, and three molecular 
subtypes were identified by nonnegative matrix factoriza-
tion clustering, among which the C1 subtype was associated 
with poor clinical outcomes of ovarian cancer. The immune 
response was enhanced in the tumor microenvironment. A 
total of 888 differentially expressed genes were identified in C1 
compared with the other subtypes, and the results of the pathway 
enrichment analysis demonstrated that they were enriched in 
the ‘PI3K-Akt signaling pathway’, ‘cAMP signaling pathway’, 
‘ECM-receptor interaction’ and other pathways associated 
with the development and progression of tumors. Finally, eight 
characteristic genes (tolloid-like 1 gene, type XVI collagen, 
prostaglandin F2α, cartilage intermediate layer protein 2, 
kinesin family member 26b, interferon inducible protein 27, 

growth arrest‑specific gene 1 and chemokine receptor 7) were 
obtained through LASSO feature selection; and a number of 
them have been demonstrated to be associated with ovarian 
cancer progression. In addition, Cox regression analysis was 
performed to establish an 8-gene signature, which was deter-
mined to be an independent prognostic factor for patients with 
ovarian cancer and could stratify sample risk in the training, test 
and external validation datasets (P<0.01; AUC >0.8). Gene Set 
Enrichment Analysis results revealed that the 8-gene signature 
was involved in important biological processes and pathways of 
ovarian cancer. In conclusion, the present study established an 
8-gene signature associated with metabolic genes, which may 
provide new insights into the effects of energy metabolism on 
ovarian cancer. The 8-gene signature may serve as an indepen-
dent prognostic factor for ovarian cancer patients.

Introduction

Ovarian cancer is a frequently diagnosed gynecologic cancer 
with a high mortality rate; the estimated annual incidence 
of this disease worldwide is >200,000 individuals, with 
~125,000 deaths (1,2), and as it is difficult to detect at an early 
stage, the majority of patients are diagnosed at an advanced 
stage (3). Although advances in chemotherapy, radiotherapy, 
surgery and targeted therapy have achieved progress in the 
treatment of ovarian cancer (4), the 5-year OS rate of patients 
with advanced disease is ~30% (5,6). Clinicopathological 
features such as histological grade and the International 
Federation of Gynecology and Obstetrics (FIGO) staging 
system are widely used prognostic indicators for ovarian 
cancer (7); however, they are not effective in predicting the 
survival and chemotherapy response in patients with ovarian 
cancer (8,9). Currently, no fully validated and clinically appli-
cable tests are available for guiding ovarian cancer treatment 
decisions. Previous studies have demonstrated that the progres-
sion of ovarian cancer is associated with a variety of pathways 
involved in energy metabolism, including galactose metabo-
lism, which is associated with the risk of developing ovarian 
cancer (10,11), and that adipocytes promote ovarian cancer 
metastasis and provide energy for rapid tumor growth (12). 
Therefore, studying local energy metabolism status and its 
prognostic value for patients with ovarian cancer may help 
improve the prediction of clinical outcomes of ovarian cancer 
and provide reference for personalized medical treatment.
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The early observations by Dr Otto Warburg revealed that 
fundamental metabolic differences existed between malignant 
tumor cells and adjacent normal cells (13). Other studies also 
reported the association between altered cellular metabolism 
and therapeutic outcomes (14-17). Energy metabolism repro-
gramming, which is a hallmark of cancer, allows tumor cells to 
produce ATP to maintain the reduction-oxidation balance and 
biomolecular synthesis required for cell growth, proliferation 
and migration (18). The metabolic phenotype of cancer cells is 
heterogeneous; a number of tumor cells are mainly dependent 
on glycolysis, whereas others exhibit a metabolic phenotype 
characterized by oxidative phosphorylation (OXPHOS) (19,20). 
Increasing evidence has demonstrated that glycolysis and oxida-
tion have a symbiotic metabolic relationship in tumor cells; for 
example, lactic acid and pyruvate produced by glycolysis can 
be transferred to and used as a substrate for tricarboxylic acid 
(TCA) intermediates and ATP production in adjacent cancer 
cells (21). Similarly, malignant tumor cells utilize free fatty 
acids and ketones released by neighboring catabolic cells for 
energy production (12,22), which can also be realized by gluta-
mine metabolization through TCA cycle (23). Mitochondrial 
OXPHOS, driven by glutamine, is a major source for ATP 
synthesis under hypoxic conditions (24). These observations 
suggest that targeting particular metabolic pathways in cancer 
may be an effective strategy for cancer therapy. Therefore, an 
in-depth understanding of energy metabolism in tumors may 
contribute to the development of new therapies.

