Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and the mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells

JO-HUA CHIANG1, FUU-JEN TSAI2-4, YUAN-MAN HSU5, MEI-CHIN YIN6, HONG-YI CHIU7-9 and JAI-SING YANG10

1Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County 62241; 2Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447; 3Department of Medical Genetics, China Medical University Hospital, Taichung 40402; 4School of Chinese Medicine, Department of Biological Science and Technology, China Medical University, Taichung 40402; 5Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354; 6Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002; 7School of Chinese Medicine, China Medical University Hospital, China Medical University, Taichung 40442, Taiwan, R.O.C.

Correspondence to: Dr Jai-Sing Yang, Department of Medical Research, China Medical University Hospital, China Medical University, 2 Yude Road, Taichung 40447, Taiwan, R.O.C. E-mail: jaisingyang@gmail.com
Dr Hong-Yi Chiu, Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Sec. 3, 707 Chung-Yang Road, Hualien 97002, Taiwan, R.O.C. E-mail: hychiu@tzuchi.com.tw

Key words: allyl isothiocyanate, colon cancer cells, apoptosis, ER stress, mitochondria, ROS production

Abstract. Allyl isothiocyanate (AITC), a bioactive phytochemical compound that is a constituent of dietary cruciferous vegetables, possesses promising chemopreventive and anticancer effects. However, reports of AITC exerting antitumor effects on apoptosis induction of colorectal cancer (CRC) cells in vitro are not well elucidated. The present study focused on the functional mechanism of the endoplasmic reticulum (ER) stress-based apoptotic machinery induced by AITC in human colorectal cancer HT-29 cells. Our results indicated that AITC decreased cell growth and number, reduced viability, and facilitated morphological changes of apoptotic cell death. DNA analysis by flow cytometry showed G2/M phase arrest, and alterations in the modulated protein levels caused by AITC were detected via western blot analysis. AITC also triggered vital intrinsic apoptotic factors (caspase-9/caspase-3 activity), disrupted mitochondrial membrane potential, and stimulated mitochondrial-related apoptotic molecules (e.g., cytochrome c, apoptotic protease activating factor 1, apoptosis-inducing factor, and endonuclease G). Additionally, AITC prompted induced cytosolic Ca²⁺ release and Ca²⁺-dependent ER stress-related signals, such as calpain 1, activating transcription factor 6α, glucose-regulated proteins 78 and 94, growth arrest- and DNA damage-inducible protein 153 (GADD153), and caspase-4. The level of reactive oxygen species (ROS) production was found to induce the hallmark of ER stress GADD153, proapoptotic marker caspase-3, and calpain activity after AITC treatment. Our findings showed for the first time that AITC induced G2/M phase arrest and apoptotic death via ROS-based ER stress and the intrinsic pathway (mitochondrial-dependent) in HT-29 cells. Overall, AITC may exert an epigenetic effect and is a potential bioactive compound for CRC treatment.

Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in males and females worldwide, with approximately 243,000 mortalities reported in 2018 (1). The risk factors of CRC development include eating habits, red meat consumption, obesity, high-fat intake, and smoking (2). CRC is a highly lethal disease, and this aggressive malignancy is strongly invasive and highly metastatic and has a poor prognosis (3). Although most of the primary tumors in CRC can be surgically resected, patients with late-stage CRC have a poor 5-year survival rate (3). After surgical resection, tumor recurrence commonly occurs; thus the main treatment strategies for CRC are consistently unsatisfactory (3,4). Therefore, broadening our understanding of CRC treatment is necessary to develop novel therapeutic targets or
chemotherapeutic approaches from dietary phytochemicals or natural extracts (3,5).

Numerous epidemiological studies have observed an inverse association between cancers and high dietary consumption of cruciferous vegetables, which is recognized to confer health benefits for reducing the risk of developing the disease and eliciting chemopreventive effects (6). Cruciferae is a family of vegetables, including broccoli, cabbage, cauliflower, and brussels sprouts, which are rich in isothiocyanates (ITCs), a nutraceutical agent with protection against cancer development (7,8). Moreover, ITCs have drawn attention owing to their capability to exert a broad spectrum of antitumor effects (9-11). Allyl isothiocyanate (AITC) is a constituent of naturally occurring ITCs and exerts multiple biological effects (such as anti-microbial, anti-inflammatory, anti-angiogenic and anticancer activities) (12-15). AITC was found to inhibit cell proliferation and to facilitate apoptosis through Bcl-2/Bax imbalanced expression in human renal carcinoma GRC-1 cells (16). AITC was also demonstrated to trigger multiple apoptotic pathways in human breast cancer cell lines (MDA-MB-468, MDA-MB-231 and MCF-7) (12,17). Combined treatment using AITC and sulforaphane (a glucosinolate-derived ITC) was found to synergistically multi-target the system of proliferation and metastasis in human non-small cell lung cancer A549 cells (18). AITC suppressed cell proliferation in bladder cancer cell lines (75T) tissue culture flasks and cultured at 37˚C under a humidified 5% CO₂ atmosphere in RPMI-1640 medium with 2 mM L-glutamine, 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin.

