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Abstract. Accumulation of non‑specific structural chromo-
somal aberrations (CAs) and telomere shortening contribute to 
genome instability, which constitutes as one of the hallmarks 
of cancer. CAs arise due to direct DNA damage or telomere 
shortening. CAs in peripheral blood lymphocytes (PBL), 
which are considered to be markers of exposure, have been 
previously reported to serve a role in the pathophysiology 
and progression of cancer through mechanisms that are 

poorly understood. In addition, the prognostic relevance of 
telomere length (TL) in patients with cancer remains to be 
elucidated. In the present study, CAs and TL in PBL isolated 
from patients with newly diagnosed cancer (151 breast, 96 
colorectal, 90 lung) and 335 cancer‑free control individuals 
were investigated. These results were then correlated with 
clinicopathological factors and follow‑up data. The accumula-
tion of CAs in PBL was observed with increased susceptibility 
to breast and lung cancer (P<0.0001), while individuals with 
longer TL were found to be at a higher risk of breast cancer 
(P<0.0001). Increased chromatid‑type aberrations were 
also revealed to be associated with lower overall survival of 
patients with breast and colorectal cancers using a multivariate 
model. Compared with control individuals, no association was 
observed between TL and CAs or age in patients with cancer. 
In conclusion, the present study demonstrates the association 
between CAs/TL in PBL and the susceptibility, prognosis and 
survival of patients with breast, colorectal and lung cancer.

Introduction

Tumorigenesis is a multistep process that is driven by a number 
of genetic alterations, such as chromosomal rearrangements, 
which result in selective advantages during the process of 
cellular transformation, tumor development and progres-
sion (1,2). The majority of cancers also undergoes substantial 
epigenetic alterations that alter the expression profile of critical 
genes during the malignant transformation process (3).

Acquired non‑specific structural chromosomal aberra-
tions (CAs) describe a group of multiple and diverse intra‑ or 
inter‑chromosomal rearrangements. Structural CAs can be of 
either chromatid‑type (CTAs) or chromosome‑type (CSAs) 
depending on the stage of cell cycle and mechanism of 
clastogenic compounds involved. They arise as a consequence 
of either direct mutagenic effects and/or dysfunctions in 
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DNA repair during the entire lifetime of an individual (4‑6). 
Measurement of CAs in peripheral blood lymphocytes (PBL) 
is conventionally used for monitoring environmental and 
occupational exposure to clastogens (7,8). Several European 
prospective and retrospective studies have previously demon-
strated that increased frequencies of CAs in PBL can be applied 
as predictive markers for increased cancer susceptibility (9‑12).

A number of CAs can occur as the primary events during 
cancer initiation, following which disease progression drives 
additional chromosomal changes, which can be used to reflect 
prognosis and cancer progression (13). Compared with specific 
chromosomal rearrangements that occur in tumor tissues 
during carcinogenesis, non‑specific structural CAs in PBL can 
serve as a marker of cancer susceptibility. This hypothesis, 
which was summarized by Boffetta et al (14), was based on 
the presumption that genetic damage in PBL is reflective of 
changes in cells undergoing malignant transformation.

The formation of CAs has also been previously associated 
with the process of telomere shortening (15‑17). Telomeres are 
unique chromatin structures at the ends of linear eukaryotic 
chromosomes characterized by tandem repeats (TTAGGG)n 
and associated proteins (18,19). Telomeres progressively shorten 
due to limitations in DNA synthesis after successive cycles 
of mitosis  (20). Excessive telomere shortening can lead to 
proliferation arrest and cellular apoptosis. Additionally, loss 
of telomeres can result in a telomere crisis, causing genome 
instability leading to structural CAs (21). Therefore, telomere 
length (TL) serves a critical role in the maintenance of genome 
integrity and cancer initiation/progression.

In the present study, the potential association between 
acquired non‑specific structural CAs and TL in the PBL of 
patients with a sporadic form of the breast (BC), colorectal 
(CRC) and lung cancer (LC) and control individuals was 
investigated. In addition, the potential prognostic relevance of 
CAs and TL was also addressed.