Previous studies have demonstrated that metabolic 
abnormalities lead to different prognosis of patients, and 
metabolism-related genes can be used as prognostic markers 
of tumors. For example, Wu et al (25) have demonstrated that 
lipid metabolism-related genes can predict the prognosis of 
patients with glioma. Zhou et al (26) identified a 29 energy 
metabolism-related gene signature, including interleukin-4, 
carbohydrate sulfotransferases and branched chain amino 
acid transaminase 1 (BCAT1), to evaluate the prognosis of 
diffuse glioma. Genes related to amino acid metabolism such 
as BCAT2, glutamate-cysteine ligase catalytic subunit and 
aminoadipate aminotransferase can also predict the prognosis 
of glioma (27). Ma et al (28) have reported that metabolic 
deregulations mediate the dedifferentiation of papillary 
thyroid carcinoma and developed a metabolic gene signature 
that may be used as a biomarker for dedifferentiated thyroid 
cancer. Disorders in the metabolic pathway of sputum may 
affect the progression of breast cancer (29). Liu et al (30) 
developed a signature of four metabolic genes to predict the 
overall survival (OS) of patients with liver cancer. However, 
the expression patterns of metabolism-related genes in ovarian 
cancer are still unclear, and it is thus necessary to study 
metabolism-related gene characteristics in ovarian cancer.

The aim of the present study was to identify ovarian cancer 
molecular subtypes based on energy metabolism-related genes 
and gene signatures of energy metabolism markers to improve 
the current understanding of the molecular mechanisms in 
ovarian cancer energy metabolism and clinical prognosis.

Materials and methods

Data collection and processing. The latest clinical follow-up 
information of 587 ovarian cancer cases and RNA-seq data 

from 379 cases were downloaded from The Cancer Genome 
Atlas (TCGA; https://www.cancer.gov/about-nci/organiza-
tion/ccg/research/structural-genomics/tcga). Genomic Data 
Commons Application Programming Interface was used to 
retrieve the data on 29 April 2019. The follow-up informa-
tion and RNA-seq samples were matched, and 362 cases 
were selected as they were followed up for >30 days. The 
samples were randomly divided into two groups (ratio, 3:1), 
one of which served as the training set (N=271), whereas the 
other served as the test set (N=91). Similarly, the Affymetrix 
Human Genome U133 Plus 2.0 Array (http://www.affymetrix.
com/support/technical/byproduct.affx?product=hg-u133-plus) 
was downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/), from which 
the GSE26193 (31) gene expression profile was obtained. A 
total of 107 samples with clinicopathological characteristics 
were selected for the test set, and the sample information 
of each group is presented in Table I. A total of 11 human 
metabolism-associated pathways were obtained from the 
Reactome database (https://reactome.org/) (32) (Table II), 
and a total of 594 genes involved in energy metabolism were 
identified from these pathways [Tables SI, SII (https://github.
com/biocn/OD_data/blob/master/Table%20S2.docx) and SIII]. 
For the RNA-seq data, >50% genes with an expression level of 
0 in each sample were removed. For the chip data, normaliza-
tion of microarray data was obtained from Affymetrix platform 
using Robust Multi-Array Average method (33). Probes were 
matched to genes, and those matched to multiple genes were 
removed; multiple probes were matched to the median of a gene 
to obtain a gene expression profile. Workflow is presented in 
Fig. 1. Ovarian cancer specimens included in TCGA datasets 
were surgically resected prior to systemic treatment. Samples 
selected for TCGA analysis had >70% tumor cell nuclei and 
<20% necrosis. Data on normal ovary tissues from healthy 
subjects were obtained from the GTEx database (https://www.
gtexportal.org/home/index.html).

Univariate Cox proportional hazard regression analysis. As 
previously described (34), univariate Cox proportional hazard 
analysis was conducted to determine the impact of each energy 
metabolism gene in order to select genes significantly related 
to patient OS in the training data set. P<0.05 was selected as 
the threshold.

Identification of molecular types associated with meta‑
bolic genes. Nonnegative matrix factorization (NMF) is an 
unsupervised clustering method widely used in identifying 
genomics-based tumor molecular subtypes (35,36). To further 
determine the association between expression levels of energy 
metabolism genes and phenotypes, the NMF method was 
used to cluster samples according to the expression profiles 
of energy metabolism-related genes associated with ovarian 
cancer prognosis, and standard ‘brunet’ for 50 iterations was 
selected by NMF. The number of clusters ‘k’ was set between 
2 and 10, the average profile width of the common member 
matrix was calculated using the R package ‘NMF’ (37), and 
the minimum member of each subclass was set to 10.

Association between molecular subtypes and tumor microen‑
vironment. TIMER is a network resource for systematically 
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assessing the clinical impact of different immune cells in 
different cancer types (38), and was used to estimate the abun-
dance of six immune cell types, including B, CD4T and CD8T 
cells, neutrophils, macrophages and dendritic cells, in the 
tumor microenvironment. The abundance of immune cells 
in the tumor microenvironment was analyzed in the three 
different molecular subtypes.