Cell culture. Human colorectal adenocarcinoma cell line HT-29 was obtained from the Bioresources Collection and Research Center, Food Industry Research and Development Institute (Hsinchu, Taiwan) and authenticated by short tandem repeat (STR) profiling (Mission Biotech Co., Ltd., Taipei, Taiwan). The cells were placed in 75-cm² (75T) tissue culture flasks and cultured at 37˚C under a humidified 5% CO₂ atmosphere with 10% FBS, 1% penicillin, and 1% streptomycin. All primary antibodies were purchased from Santa Cruz Biotechnology, Inc.

DNA content and sub-G1 population analysis. HT-29 cells (2x10⁵ cells/well) were individually maintained in 12-well plates and then treated with 0, 5, 10 and 20 µM of AITC for 24 and 48 h. At the end of the treatments, the cell morphology changes were examined and photographed under a phase-contrast microscope. Subsequently, the cells were harvested to determine the cell number using 0.3% Trypan blue stain via an Invitrogen Countess Automated Cell Counter (Thermo Fisher Scientific, Inc.), and cell viability was assessed using MTT assay, as previously described (29,30).

Cell counting and viability assays and morphological analysis. HT-29 cells (2x10⁵ cells/well) in 12-well plates were treated with 0, 5, 10 and 20 µM of AITC for 24 h. Then, the cells were harvested and fixed in 70% ethanol at 4˚C overnight. DNA was stained with a PI solution (40 µg/ml PI, 0.1 mg/ml RNase A, and 0.1% Triton X-100) in phosphate-buffered saline for 30 min in the dark. All samples were analyzed via a BD FACSCalibur Flow Cytometry System (BD Biosciences), and the cell cycle distribution and sub-G1 phase (apoptotic cells) were determined, as previously described (31,32).

Western blot analysis. HT-29 cells (1x10⁶ cells) in 75T flasks were treated with 0, 5, 10 and 20 µM of AITC and incubated for the indicated time interval. The cells were harvested following each treatment, and the total proteins were collected and lysed, as previously described (33,34). The proteins of the mitochondrial and cytosolic fraction were isolated according to the manufacturing protocol of the Mitochondria/Cytosol Fractionation Kit (BioVision, Inc.). The protein content of the supernatant was measured using a Bio-Rad Protein Assay Kit (Bio-Rad Laboratories, Inc.). An amount of 40 µg protein from each sample was dissolved using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred.
to an Immobilon-P Transfer Membrane (Merck Millipore). Western blotting was performed to detect the expression of cyclin A (cat. no. 4656, dilution 1:1000), cyclin B (cat. no. 12231, dilution 1:1000), cyclin-dependent kinase 1 (CDK1) (cat. no. 9116, dilution 1:1000), checkpoint kinase 1 (Chk1) (cat. no. 2656, dilution 1:1000), Weel (cat. no. 4936, dilution 1:1000), cytochrome c (cat. no. 4280, dilution 1:1000), apoptotic protease activating factor 1 (Apaf-1) (cat. no. 8969, dilution 1:1000), apoptosis-inducing factor (AIF) (cat. no. 4642, dilution 1:1000), endonuclease G (Endo G) (cat. no. 4969, dilution 1:1000), caspase-9 (cat. no. 9508, dilution 1:1000), caspase-3 (cat. no. 14220, dilution 1:1000) (Cell Signaling Technology, Inc.), calpain 1 (cat. no. sc-271313, dilution 1:1000), activating transcription factor 6 (ATF-6α) (cat. no. sc-166659, dilution 1:1000), 78 kDa glucose-regulated protein (GRP78) (cat. no. sc-13539, dilution 1:1000), GRP94 (cat. no. sc-32249, dilution 1:1000), growth arrest- and DNA damage-inducible protein 153 (GADD153) (cat. no. sc-7351, dilution 1:1000), and caspase-4 (cat. no. sc-56056, dilution 1:1000) (Santa Cruz Biotechnology, Inc.). Each blot was soaked in a blocking buffer (5% nonfat powdered milk and 0.05% Tween-20 in 1X Tris-buffered saline at pH 7.6) at room temperature for 1 h and then incubated with individual primary monoclonal antibodies in the blocking buffer at 4˚C overnight. Thereafter, the blots were probed with appropriate HRP-conjugated secondary antibodies anti-rabbit IgG (cat. no. 7074, dilution 1:10,000) and anti-mouse IgG (cat. no. 7076, dilution 1:10,000) (Cell Signaling Technology, Inc.), as previously described (30,33,35). To ensure equal protein loading, each membrane was stripped and reprobed with an anti-β-actin antibody. Quantitative analysis of each immunoreactive blot was performed to measure the intensity of the band signal via the National Institutes of Health ImageJ 1.52v program.