Materials and methods

Study population. The present study was performed by 
pooling data from cytogenetic studies performed between 
January 2006 and May 2013. The study population consisted 
of three groups of newly diagnosed and histologically 
confirmed individuals with BC (n=151), CRC (n=96) and LC 
(n=90), along with a group of control individuals (n=335). 
Patients were recruited at the 3rd Faculty of Medicine, Charles 
University (Prague, Czech Republic) and the Jessenius Faculty 
of Medicine, Comenius University and University Hospital 
(Martin, Slovakia).

Control individuals who were matched for both age and 
sex, including 145 women for comparison with women with 
BC, were recruited at the Blood Centre of Faculty Hospital 
Kralovske Vinohrady (Prague, Czech Republic) and from the 
Department of Surgery, General University Hospital (Prague, 
Czech Republic).

The present study adhered to the ethical guidelines of the 
Helsinki Declaration. All participants were informed about all 
aspects of the study, agreed with the purpose of the study and 
procedures to be undertaken, following which they provided 
informed consent. The present study design was approved by 
the local Ethics Committees of all participating hospitals.

Samples and data collection. Blood samples (2x5 ml) were 
obtained from control individuals and patients with cancer. 
Fresh blood samples treated with heparin were used immedi-
ately for cytogenetic chromosomal analysis after transportation 
at 4˚C whereas blood samples treated with EDTA were frozen 
at ‑20˚C for subsequent DNA isolation and TL measurement.

Information regarding patient characteristics, including 
demographics, family history of cancer, smoking habit, occu-
pational history, body mass index and the presence of other 
diseases, including hypertension, diabetes mellitus, cardio-
vascular disease, along with their treatment regimen, were 
collected at the time of diagnosis using a structured question-
naire. Information on disease characteristics, including tumor 
location, tumor‑node‑metastasis (TNM) stage, histopathological 
grade, histological classification and the presence of hormonal 
receptors and administration of hormonal therapy in cases of BC 
were all collected following surgical resection. The characteris-
tics of the study population were partially described previously 
by Vodenkova et al (12). Detailed data of the subjects in the 
present study are provided in the Table SI. The last follow‑up 
date of the patients in the present study was July 2017.

The exclusion criteria for the recruitment of cancer patients 
in the present study were as follows: i) Personal history of 
previous malignancies; ii) hereditary forms of cancer; iii) prior 
use of radiotherapy or chemotherapy, to avoid the presence 
of additional chromosomal damage related to the treatment; 
and iv) prior use of X‑rays, such as those used for diagnostic 
purposes. In addition to data from questionnaires and medical 
reports, the last criterion was also verified by comparing the 
frequencies of typical post‑radiation aberrations including 
dicentric and ring chromosomes, in the study population. The 
frequencies of these CAs did not differ between the patients 
with cancer and corresponding controls (12). For survival anal-
yses, the following additional exclusion criteria were applied 
for patients: i) Those who had either missing data regarding 
their living status <5 years; ii) underwent a 2nd surgery for 
unknown reasons; or iii) had experienced duplicate tumors. 
Consequently, 4 patients with LC were disqualified from the 
final analysis. The entire data set comprised 208 patients who 
were still alive and 125 patients who were deceased as a result 
of their respective cancers.

Chromosomal analysis. Levels of structural CAs in PBL were 
evaluated using the standard cytogenetic method as previously 
described by Vodicka et al (11). Briefly, blood cultivation was 
performed in complete medium (Chromosome medium P; cat. 
no. EKAMTB‑100; EuroClone S.p.A.) for 50 h at 37˚C. After 
48 h cultivation, cell division was stopped using colchicine 
(Sigma‑Aldrich; Merck KGaA) during the first metaphase of 
mitosis. After a cytogenetic procedure, microscopic slides were 
stained conventionally using Giemsa (Sigma‑Aldrich; Merck 
KGaA). Microscopical analysis of 100 metaphases with 46±1 
chromosomes was performed blindly by two independent 
scorers for each sample. The percentages of aberrant cells 
(ACs), total chromosomal aberrations (CAtot), CTAs (chro-
matid breaks and exchanges) and CSAs (chromosome breaks, 
terminal and interstitial deletions, dicentric and ring chromo-
somes with their difragments and abnormal chromosomes) 
were calculated. Representative microscopic images of chro-
mosomes with different types of CAs are presented in Fig. S1.
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Standardization procedure has been applied for scoring 
CAs in the former Czechoslovakia and later in both Czech 
Republic and Slovakia (22). To minimize inter‑laboratory and 
inter‑scorer differences, random exchanges of microscope 
slides were performed between the two laboratories in Prague 
and Martin as a part of the standard operating procedure.