Analysis of genetic differences in molecular subtypes. 
To detect biological function differences among the three 
molecular subtypes, differentially expressed genes among 
the molecular subtypes were analyzed by DESeq2 (39), and 
the threshold was set to false discovery rate (FDR) <0.05 
and |log2(fold-change)|>1. Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway and Gene Ontology (GO) enrich-
ment analysis of altered genes categorized by biological process 
were conducted using the R software packages ‘GSVA’ (40) 
and ‘clusterProfiler’ (41). The functions of differentially 
expressed genes were analyzed using the threshold P<0.05.

Screening of robust energy metabolism‑related prognostic 
feature genes. LASSO is a regression modeling with a large 
number of potential prognostic features; it can perform 
automatic feature selection that results in signatures with 
generally effective performance for predicting prognosis (42). 
The LASSO method has been used in combination with the 
Cox model for survival analysis, and has been successfully 
applied for building sparse signatures for survival prognosis 

Table I. Clinical information of each data set.

Characteristic TCGA training datasets (n=271) TCGA validation datasets (n=91) GSE26193 (n=107)

Age, years
  ≤60 149 50 NA
  >60 122 41 NA
Survival status 
  Alive 110 31 31
  Dead 161 60 76
Tumor stage
  I 1 0 21
  II 17 3 10
  III 207 77 59
  IV 43 11 17
Grade
  G1 0 1 7
  G2 34 8 33
  G3 229 80 67
  G4 1 0 0

TCGA, The Cancer Genome Atlas; NA, no data available.

Table II. Pathways involved in energy metabolism in the Reactome database.

Metabolic pathway Pathway ID Gene count

Biological oxidations R-HSA-211859 221
Metabolism of carbohydrates R-HSA-71387 292
Mitochondrial Fatty Acid Beta-Oxidation R-HSA-77289 38
Glycogen synthesis R-HSA-3322077 16
Glycogen metabolism R-HSA-8982491 27
Glucose metabolism R-HSA-70326 92
Glycogen breakdown (glycogenolysis) R-HSA-70221 15
Glycolysis R-HSA-70171 72
Pyruvate metabolism R-HSA-70268 31
Pyruvate metabolism and Citric Acid (TCA) cycle R-HSA-71406 55
Citric acid cycle (TCA cycle) R-HSA-71403 22
Sum 881 (unique, 594) 
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in a range of application areas, including oncology (43-45). In 
the current study, genes with differential expression among the 
three molecular subtypes were selected for univariate survival 
analysis, and prognostic genes were screened using the 

threshold value of 0.05. Robust prognostic characteristic genes 
were screened using the R software package ‘glmnet’ (46), and 
the optimal characteristics were evaluated by 10-fold cross 
validation.

Figure 1. Flow chart of the present study.
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Construction of energy metabolism‑related prognostic gene 
signatures. To obtain a robust prognostic gene, multivariate 
Cox regression analysis was performed, and the following risk 
scoring model was constructed: 

Where n is the number of prognostic genes, Expk is the 
expression value of a prognostic gene, and eHR

k is the esti-
mated regression coefficient of a gene in the multivariate Cox 
regression analysis. Specific genes were selected by LASSO 
analysis, and the 8-gene signature was constructed using the 
calculated risk scores.

Correlation analysis between gene signatures and 
KEGG pathways. Gene Set Enrichment Analysis (GSEA; 
http://software.broadinstitute.org/gsea/downloads.jsp) (47) 
was performed using the MSigDB 6.2 (48). The C2 Canonical 
pathway gene set collection containing 1,320 gene sets was 
selected for analysis. Gene sets with FDR <0.05 after 1,000 
permutations were considered as significantly enriched.

Comparison with existing prognostic features of ovarian 
cancer. To assess the survival classification and predictive 
power of the 8-gene signature, four published prognostic 
features were retrospectively reviewed, including a 3-gene (49), 
6-gene (50), 8-gene (51) and 5-gene signature (52). To ensure 
that the models were comparable, according to the corre-
sponding genes in the four models, the risk scores of each 
ovarian cancer sample in TCGA were calculated using the 
same method, the ROC of each model was evaluated, and 
the samples were divided according to the median risk score. 
OS differences between the high- and low-risk groups were 
calculated.

Statistical analysis. Kaplan-Meier (KM) curves were 
plotted when Youden's index in each data set was used as a 
cutoff to compare the survival risk between the high- and 
low-risk groups, and the data were analyzed by the log-rank 
test followed by Bonferroni correction. Multivariate Cox 
regression analysis was performed to evaluate whether gene 
markers were independent prognostic factors. Statistical 
analysis between multiple groups was performed by ANOVA, 
followed by Dunnett's test. ROC analysis was performed 
using R package ‘pROC’ (https://cran.r-project.org/web/pack-
ages/pROC/index.html). The χ2 test was used for mutation 
frequency detection. All statistical analyses were processed 
in R 3.4.3 (https://mirrors.tuna.tsinghua.edu.cn/CRAN/) with 
default software parameters, unless otherwise stated. P<0.05 
was considered to indicate a statistically significant difference.