Assays for caspase-9 and caspase-3 activity. HT-29 cells (1x10⁵ cells) in 75T flasks were exposed to 0, 5, 10, 15 and 20 µM of AITC for 24 h to assess the activities of caspase-9 and caspase-3, which were determined using Caspase-3 and caspase-9 Colorimetric Assay Kits in accordance with the manufacturer's protocols (R&D Systems).

Detection of mitochondrial membrane potential (ΔΨm), Ca²⁺ generation, and ROS production by flow cytometry. HT-29 cells (2x10⁵ cells/well) were maintained in 12-well plates and then incubated with 5, 10, 15 and 20 µM of AITC for 6 h to individually measure the changes in ΔΨm, Ca²⁺ release, and ROS production. Subsequently, the cells were harvested and resuspended in 500 µl of 100 mM DiOC₃(3) for ΔΨm, 2.5 µg/ml fluo-3/AM for intracellular Ca²⁺, and 10 mM H₂DCFDA for ROS determination. Thereafter, all cells were incubated at 37°C for 30 min and further analyzed by flow cytometry for mean fluorescence intensity, as previously described (36,37).

Caspase activity assay. HT-29 cells (2x10⁵ cells/well) were plated in 12-well plates and then pretreated with or without 5 µM BAPTA/AM (a Ca²⁺ chelator), 20 µM calpeptin (a cell-permeable calpain inhibitor), and NAC (an ROS scavenger) for 1 h. The cells were loaded with a calpain proteasome substrate (Suc-Leu-Leu-Val-Tyr-AMC) (Enzo Life Sciences), as previously described (38), prior to incubation with 10 µM AITC for 6 h to measure changes in calpain activity. Proteolysis of the fluorescent probe was monitored via a PerkinElmer HTS 7000 Series Bioassay Reader with filter settings of 360±20 nm for excitation and 460±20 nm for emission.

Effects of the caspase-3/caspase-9 inhibitors (Z-DEVD-FMK and Z-LEHD-FMK), Ca²⁺ chelator (BAPTA/AM), calpain-specific inhibitor (calpeptin), and ROS scavenger (NAC) on cell viability or alterations in protein levels after AITC challenge. HT-29 cells (2x10⁵ cells/well) in 12-well plates were individually pretreated with 20 µM Z-DEVD-FMK, 20 µM Z-LEHD-FMK, 5 µM BAPTA/AM, 20 µM calpeptin, and 10 mM NAC for 2 h prior to exposure to 10 µM AITC for 24 h. The cells from each treatment group were harvested to measure the percentage of viable cells via MTT assay, as previously described (9,36). The protein levels were detected using western blot analysis, as previously stated.

Immunofluorescence staining by confocal microscopy. HT-29 cells (5x10⁵ cells/well) in 4-well chamber slides were preincubated with or without 10 mM NAC for 2 h prior to 10 µM AITC treatment for 24 h. The cells were fixed and blocked with 2.5% bovine serum albumin for 1 h at room temperature. The samples were then stained with anti-caspase 1 (cat. no. sc-271313, dilution 1:100) at 4°C overnight following labeling with goat anti-mouse IgG-PE (cat. no. sc-3738, dilution 1:200) for 1 h. Thereafter, the cell nuclei were counterstained with 1 µg/ml DAPI for 15 min at room temperature. Finally, the slides were mounted with coverslips, as previously described (36,37), and photomicrographs were then analyzed via Andor Dragonfly High Speed Confocal System (ANDOR, Dragonfly 200) and High Content Image System (Molecular Devices, ImageXpress Micro Confocal).