Measurement of TL. TL was measured as relative telomere 
length (RTL) using monochrome multiplex real‑time qPCR 
assay as previously described by Cawthon (23) with slight 
modifications (24‑26). All reactions were performed in trip-
licates in an optical 384‑well reaction plate. Real‑time PCR 
experiments were performed on a Viia 7 Real‑time PCR 
System (Applied Biosystems; Thermo Fisher Scientific, Inc.) 
using two simultaneous programs to acquire the respective 
cycle threshold values for the telomere sequences and albumin 
gene. RTL was expressed as the ratio between telomere (T) 
and albumin (S; single‑copy gene), which is also known as the 
T/S ratio. Examples of the results from RTL measurements are 
presented in Fig. S2.

Statistical analysis. Statistical analysis of the data was 
performed using the SAS 9.4 software (SAS Institute Inc.). 
The results were processed into graphs using Statistica 12 
(StatSoft, Inc.). P<0.05 was considered to indicate a statistically 
significant difference. Multiple pairwise comparisons were 
corrected using the Bonferroni method (P=0.025). Descriptive 
statistical analysis was conducted for the measured parameters 
on the whole data set in addition to individual groups.

Differences between controls and patients were tested using 
the median two‑sample test or χ2‑test. Association between the 
examined variables were tested using Spearman's rank corre-
lation coefficient, which is expressed by Spearman's ρ value 
(rs) and graphically plotted using linear regression. Subjects 
were stratified into two groups based on the frequency of CAs 
and TL using the median values measured for control indi-
viduals. The effect on cancer risk was determined by logistic 
regression and calculated by estimating the odds ratios (ORs) 
with the 95% confidence intervals (CIs). ORs were adjusted 
for age and sex (aORs). Only age was used for the adjustment 
of ORs for patients with BC, since all corresponding controls 
were female.

Clinical outcomes were evaluated by calculating patients' 
5‑year overall survival (OS) and recurrence‑free survival 
(RFS). OS was defined as the time from the date of diagnosis 
to the date of death, which would then be marked as a negative 
event or the last follow‑up (July 2017), which would be marked 
as censored data. RFS was calculated from the date of diagnosis 
to the date of local recurrence, distant metastasis discovery 
or death, which would then be marked as a negative event, or 
last follow‑up (patients without any event) which is defined 
as censored data. The relative risk of mortality or recurrence 
was estimated using the hazard ratio (HR) with 95% CIs using 
Cox regression. Multivariate survival analysis, referred to as a 
classification and regression tree (CART) (27), was performed 
using the Cox regression model to identify the most prognosti-
cally significant interactions between the factors investigated 
and the OS and RFS of the patients. Covariates used in the 
CART were baseline and clinicopathological factors alongside 
all types of CAs and TL.

Results

Case‑control study. Levels of structural CAs, including 
ACs, CAtot, CTAs and CSAs, were found to be significantly 
higher in patients with BC and LC compared with those in 
the corresponding control groups. Following multiple testing 
corrections, no increased chromosomal damage was observed 
in patients with CRC compared with that in the control 
individuals (Table I). Individuals with higher frequencies of 
chromosomal damage were revealed to be at a higher risk of 
BC (ACs, aOR=4.81, P<0.0001; CAtot, aOR=4.49, P<0.0001; 
CTAs, aOR=2.43, P=0.0004; CSAs, aOR=2.31, P=0.0008) and 
LC (ACs, aOR=3.82, P<0.0001; CAtot, aOR=3.44, P<0.0001; 
CTAs, aOR=3.30, P<0.0001). Although no association between 
CAs and CRC risk was found in the present set of patients, 
both age and sex were revealed to be significantly associated 
with the risk of CRC and LC (Table II).