Results

Identification and molecular classification of genes involved 
in energy metabolism. For the TCGA training set, univariate 
regression analysis was performed to establish an associa-
tion between patient OS and energy metabolism-related gene 
expression. A total of 39 energy metabolism-related genes 
with prognostic significance (Table SIV) were identified. 
With the minimum member of each subclass set to 10 and 

the optimal cluster number set to 3, the average profile width 
of the common member matrix was determined by the R 
package ‘NMF’ according to the cophenetic, dispersion and 
silhouette indicators (Fig. 2A). The results exhibited different 
expression patterns with prognostic differences in energy 
metabolism-related gene expression profiles in the three 
subtypes (Fig. 2B). In addition, significant differences in OS 
time among the three subtypes were detected (Figs. 2C and S1); 
of note, the C1 group was associated with the worst prognosis. 
Further analysis was conducted on the association among 
gene mutations in the three subtypes, and 20 genes with the 
highest mutation rate in each subtype were selected to obtain 
a total of 39 genes. The genes with the highest mutation rates 
among the three subtypes were not identical (Figs. 2D and S2). 
The mutation frequencies of transformation/transcription 
domain‑associated protein (TRRAP), zinc finger protein 551, 
myosin heavy chain 13 (MYH13) and EvC ciliary complex 
subunit 2 in C1 were significantly higher compared with those 
in C2 and C3 (χ2 test P<0.05), the mutation frequency of the 
von Willerbrand factor in C2 was higher compared with that 
in the other two groups (P<0.05), and the mutation frequency 
of filamin B in C3 was higher compared with that in the other 
two groups (χ2 test p<0.05). 

Further analysis by the R software package ‘GSVA’ 
revealed that 102, 60 and 21 significantly different KEGG 
pathways were present in C1 vs. C2/C3, C2 vs. C1/C3 and C3 
vs. C1/C2, respectively. In the C1 group, the scores of path-
ways associated with tumorigenesis and tumor development, 
such as the ‘TGF BETA SIGNALING PATHWAY’ and ‘ECM 
RECEPTOR INTERACTION’, were significantly higher 
compared those of the other two groups. In the C2 group, the 
scores of major diseases such as ‘ALZHEIMERS DISEASE’ 
and ‘PARKINSONS DISEASE’ were significantly higher 
compared with those of the other two groups, whereas the 
scores of pathways such as ‘PATHWAYS IN CANCER’ and 
‘PROSTATE CANCER’ were significantly lower compared 
with those of the other two groups. In the C3 group, the overall 
pathway score was low. These result suggested that the C1 
subtype may be associated with a poor prognosis (Fig. 2E). 
Comparison between the subtypes identified in the preset 
study and previously published molecular subtypes of ovarian 
cancer (53) demonstrated that the C1 subtype was comparable 
with the published mesenchymal subtype (78.26% match), 
which is also associated with a poor prognosis (Fig. 2F).

Microenvironmental characteristics and metabolic pathway 
differences of tumor molecular subtypes. No significant 
differences were detected after comparing the clinical features 
such as stage, grade and age in the three subtypes (Table III), 
suggesting that independent factors may be affecting the 
different clinical outcomes of the three subtypes. The tumor 
microenvironments were analyzed, and the immune cell 
contents of the three subtypes were compared; the B-cell score 
was significantly lower, whereas CD4 and CD8 cell, neutro-
phil, macrophage and dendritic cell scores were higher in the 
C1 subtype compared with those in the C2 and C3 subtypes 
(Fig. 3A), which suggested that the immune cells of the tumor 
microenvironment in the C1 subtype was more active; in 
addition, a gene expression matrix was extracted based on 
the gene set in the 11 energy metabolism-related pathways, 
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the values of which were defined by the mean value of the 
corresponding gene in each sample, and the expression levels 
of the genes in these pathways in the different subtypes were 
determined. The results demonstrated that the expression of 
genes in ‘Biological oxidations’ in C3 was significantly higher 

compared with that in C1 and C2, whereas the expression of 
genes in ‘Metabolism of carbohydrates’ was higher in C1 
compared with that in C2 and C3. The expression levels of 
genes in the pathways ‘Mitochondrial fatty acid beta-oxida-
tion’, ‘Pyruvate metabolism’, ‘Citric acid cycle (TCA cycle)’ 