Statistical analysis. The results are expressed as mean ± standard deviation (SD) (n=3), and significance among multiple experimental groups was estimated using one-way analysis of variance (ANOVA), followed by Dunnett’s test or Tukey’s post hoc test using SPSS 16.0 software (SPSS, Inc.). A P-value of <0.05 was considered statistically significant.

Results

AITC induces the survival rate and triggers apoptotic cell morphology changes in human CRC HT-29 cells. We first investigated the potential of AITC to reduce the growth of colon cancer in vitro. The total cell number of each treatment group was determined using the Countess Automated Cell Counter. Treatment with 5-20 µM of AITC significantly suppressed cell growth and number compared with the untreated control cells (Fig. 1A). Furthermore, AITC (5, 10, and 20 µM) significantly reduced cell viability (Fig. 1B). These effects were concentration and time dependent. Cell morphology was also examined and photographed and showed apoptotic changes (cell shrinkage, rounding, and membrane blebbing) compared with an untreated control (Fig. 1C). Therefore, we suggest that AITC inhibited cell growth, possibly via the apoptotic characteristics observed in HT-29 cells following AITC treatment.

AITC causes G2/M phase arrest and alters its regulated protein levels in HT-29 cells. To evaluate the dynamics of
cell cycle distribution after AITC treatment, DNA content was measured. After exposure to 0-20 µM AITC for 24 h, the cells in the G2/M phase were markedly increased compared with the control, and this effect was concentration dependent (Fig. 2A and Table S1). Moreover, treatment with 20 µM AITC dramatically enhanced the sub-G1 phase (apoptotic population) from 2.4±0.7% (control) to 30.2±4.1%. AITC arrested the cell cycle at the G2/M phase by exerting inhibitory effects on cell growth, and apoptotic features were observed (Fig. 2A and B). To explore the molecular level of AITC‑provoked G2/M phase arrest further, we assessed the levels of the key regulatory proteins of the cell cycle checkpoints. The protein levels of cyclin B and CDK1 were markedly decreased, but those of Chk1 and Wee1 were increased after AITC challenge (Fig. 2C). These results indicate that AITC suppresses cell proliferation due to cell cycle arrest at the G2/M phase in HT‑29 cells.

AITC provokes apoptosis via the intrinsic caspase cascade‑dependent process in HT‑29 cells. To ascertain whether AITC-induced apoptosis is employed via the intrinsic pathway, the cells were pretreated with or without protease inhibitors prior to incubation with AITC for 24 h. AITC exposure for 24 h significantly stimulated caspase‑9 (Fig. 3A) and caspase‑3 (Fig. 3B) activities in a concentration‑dependent manner. To confirm whether caspase‑9/caspase‑3‑dependent signaling was the main contributor to AITC-induced cell apoptosis, both of their specific inhibitors were applied to test cell viability prior to AITC exposure. Our results demonstrated that Z‑LEHD‑FMK (Fig. 3C) and Z‑DEVD‑FMK (Fig. 3D) significantly abolished AITC-reduced cell viability. Thus, AITC elicited apoptosis via an intrinsic molecular pathway (caspase‑9/3-dependent) in HT-29 cells.