Patients with BC exhibited significantly longer TL 
compared with control individuals (P<0.0001; Table  I), 
where longer TL was associated with an increased risk of BC 
(aOR=6.49; P<0.0001; Table II). By contrast, patients with 
CRC and LC demonstrated moderately shorter TL compared 
with that in control individuals (Table I), which in turn was 
not associated with the risk of either types of cancer (Table II). 
A negative correlation was observed between the different 
types of CA and TL in individuals in the control group 
(ACs, rs=‑0.21, P=0.0004; CAtot, rs=‑0.22, P=0.0003; CTAs, 
rs=‑0.10, P=0.10; CSAs, rs=‑0.22, P=0.0002; Fig. S3A). In 
addition, a significant correlation was also recorded between 
TL and age (rs=‑0.62; P<0.0001) and between CSAs and age 
(rs=0.17; P=0.001) in control individuals. Associations between 
all types of CAs tested and TL (Fig. S3B‑D) or between all the 
studied parameters and age (data not shown) in patients with 
cancer were not detected, except for in patients with LC, who 
exhibited a significant correlation between ACs/CAtot/CSAs 
and age (AC, rs=0.23, P=0.03; CAtot, rs=0.22, P=0.04; CSAs, 
rs=0.22, P=0.04).

Survival analyses. Significant differences were observed 
in both OS and RFS among patients with BC, CRC and LC 
(P<0.0001, data not shown). After 5 years, the alive/dead 
proportion of patients with BC was 134/17 (88.7%), 51/45 
(53.1%) for patients with CRC and 23/63 (26.7%) for patients 
with LC. The RFS of patients was also found to significantly 
differ by cancer type (P<0.0001, data not shown). For BC, 
122 patients survived but 29 patients experienced an event 
during the follow‑up period. Patients with CRC were notably 
more likely to experience an event and therefore demonstrated 
reduced RFS, with 36 patients surviving asymptomatically, 
events occurring in 60 patients. In patients with LC, the RFS 
was almost identical to that in OS, with 20 patients showing 
asymptomatic survival and 66 afflicted with event occurrence. 
As a result, each of the individual cancer groups were analyzed 
separately.

Univariate survival analyses. All data from the univariate 
analysis of the impact of well‑established prognostic factors 
such as baseline and disease characteristics in addition to the 
CAs, including ACs, CAtot, CTAs, CSAs, and TL on the OS and 
RFS of patients were generated using the Cox regression hazard 
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model and are presented in Table III. TNM stage, histopatho-
logical grade, histological classification and tumor location were 
found to modulate OS and RFS differently. Advancing age was 
found to be associated with lower OS and RFS in patients with 
BC and CRC. In patients with BC, the absence of both hormonal 
receptors and hormonal therapy was associated with lower OS 
and RFS. CAs and TL were not revealed to significantly asso-
ciate with OS and RFS in patients with any cancer.

Multivariate survival analyses. To assess the prognostic utility 
of all the variables, the interactive effects of all studied types of 
CAs and TL together in association with baseline and disease 
characteristics were explored using a CART analysis. Covariates 
used in the CART were baseline and clinicopathological factors, 
specifically age, sex, family history of cancer, smoking status, 
TNM stage, histopathological grade, histological classification, 
tumor location, type of subsequent therapy received and the 
presence of hormonal receptors in breast tumors, in addition to 
all types of CAs and TL. The first split at the top of the tree 
denote the prognostic factor with the highest statistical signifi-
cance. TNM stage was found to be the first parameter to split 
from the tree for predicting both OS (Fig. 1) and RFS (Fig. 2) in 
patients with BC and CRC, whereas the laterality of tumor was 
found to be the point of first split in patients with LC.