Figure 2. (A) Consensus map of NMF clustering. (B) Heat map of gene metabolism-related gene expression levels in different molecular subtypes. (C) Overall 
survival curves of the three molecular subtypes. (D) Heatmaps of mutation frequencies of the top 20 genes with the highest number of mutations in each 
subtype in each sample.
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and ‘Pyruvate metabolism and Citric Acid (TCA) cycle’ was 
significantly lower in C1 compared with those in C2 and C3, 
whereas the expression of genes in ‘Glycogen synthesis’ and 
‘Glycogen metabolism’ in C2 were higher compared with 
those in C1 and C3; in addition, the expression of genes in 
‘Glycogen breakdown (glycogenolysis)’ in C2 was lower 

compared with that in C1 and C3, and no significant differ-
ences in the genes in ‘Glucose metabolism’ and ‘Glycolysis’ 
were observed among the three subtypes (Fig. 3B). These 
results suggested that most of the energy metabolism path-
ways in the three subtypes were different, and these subtypes 
exhibit different metabolic patterns.

Figure 2. Continued. (E) Heat map of KEGG pathway scores for three molecular subtypes. (F) Comparison with published subtypes; different colors represent 
different subtypes, and the ordinate represents the percentage of samples. NMF, nonnegative matrix factorization; KEGG. Kyoto Encyclopedia of Genes and 
Genomes.
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Identification of differentially expressed genes in the C1 
subtype. To analyze the molecular mechanism underlying 
the poor prognosis of patients with the C1 subtype, the gene 
expression differences between C1 and C2 or C3 were evalu-
ated. Compared with C2, 342 genes were upregulated and 331 
were downregulated in C1 (Fig. 4A); similarly, compared with 
C3, 316 genes were upregulated and 257 were downregulated 
in C1 (Fig. 4B). The differentially expressed genes contained 
a total of 888 genes (Table SV), of which 359 were shared 

between C2 and C3 (Fig. 4C). GO biological process and 
KEGG functional enrichment analysis was performed on the 
888 DEGs, which identified 28 enriched KEGG pathways 
(Table SVI), suggesting that the 28 shared pathways may be 
involved cancer progression; the enriched KEGG pathways 
included the ‘PI3K-Akt signaling pathway’, ‘cAMP signaling 
pathway’ and ‘ECM-receptor interaction’ (Fig. 4E). In addition, 
515 GO terms were enriched in the C1 subtype in the biological 
process category (Table SVII), including ‘angiogenesis’ and 

Table III. Clinical information statistics of three molecular subtypes.

Clinical features C1 C2 C3

Status   
  Alive 17 46   78
  Dead 45 64 112
Stage   
  I   0   0     1
  II   0   8   12
  III 51 80 153
  IV  10 21   23
Grade   
  G1   1   0     0
  G2   5 10   27
  G3 56 96 157
  G4   0   1     4
Age, years   
  ≤60 31 66 102
  >60 31 44   88

Figure 3. (A) Immune cell scores among the three molecular subtypes. (B) Differences in expression levels of 11 energy metabolism pathways among the three 
molecular subtypes. TPM, transcripts per million.
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Figure 4. (A) Volcano plot of differentially expressed genes between the C1 and C2 subtypes. (B) Volcano plot of differentially expressed genes between the C1 
and C3 subtypes. (C) The intersection between differentially expressed genes. (D) Top 20 enriched Gene Ontology terms in the ‘biological process’ category. 
(E) Top 20 Kyoto Encyclopedia of Genes and Genomes biological pathways. Colors indicate saliency; size indicates the number of genes in the pathway. FDR, 
false discovery rate.
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‘regulation of trans-synaptic signaling’ (Fig. 4D), which were 
also associated with the development of cancer.

Identification of 8‑gene signature for ovarian cancer survival. 
The association between the differentially expressed genes 
in C1 and prognosis was analyzed, and 82 significant prog-
nostic factors were selected as candidate genes (Table SVIII). 
Dimensional-reduction analysis was performed by LASSO, 
with the choice of 10-fold cross-validation and minimized 
error rate when λ=0.0992708 (Fig. 5A and B); as a result, 
Tolloid-like 1 gene (TLL1), Type XVI collagen (COL16A1), 
prostaglandin F2 alpha (PTGFR), cartilage intermediate layer 
protein 2 (CILP2), kinesin family member 26b (KIF26B), 
interferon inducible protein 27 (IFI27), growth arrest‑specific 

gene 1 (GAS1) and chemokine receptor 7 (CCR7) were selected, 
a number of which were associated with the development of 
ovarian cancer. For example, COL16A1 is associated with 
the development of ovarian cancer (54), PTGFR is a poten-
tial serum marker for early diagnosis of ovarian cancer (55), 
upregulation of KIF26B enhances the proliferation and 
migration of ovarian cancer cells (56), and IFI27 promotes 
epithelial-mesenchymal transformation and induces ovarian 
tumorigenicity (57). The 8-gene signature was established by 
a multi-factor COX regression analysis using the following 
model: Risk Score=0.0603 x expTLL1 + 0.006 x expCOL16A1 + 
0.1139 x expPTGFR + 0.0011 x expCILP2 + 0.0142 x expKIF26B - 
0.0003 x expIFI27 + 0.0011 x expGAS1-0.0898 x expCCR7. The risk 
score of each sample was calculated. The results demonstrated 