AITC elicits Ca2+‑dependent ER stress‑mediated proapoptotic signaling in HT‑29 cells. To elucidate the upstream pathway of AITC-induced apoptotic machinery, we determined the level of cytosolic Ca2+ release in response to AITC treatments for up to 6 h. AITC (5‑20 µM) significantly promoted intracellular Ca2+ release in a concentration‑dependent manner (Fig. 5A). Additionally, AITC at 10 µM significantly increased the accumulation of calpain activity compared with the control cells (Fig. 5B). BAPTA/AM and calpeptin significantly neutralized AITC-activated calpain activity compared with the AITC-treated only cells (Fig. 5B). Thus, AITC stimulated the cytosolic Ca2+ signal to trigger the mitochondrial‑mediated apoptotic events. AITC-induced apoptosis might be implicated in ER stress‑mediated biochemical signaling. Subsequently, we examined ER stress‑associated protein levels. The protein levels of calpain 1, ATF‑6α, GRP78, GRP94, GADD153, and caspase‑4 were upregulated in a concentration‑dependent manner (Fig. 5C). To confirm Ca2+‑mediated ER stress and apoptosis induced by AITC, the cells were preincubated with BAPTA/AM and calpeptin prior to AITC exposure to assess cell viability. Both BAPTA/AM and calpeptin effectively
reversed AITC-induced cell death (Fig. 5D). Hence, the activation of Ca2+ signal-mediated ER stress was necessary for the AITC-triggered intrinsic apoptotic mechanism of HT-29 cells.
ROS production induced by AITC contributes to Ca²⁺-dependent ER stress-mediated intrinsic apoptosis in HT-29 cells. To determine whether ROS formation is involved in AITC-induced ER stress and apoptosis, the cells were
treated with (0-20 µM) AITC for 6 h. The levels of ROS accumulation were measured. AITC significantly increased ROS production in a concentration-dependent manner (Fig. 6A). To confirm that AITC-triggered ROS formation led to cytotoxicity and apoptotic effect, the cells were pretreated with or without 10 mM NAC prior to AITC exposure. The antioxidant pretreatment abrogated AITC-inhibited cell viability compared with the AITC-treated only cells (Fig. 6B). To clarify the role of ROS in the ER stress-related apoptotic mechanism further after AITC exposure, the hallmark of ER stress GADD153 and apoptotic executioner caspase-3 were monitored. Although the relative protein expression levels of GADD153 and cleaved caspase-3 were markedly upregulated following AITC treatment, the upregulated protein levels were dramatically blocked by the antioxidant NAC (Fig. 6C). Our results imply that ROS production induced by AITC led to the activation of ER stress and caspase-3-dependent apoptosis. Furthermore, to confirm the role of ROS generation in Ca²⁺-dependent ER stress induced by AITC, calpain activity and calpain 1 (a Ca²⁺-activated intracellular proteinase) protein expression were investigated. The ROS scavenger NAC effectively inhibited calpain activity (Fig. 6D) and calpain 1 levels (Fig. 6E) induced by AITC exposure. Our data demonstrated that ROS production majorly regulated AITC-triggered Ca²⁺-mediated ER stress and cell apoptosis. These findings further support the concept that AITC caused G2/M phase arrest via the Wee1/Chk1 and CDK1/cyclin B pathways. Our results also provide bimolecular evidence that AITC-induced ROS formation resulted in ER stress, intracellular Ca²⁺ release, and mitochondrial-mediated cell apoptosis in human colorectal adenocarcinoma HT-29 cells (Fig. 7).

Discussion

Colorectal cancer (CRC) is currently a major life-threatening malignant tumor, and the high-risk factors involved in CRC development include dietary and lifestyle factors (1,3). The common treatments for CRC include either standard chemotherapy or targeted therapy following complete surgical resection (39). However, the current CRC treatment strategies remain unsatisfactory and the number of therapeutic approaches and screening attempts for patients with CRC is increasing (40). Cruciferous vegetables are widely and often frequently consumed by humans (9), and a high dietary intake of these vegetables has been considered to be associated with a low risk of CRC in the involvement of epigenetic regulation (6,41). Moreover, abundant glucosinolates and their hydrolysis products, such as indoles and isothiocyanates (ITCs), are included (7,8). Allyl isothiocyanate (AITC) belongs to the ITC family and exerts several vital biological effects, including antitumor and anticancer cell proliferation effects on cultured cancer cell lines and animal tumor models (13,42). Therefore, AITC is a health-promoting phytochemical compound that possesses preventive effects and may be a potential therapeutic agent.
In the present study, AITC triggered intrinsic apoptosis in human CRC HT-29 cells via ROS production and ER stress. Moreover, blocking Ca\(^{2+}\)-based ER stress signals and ROS formation significantly attenuated AITC-induced HT-29 cell apoptosis. The effective cytotoxic actions of AITC on multiple human cancer cell lines are well documented (12,16-21); however, the detailed mechanisms involved in the cytotoxic effects of AITC in HT-29 cells remain elusive. Our results indicated that AITC inhibited HT-29 cell growth and proliferation. Additionally, AITC induced G2/M phase arrest. This finding is in agreement with that of a study by Lau et al (20) showing that AITC inhibits cell proliferation through the induction of G2/M phase arrest in colorectal adenocarcinoma SW620 cells. AITC has been reported to cause G2/M phase arrest and the disruption of tubulin by decreasing the protein levels of cyclin B1, CDK1, cdc25B, and cdc25C (12,22). Moreover, CDK1 can regulate G2/M phase progression to stimulate the related signaling in association with cyclin A or cyclin B (12,43). Our results showed that protein levels of CDK1 and cyclin B were decreased and those of Chk1 and Wee1 were increased following AITC treatment. This finding is consistent with that of previous reports (12,22,44,45) demonstrating that AITC suppresses cell proliferation, possibly through G2/M phase arrest regulated by Chk1, Wee1, and the cyclin B/CDK1 pathway in HT-29 cells.