In patients with BC, additional factors apart from TNM 
stage were also revealed to serve key prognostic roles in 
predicting both OS and RFS. Among the variables found to 
be key determinants of the OS tree structure in patients with 
BC were progesterone receptors (PRs), histopathological 
grade, age and CTAs (Fig. 1A). Among TNM stages 0 + I 
+ II + III, the next split revealed an interaction between PR 
positivity (positive vs. negative, 94.9 vs. 85.4%) and histo-
pathological grade (grades 1+2 vs. grades 3+4, 98.5 vs. 86.7%). 
Subsequently, patients with grade 1+2 BC would display better 
OS if they were aged >48 years (>48 years vs. <48 years, 
100 vs. 90%). By contrast, patients with grade 3+4 BC would 
exhibit superior OS provided their levels of CTAs were <2 
(0‑2 vs. 3‑7, 95 vs. 70%). In terms of RFS, patients with BC 
were subsequently divided into two categories after the initial 
split – TNM stage 0 + I + II and TNM III + IV (Fig. 2A). In 
the TNM 0 + I + II group, the subsequent split was again found 
to be PR positivity/negativity (positive vs. negative, 94.3 vs. 
65.1%), which interacted with human epidermal growth factor 
receptor 2 (Her2/neu or ErbB2) positivity/negativity. The 
prognosis of patients with BC negative for PRs was improved 
by the presence of Her2 receptors (positive vs. negative, 87.5 
vs. 50%). Similarly, this was the case in patients with BC 
positive for PRs, where the next most statistically significant 
factor for predicted RFS was the presence of Her2 receptors 
(positive vs. negative, 100 vs. 88.8%). Following stratification 
for PR positivity, RFS of patients with BC negative for Her2 
was then found to be influenced by age (<64 vs. >64 years, 
90.8 vs. 83.3%). In addition, patients with BC aged <64 years 
demonstrated CSA frequency as the terminal node of the 
CART analysis for RFS. Patients with BC without observable 
CSAs displayed worse prognosis (0 vs. 1‑4, 72.7 vs. 100%).

The only significant split found after the TNM stage was CTA 
frequency in patients with CRC (Fig. 1B). Patients with CRC in 
TNM stage III would have dramatically increased OS if they 
exhibit CTA levels <1 (0‑1 vs. 2‑7, 84.6 vs. 31%). The only signifi-

cant prognostic factor connected with RFS appeared to be the 
TNM stage in patients with CRC in the present study (Fig. 2B).

The OS of patients with LC was found to be associated with 
tumor laterality and histological classification (Fig. 1C), where 
patients with left‑sided LC of the pulmonary type were more 
likely to survive after 5 years compared with patients with 
LC of the bronchogenic type (pulmonary vs. bronchogenic, 
24.5 vs. 0%). Similarly to OS, patients with left‑sided LC of 
pulmonary histology also exhibited superior RFS (pulmonary 
vs. bronchogenic, 24.5 vs. 0%; Fig. 2C). Additionally, patients 
with right‑sided LC demonstrated an age‑dependent associa-
tion with prognosis.

Discussion

Both accumulations of chromosomal damage and telomere 
shortening contribute to genome and chromosomal instability 
(CIN) (28‑30). The primary aim of the present study was to 
investigate the relationship between the quantity of particular 
types of chromosomal damage, including aberrant cells (ACs), 
total chromosomal aberrations (CAtot), chromatid‑type aber-
rations (CTAs) and chromosome‑type aberrations (CSAs), 
and telomere length (TL) in the peripheral blood lympho-
cytes (PBL) of patients with newly diagnosed cancer and 
corresponding control individuals. The results were analyzed 
alongside the baseline, clinicopathological and follow‑up 
data. The impact of increased CAs and shorter TL on the risk 
of the most common cancers breast cancer (BC), colorectal 
cancer (CRC) and (lung cancer) LC was also investigated. To 
the best of our knowledge, no previous study has addressed 
the association between the frequencies of CAs and TL in the 
PBL of both patients with cancer and control individuals. The 
present study also examined the possible prognostic utility of 
these aforementioned biomarkers in assessing the 5‑year OS 
and RFS of patients with BC, CRC and LC.