Figure 5. (A) Trajectory change of each independent variable. The x axis represents the log value of the independent variable lambda; the y axis represents the 
coefficient of the independent variable. (B) Confidence intervals of lambda. (C) Risk score, survival time, survival status and expression of the 8‑gene signature 
in the training set. (D) ROC curve of the 8‑gene signature classification. (E) Kaplan‑Meier survival curve based on the 8‑gene signature in the training set. 
ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio; CI, confidence interval; L1 Norm, lambda.
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that as the risk score increased, the survival time gradually 
reduced (Fig. 5C). In addition, when the expression levels s 
of IFI27 and CCR7 decreased, the expression levels of TLL1, 
COL16A1, PTGFR, CILP2, KIF26B and GAS1 increased 
(Fig. 5C). The ROC analysis demonstrated that the AUC was 
0.83 (Fig. 5D), and when the samples were grouped according 
to the Youden's index of the ROC (cut-off, -0.1147472), a highly 
significant difference was observed in the prognosis between 
the high- and low-risk groups (Fig. 5E).

The robustness of the 8‑gene signature model. In order to 
verify the robustness of the 8-gene signature model, the risk 

score of each sample in the TCGA validation dataset was first 
calculated. The association between the risk score and gene 
expression was consistent with the training set (Fig. 6A), and 
the AUC in the TCGA validation dataset was 0.67 (Fig. 6B). 
The TCGA validation dataset samples were divided into high- 
and low-risk groups according to the threshold of the training 
set, and significant prognostic differences were identified 
between the two groups (Fig. 6C). The model was verified in 
the external validation set (GSE26193), and the ROC analysis 
demonstrated that the AUC was 0.63 (Fig. 6D), and the 
low-risk group exhibited a significantly better prognostic 
result compared with the high-risk group (Fig. 6E). Therefore, 

Figure 6. (A) Risk score, survival time, survival status and 8‑gene expression in TCGA validation set. (B) ROC curve of the 8‑gene signature classification in 
TCGA validation set. (C) KM OS curve based on the 8‑gene signature in TCGA validation set. (D) ROC curves of OS based on the 8‑gene signature classifica-
tion in the GSE26193 validation set. (E) KM OS curve based on the 8‑gene signature classification in the GSE26193 validation set. ROC, receiver operating 
characteristic; AUC, area under the curve; KM, Kaplan‑Meier; OS, overall survival; HR, hazard ratio; CI, confidence interval.
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the model exhibited effective prognostic classification perfor-
mance in the test and external validation sets.

Clinical independence of the 8‑gene signature model. To iden-
tify the independence of the 8-gene signature model in clinical 
applications, relevant hazard ratio (HR), 95% confidence 
interval (CI) of HR and P-value were analyzed by univariate 
and multivariate COX regression in TCGA training set, TCGA 
test set and the GEO validation set. The clinical information 
of TCGA, GSE44001 patient records, including age, differen-
tiation, clinical stage, and grouping information of the 8-gene 
signature were systematically processed (Table IV). In TCGA 
training set, univariate COX regression analysis demonstrated 
that the high‑risk group and age were significantly associated 
with survival; however, the corresponding multivariate COX 
regression analysis identified that only the high‑risk group 
(HR, 2.56; 95% CI, 1.82-3.59; P=5.66x10-8) exhibited clinical 
independence. In TCGA test set, univariate and multivariate 
COX regression analysis demonstrated that the high-risk 

group was significantly associated with survival (HR, 1.682; 
95% CI, 0.729-3.882; P=0.022). In GSE44001, univariate COX 
regression analysis demonstrated that the high-risk group and 
stage were associated with survival; corresponding multi-
variate COX regression analysis revealed that the high-risk 
group (HR, 1.604, 95% CI, 0.494-50.041; P=0.017) and grade 
(HR, 2.203; 95% CI, 1.628-2.982; P=3.12x10-7) exhibited 
significant differences in predicting ovarian cancer prognosis. 
The expression trends of the eight genes were also analyzed in 
different groups based on age (>60 and ≤60 years), stage, grade 
and lymphatic invasion. Among them, IFI27 was significantly 
upregulated in the ≤60 years group, G3 and G4; COL16A1, 
PTGF and KIF26B were significantly upregulated in patients 
with lymphatic invasion (Fig. S3). TLL1, COL16A1, PTGFR, 
CILP2, KIF26B, IFI27, GAS1 and CCR7 were significantly 
upregulated in tumor samples compared with normal samples 
(Fig. S4). These results suggested that the 8-gene signature was 
a prognostic indicator independent of other clinical factors and 
had clinical value.