AITC was found to facilitate type I programmed cell death (apoptosis) (16-21) or induce autophagy (21) in various types of cancer cell lines. The present study investigated the apoptotic machinery in AITC-treated HT-29 cells. Our data demonstrated that AITC induced apoptotic characteristics, increased the sub-G1 phase (apoptotic) population, and prompted caspase-9/caspase-3 activity. We further verified the anticancer effect of AITC in HT-29 cells by exploring the intrinsic apoptotic mechanism. Consequently, the loss of mitochondrial membrane potential (ΔΨ\(_m\)) has been considered to regulate apoptotic cell fate (37,38). Mitochondrial function is one of the apoptotic mediators that elicit intrinsic signaling (36,37). We demonstrated that AITC facilitated the loss of ΔΨ\(_m\) and upregulated the molecules of the intrinsic pathway in a concentration-dependent manner. Specifically, this study supported the notion that the activation of the caspase-9/caspase-3-mediated intrinsic pathway caused by AITC treatment in HT-29 cells produced an early response in apoptotic behavior.

ER stress process leads to an accumulation of Ca\(^{2+}\) reservoirs and elicits the secretion of misfolded proteins to induce unfolded protein response (UPR) signaling (4,37). UPR signaling exerts many essential functions via the protein-misfolding capability of the ER undergoing ER stress-mediated cell apoptosis (46). GADD153, also called CHOP (C/EBP homologous protein), is a transcription factor and an initiator of the ER stress-induced apoptotic process (37). Furthermore, the secretion of ER chaperone GRP78, also referred to as binding immunoglobulin protein, is a master monitor of UPR to enhance the cellular misfolding capacity of proteins (47). Here we demonstrated that AITC increased GADD153, GRP78, GRP94 and ATF-6α protein levels, which are the hallmarks of ER stress.
A recent study highlighted that oxidative stress or ROS formation is a critical factor of the stimuli that trigger ER stress-mediated apoptosis (48). The ROS-based ER stress pathway initiates intracellular Ca²⁺ release via mitochondrial depolarization to manifest apoptosis induction (49). Consistently, our results indicated that AITC treatment increased ROS generation and the antioxidant NAC exhibited a protective effect against AITC. ROS generation was reported to upregulate GADD153/CHOP expression and induce ER stress-mediated apoptosis (50,51). In line with the findings of previous studies (48,51), our data showed that ROS-induced ER stress signaling was involved in AITC-induced caspase-3-dependent apoptosis in HT-29 cells.

In conclusion, our results revealed a novel mechanism by which AITC suppresses human CRC HT-29 cell proliferation, causes G2/M phase arrest, and triggers apoptosis. We demonstrated for the first time that AITC-induced ER stress and cytosolic Ca²⁺ release occur to modulate intrinsic apoptotic signaling (mitochondrial pathway) in HT-29 cells. These findings clearly support that AITC has a promising therapeutic implication. We hope that the results of this study provide an insight into alternative strategies leading to clinical trials on the treatment of patients with CRC in the near future.

Acknowledgements

Experiments and data analysis were performed in part through the use of the Medical Research Core Facilities, Office of Research and Development at China Medical University (Taiichung, Taiwan).

Funding

This work was financially supported by Chung-Jen Junior College of Nursing, Health Sciences and Management (grants no. 105015 and 106-003) and in part by Hualien Tzu Chi Hospital (grant no. TCRD107-55) and China Medical University Hospital (grant no. DMR-108-122).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

JHC, HYC, and JSY were involved in the design of the study, performed the experiments, and drafted the manuscript. JHC and JSY performed the experiments. FJT, YMH, and MCY participated and contributed to the data analysis and review of the manuscript. All authors read and approved the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