The present study successively concludes the series of 
long‑term cytogenetic studies that were launched in 2006, 
which initiated with the collection of samples from patients with 
cancer and control individuals. Initially, in the first retrospective 
case‑control study, the frequencies of chromosomal damage 
were first measured in 300 newly diagnosed patients with cancer 
matched with 300 control individuals (11). In that previous study, 
the group of patients was mainly comprised of those with breast, 
colorectal, prostate, uterus + ovary, head + neck and bladder + 
kidney cancers. Comparing the entire group of patients with 
cancer with control individuals, significant differences in the CA 
frequencies were found. However, following the classification of 
each individual patient by tumor type, only patients with certain 
types of solid tumors differed compared with controls in terms of 
CA frequencies. Therefore, the present study extended the number 
of patients by focusing on the cancer types with the highest rates 
of prevalence, namely BC, CRC and LC. In a previous study, 
increased levels of chromosomal damage markers were reported 
in patients with BC, CRC and LC compared with control indi-
viduals (12). In the present study, a complex regression analysis 
was performed to determine the predictive power of each type 
of CAs. Although statistically significant aORs were found for 
particular types of CAs in patients with cancer compared with 
those in control individuals, only higher frequencies of ACs and 
CAtot were found to influence the risk of BC and LC whereas 
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and CTAs were found to influence the risk of LC from a clinical 
standpoint. Specifically, patients with elevated ACs and CAtot 
frequencies were at a higher risk of BC by 48 and 45%, respec-
tively and 38 and 34% for LC, respectively. In addition, higher 
quantities of CTAs were found to increase the risk of LC by 
33%. These observations confirmed the findings from previous 
studies, which were summarized by Bonassi et al (10). A cohort 
study conducted in Central Europe previously suggested that 
CSAs rather than CTAs are more accurate predictors of cancer 
risk (14). However, a pooled analysis involving >1,000 control 
individuals revealed an equally strong predictive power of both 
CTAs and CSAs for cancer (9).

Bonassi et al (10), did not find any of the covariates tested, 
specifically sex, smoking habit, age, time from the test and 
occupational exposure, to be potential modifiers of the effect 
of CA levels on the overall cancer risk in the whole cohort. 
In previous studies (11,12), an effect of age and smoking on 
cancer risk was found, where these factors were employed to 
adjust the effect of CAs on BC, CRC and LC risk. The differ-
ence in the role of potential effect modifiers could be due to the 

difference in studied populations. Bonassi et al (10) conducted 
a study on cancer‑free subjects who underwent CA screening 
for biomonitoring purposes, while our research studied groups 
consisting of newly diagnosed cancer patients. Cancer inci-
dence is frequently dependent on age which, along with TNM 
stage, are well‑established prognostic factors. However, data 
on CAs in the present study could be biased by the differences 
in stage/grade of the tumor and other clinicopathological char-
acteristics at the time of diagnosis.

Measurement of CA frequencies in patients with cancer and 
healthy individuals was supplemented by TL determination in 
the present study. Telomeres are nucleoprotein structures that 
protect chromosomal ends from exonucleolytic degradation 
and the inappropriate activation of DNA repair pathways, which 
frequently results in the end‑to‑end fusion of non‑homologous 
chromosomes (31). Li et al (15) and Xu et al (16), provided 
evidence that CAs may arise as a consequence of telomere 
dysfunction and the mechanisms associated with telomere 
shortening instead of direct DNA damage per se. Additionally, 
sub‑telomeric regions appear to be hotspots for the formation 

Figure 2. RFS classification and regression trees. Classification and regression trees represent the results of multivariate survival analysis of patients with 
(A) BC, (B) CRC and (C) LC, generated using the Cox regression hazard model. Numbers under each node represent the total number of cases in a particular 
subcategory/number of events. Percentages below indicate the proportion of patients who survived after 5 years. BC, breast cancer; CRC, colorectal cancer; 
CSAs, chromosome‑type aberrations; LC, lung cancer; RFS, recurrence‑free survival; TNM, tumor‑node‑metastasis.

Figure 1. OS classification and regression trees. Classification and regression trees represent the results of multivariate survival analyses of patients with 
(A) BC, (B) CRC and (C) LC, generated using the Cox regression hazard model. Numbers under each node represent the total number of cases in a particular 
subcategory/number of events. Percentages below indicate the proportion of patients who survived after 5 years. BC, breast cancer; CRC, colorectal cancer; 
CTAs, chromatid‑type aberrations; LC, lung cancer patients; OS, overall survival; TNM, tumor‑node‑metastasis.
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of symmetrical exchanges between homologous chromatids. 
Cryptic aberrations in these regions have been previously 
shown to be associated with a number of human congenital 
abnormalities (4).