Table IV. Univariate and multivariate Cox regression analysis of prognostic clinical factors and clinical independence.

A, TCGA training datasets

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------------------------- --------------------------------------------------------------------------------
Variable HR 95% CI  P-value HR 95% CI  P-value

8-gene risk score, High vs. low  3.233 2.163-4.833 <0.001a 2.56 1.8227-3.592 <0.001a

Age, >60 vs. ≤60 years 1.016 1.002‑1.031 0.020a 1.014 0.9994-1.028 0.986
Grade, G3/G4 vs. G1/G2 1.201 0.757-1.904 0.436 1.112 0.7914-1.563 0.539
Stage, III vs. I/II  1.991 0.812-4.877 0.131 1.216 0.7877-1.877 0.377
Stage, IV vs. I/II 1.402 0.865-2.272 0.170   

B, TCGA test datasets

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------------------------- --------------------------------------------------------------------------------
Variable HR 95% CI  P-value HR 95% CI  P-value

8-gene risk score, High vs. low 1.958 1.103-3.473 0.021a 1.682 0.729-3.882 0.022a

Age, >60 vs. ≤60 years 1.024 0.996‑1.052 0.083 1.026 0.997‑1.056 0.075
Grade, G3/G4 vs. G1/G2 1.118 0.477-2.618 0.796 1.875 0.880-3.997 0.103
Stage, III vs. I/II  1.615 0.222-11.760 0.635 0.956 0.399-2.294 0.921
Stage, IV vs. I/II 1.379 0.479-3.972 0.551   

C, GSE26193

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------------------------- --------------------------------------------------------------------------------
Variable HR 95% CI  P-value HR 95% CI  P-value

8-gene risk score, High vs. low 2.341 1.374-3.988 0.002a 1.604 0.494-50.041 0.017a

Grade, G3/G4 vs. G1/G2 1.062 0.661-1.709 0.801 2.203 1.628-2.982 <0.001a

Stage, III vs. I/II 3.799 1.959-7.366 <0.001a 0.729 0.483-1.099 0.132
Stage, IV vs. I/II 2.442 1.582-3.768 <0.001a   

aP<0.05. TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval.
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GSEA analysis of enriched pathway differences between 
the high‑ and low‑risk groups. In TCGA dataset, GSEA was 
performed to determine the significantly enriched pathways in 
the high- and low-risk groups, and a total of 26 pathways were 
identified (Table SIX). In the high‑risk group, the enriched 
pathways were mainly associated with the occurrence, inva-
sion and metastasis of ovarian cancer, including ‘basal cell 

carcinoma’, ‘focal differentiation’, ‘pathways in cancer’ and 
‘gap junction’ (Fig. 7A-D). In the low-risk group, mainly 
immune-related pathways were enriched, such as ‘antigen 
processing and presentation’, ‘intestinal immune network 
for IGA PRODUCTIO’, ‘primary immunodeficiency’ and 
‘natural killer cell-mediated cytotoxicity’ (Fig. 7E-H). Thus, 
the 8-gene signature may be involved in important biological 

Figure 8. (A) ROC curve of the 3-gene signature. (B) KM curve of prognostic differences between high- and low-risk groups based on the 3-gene signature. 
(C) ROC curve of the 6-gene prognostic signature. (D) KM curve of prognostic differences between high- and low-risk groups based on the 6-gene signature. 
(E) ROC curve of the 8-gene signature. (F) KM curve of prognostic differences between high- and low-risk groups based on the 8-gene signature. (G) ROC 
curve of the 5-gene signature. (H) KM curve of prognostic differences between high- and low-risk groups based on the 5-gene signature. ROC, receiver 
operating characteristic; AUC, area under the curve; KM, Kaplan‑Meier; HR, hazard ratio; CI, confidence interval.

Figure 7. (A) Basal cell carcinoma, (B) focal adhesion, (C) pathways in cancer, (D) gap junction, (E) antigen processing and presentation, (F) intestinal immune 
network for IgA production, (G) primary immunodeficiency and (H) natural killer cell‑mediated cytotoxicity pathways in Gene Set Enrichment Analysis in 
The Cancer Genome Atlas dataset.
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processes in the development and progression of ovarian 
cancer.

The performance of the 8‑gene signature. By referring 
to previous studies, four robust prognostic risk models 
were identified, including a 3‑gene (49), a 6‑gene (50), an 
8-gene (51) and a 5-gene (52) signature. To improve the 
comparability of the models, the risk score of each ovarian 
cancer sample in TCGA was calculated according to the 
corresponding genes in the four models by applying the same 
method. The ROC of each model was evaluated, the samples 
were divided into high- and low-risk groups according to 
the median risk score, and the OS differences between the 
two groups were calculated (Fig. 8). Significant differences 
were observed in the four models in predicting OS prognosis 
between the two groups (P<0.05). However, the AUCs of 
the four gene models were lower compared with the 8-gene 
signature developed in the present study, indicating that 
the 8-gene signature in the present study exhibited a better 
predictive performance.