Comparing the TL between individuals in cancer and 
control groups, patients with BC were found to exhibit 
significantly longer TL compared with control individuals. 
In addition, patients with BC exhibited the longest TL of 
all groups investigated in the present study, including indi-
viduals in the CRC, LC and control groups. This observation 
may be explained by the fact that females typically harbor 
longer telomeres compared with males  (32), where the set 
of patients with BC in the present study are comprised of 
only women. A number of hypotheses have been postulated 
to clarify this association, one of which is the presence of 
estrogen  (33). An estrogen‑responsive element has been 
previously demonstrated in telomerase reverse transcriptase 
(hTERT), a catalytic subunit of the enzyme telomerase (34). 
Telomerase is responsible for extending the telomeric DNA at 
the very tips of linear chromosomes, thereby preventing the 
loss of genetic material in proliferating cells (18). Estrogen is 
also known to stimulate telomerase activity in breast cancer 
cells (35) where a functional estrogen response element has 
been identified in the proximal promoter of the hTERT gene. 
Therefore, direct estrogen effects have been considered to be a 
part of the telomerase induction mechanism (36). Supporting 
this, overexpression of estrogen has been reported to be one of 
the typical features of breast tumors and risk factors for BC.

The present set of patients with BC with longer telomeres 
were found with a 65% increased risk of BC. However, 
previous prospective and retrospective studies both showed 
that the association between TL in PBL and the risk of BC 
remains controversial. Several studies found an elevated risk 
among women with longer telomeres (37,38) whereas other 
studies showed short telomere lengths to be associated with 
increased risk of BC (39‑41). In addition, a number of previous 
studies also found no significant association between these 
two parameters (42‑44).

Regarding the relationship between CAs and TL, 
Hemminki et al (17) previously demonstrated that shorter TL 
correlates with elevated levels of CAs in control individuals. In 
the present study, the same trend of significant negative corre-
lation between ACs/CAtot/CSAs and TL in the entire group 
of controls was observed independently. It has been widely 
reported that telomeres progressively shorten with increased 
age. Initial TL can vary among individuals, where the rate 
of telomere shortening reflects replicative exhaustion during 
aging (45). In the absence of a telomere maintenance mecha-
nism, cells eventually undergo replicative senescence (20). In 
the present group of control individuals, dependence of TL 
on age was found, where telomeres gradually shortened with 
advancing age. Age was also revealed to be associated with the 
accumulation of CSAs in control individuals. The association 
between this finding and the lower DNA repair rate in older 
subjects remains to be elucidated.

In the present study, it should be noted that apart from the 
correlation found between TL and age in control individuals, 
all the remaining statistically significant results should not be 
overinterpreted since the Spearman's ρ values were small. It 
means that even though the relationships analyzed were statisti-

cally significant, their biological relevance may remain limited. 
In a previous study, Bernadotte et al (45) proposed that instead 
of measuring the average TL, it would be reasonable to consider 
the quantity of shortened telomeres as an indicator of cellular 
and tissue proliferative potential. This is because cells do not 
exhaust their proliferative potentials in a simultaneous manner. 
Notably, patients with cancer did not exhibit any associations 
between TL and any type of CAs. Since there is no available 
literature that previously described this phenomenon, it can only 
be hypothesized that in complex and multifactorial diseases such 
as cancer, as yet unknown interactive pathways may exist that 
contribute to DNA damage and formation of CIN. Therefore, 
there is a need to conduct additional studies to elucidate this 
relationship between CAs and TL in the PBL of patients with 
cancer. We also did not record any clear correlation between 
TL and age in cancer patients. This was in contrast with the 
results obtained from the majority of previous studies covering 
this topic, which were summarized by Xu et al (46) and found 
that TL negatively correlated with age in patients with cancer.

Although CAs in PBL are proven markers of exposure, the 
role of this parameter in the pathophysiology and progression 
of cancer remain poorly understood (47). This uncertainty also 
applies for the prognostic value of TL in PBL for patients with 
cancer. The hypothesis that variations in CA frequencies and TL 
are determinants of prognosis is plausible to explain the hetero-
geneity in the clinical outcomes of patients with cancer. This 
therefore warrants further attention. In the present study, the 
prognostic power of CAs and TL was determined in all groups 
of patients with cancer. Association was not observed between 
any types of CAs and overall survival (OS) or recurrence‑free 
survival (RFS) using univariate survival analysis. However, 
outputs obtained using the CART analysis revealed the involve-
ment of CTAs in predicting the survival/mortality of patients, 
such that elevated CTAs was found to be a terminal node for 
lower OS for patients with BC at TNM stages 0 + I + II + III and 
for patients with CRC at TNM stage III. For CRC, an increase 
in CTAs >1 was found to worsen OS by ~55%. Of note, patients 
with BC without any CSAs exhibited inferior RFS. Based on 
these observations, different types of CAs may serve different 
roles in both cancer risk and patient prognosis. Numerous 
studies have previously explored the relationship between 
chromosomal rearrangements/CIN in PBL and the prognosis of 
patients with leukemia and lymphoma, the collective findings of 
which are summarized by Tanaka et al (48). However, no avail-
able accounts currently exist that explored such a relationship in 
solid tumors. Therefore, there remains a necessity in performing 
further extensive studies regarding this topic.

In terms of TL, no association could be found between 
telomere shortening and OS or RFS in the groups of patients 
with cancer, using either univariate or multivariate survival 
models. Several studies investigated the possible effects of 
TL on cancer prognosis, both in PBL and tumor tissues. A 
previous meta‑analysis (46) of 29 studies revealed the asso-
ciation between shortened TL in blood and inferior OS and 
RFS in solid cancers, which is even stronger in hematological 
malignancies. The biological relevance of results on TL 
obtained from blood, and that obtained from target tissues 
remains unclear (49) PBL is indeed an available tissue that 
is suitable for repeated monitoring, which has a specific 
gatekeeping role in cancer, namely immunocompetency. 



ONCOLOGY REPORTS  44:  2219-2230,  2020 2229

Kroupa et al (50) recently demonstrated that patients with CRC 
containing smaller TL ratios between the tumor tissue and the 
adjacent cancer‑free mucosa were associated with superior 
OS. By comparing the outputs obtained from both univariate 
and multivariate analyses among the individual groups of 
patients with cancer, survival in patients with LC was not 
affected by altering any of the genetic markers studied. Even 
the well‑established parameter TNM stage was not found to 
influence survival. This was most likely due to the majority of 
patients with LC being diagnosed at advanced stages, mainly 
at TNM III + IV.

In summary, results from the present study suggest that 
increased frequency of ACs, CAtot, and CTAs in PBL may be 
considered as a marker of BC and LC risk. It was also observed 
that individuals with longer TL in PBL were at a higher risk 
of BC. Accumulation of CTAs in PBL was associated with 
worsened OS in patients with BC and CRC after stratification 
according to disease characteristics using a multivariate survival 
model. Neither the OS nor the RFS of the patients was found to 
be influenced by TL alterations. Notably, unlike those observed 
with control individuals, patients with cancer did not exhibit any 
associations between TL and CA frequencies or TL and age. The 
present study is associated with a number of limitations, particu-
larly concerning the small sample sizes of individuals included, 
which served as one of the possible reasons for the reduced statis-
tical power. In addition, outputs acquired using CART analysis 
should be treated with caution, since only individuals with full 
sets of data in all of the implied variables were included, which 
could have introduced selection bias. Nevertheless, the present 
study was performed based on validated and well‑established 
methods with clearly defined clinical data.

In conclusion, increased frequency of chromosomal 
damage and TL in surrogate tissues, namely lymphocytes, 
which mediate antitumor immune responses, may to be 
applied to reflect cancer risk and progression. This underlines 
its potential applications in clinical oncology, which was 
confirmed by the rapidly rising number of similar studies. 
Therefore, additional studies with larger cohorts and consis-
tent data on CAs and TL are warranted.
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