Discussion

Previous studies have demonstrated that abnormal metabo-
lism is one of the markers of cancer cells, and that there 
are differences between healthy and tumor cells in energy 
metabolism (58-60); in addition, various catabolic pathways, 
for example, glycolysis, OXPHOS and fatty acid metabolism, 
are involved in energy metabolism (61). In the current study, 
RNA-seq data were used to detect local energy metabo-
lism-related gene expression status and their prognostic value 
for patients with ovarian cancer. The results identified three 
energy metabolism-related molecular subtypes, of which C1 
was associated with a poor prognosis, and the profile of the 
immune cells in the tumor microenvironment in this subtype 
was different from the other two subtypes. Previous studies 
have demonstrated that the interaction between cancer cells 
and the tumor microenvironment affects cancer prolifera-
tion, energy metabolism, metastasis and recurrence (62), and 
energy metabolism serves an important role in immune 
regulation (63). The occurrence of aerobic glycolysis in 
tumor cells can shape the immune system by increasing the 
transcription of cytokines and inhibiting the differentiation of 
monocytes into dendritic cells (64,65). Therefore, abnormal 
energy metabolism may lead to different prognostic outcomes 
by altering the state of immune cells in the tumor microen-
vironment.

Ovarian cancer is a highly heterogeneous disease, 
as patients with similar Tumor-Node-Metastasis (TNM) 
staging have different survival times (66). At present, 
traditional clinicopathological indicators such as tumor 
size, vascular invasion, portal vein tumor thrombus and 
TNM staging do not satisfy the current needs in predicting 
individual outcomes, especially risk stratification, and the 
‘one‑size‑fits‑all’ treatment strategy has been demonstrated 
to be ineffective (67,68). Screening prognostic molecular 
markers that fully reflect the biological characteristics of 
tumors has value in individualized prevention and treatment 
of patients with ovarian cancer (69,70). In the current study, 
abnormal tumor energy metabolism was associated with 

poor prognosis. Energy metabolism-related gene expression 
levels were associated with clinical and molecular character-
istics of patients with ovarian cancer. Thus, the present study 
developed a signature based on subtypes of abnormal energy 
metabolism that could stratify high- and low-risk patients. 
Of note, such energy metabolism-related genes may serve 
as a powerful prognostic indicator and help decide targeted 
therapies for patients with ovarian cancer based on energy 
metabolism.

In the 8-gene signature developed in the present study, 
TLL1, COL16A1, PTGFR, CILP2, KIF26B and GAS1 
were identified as risk factors, whereas IFI27 and CCR7 
were protective factors. Previous studies have reported that 
COL16A1 is involved in the progression of ovarian cancer (53), 
PTGFR is a potential serum marker for early diagnosis of 
ovarian cancer (54), upregulation of KIF26B promotes the 
proliferation and migration of ovarian cancer cells (55), and 
IFI27 promotes epithelial-mesenchymal transition and induces 
ovarian tumorigenicity (56). Thus, these genes are associated 
with the prognosis of ovarian cancer. The GSEA results of 
the present study revealed that the eight genes were enriched 
in the pathways and biological processes of ovarian cancer 
development. These results suggested that the signature may 
have clinical value and may provide a potential target for the 
diagnosis of ovarian cancer.

Although the association between the expression levels 
of energy metabolism-related genes and the prognosis of 
ovarian cancer were analyzed by bioinformatics and the 
characteristics related to energy metabolism were explored, 
the current study had limitations; for example, a number of 
samples lacked clinical follow-up information, and factors 
such as the presence of other diseases were not considered to 
distinguish their effects from those of prognostic biomarkers. 
In addition, the results were obtained only through bioin-
formatics analysis; other experiments should be performed 
to ensure the accuracy of the current results. Finally, key 
proteins in all metabolic pathways are under the control 
of post‑translational modifications, and not necessarily by 
up/downregulation of their absolute levels.

In conclusion, the current study determined the expression 
levels of energy metabolism-related genes and their predictive 
values in ovarian cancer prognosis and established an 8-gene 
signature related to energy metabolism, which was be able 
to determine the risk levels in patients with ovarian cancer. 
The test and validation datasets exhibited high AUCs, and 
the results were independent of clinical features. Compared 
with clinical features, the 8-gene signature exhibited improved 
survival risk prediction for patients with ovarian cancer. Thus, 
the 8-gene signature developed in the present study may be 
used as a molecular diagnostic test in assessing the prognosis 
of patients with ovarian cancer.
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