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Abstract. Galectin‑3 is expressed in various tissues and plays 
an important role in the tumor microenvironment (TME). 
Galectin‑3 has been found to be overexpressed in a variety of 
cancers and is associated with tumor progression and metas-
tasis. Over the past decades, emerging evidence has suggested 
that the TME may induce galectin‑3 expression to maintain 
cellular homeostasis and promote cell survival. Furthermore, 
galectin‑3 regulates immune cell function to promote 
tumor‑driven immunosuppression through several mecha-
nisms. In the TME, intracellular and extracellular galectin‑3 
has different functions. In addition, it has been reported that 
galectin‑3 is associated with glycolysis and mitochondrial 
metabolism in tumors, and it is involved in the regulation 
of relevant signaling pathways, thus promoting cancer cell 
survival via adapting to the TME. The aim of the present 
review was to summarize the current knowledge on galectin‑3 
production and its function in the TME, its effect on TME 
immunosuppression, its association with tumor metabolism 
and relevant signaling pathways, and to report common types 
of cancer in which galectin‑3 is highly expressed, in order to 
ensure a comprehensive understanding of the critical effects of 
galectin‑3 on tumor progression and metastasis.
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1. Introduction

Galectin‑3 is a 29‑35‑kDa β‑galactoside‑binding glycopro-
tein (1), which has been widely investigated in several disorders, 
such as cancer and metabolic diseases (2). Galectin‑3 possesses 
a highly conserved β‑galactoside‑binding domain (carbo-
hydrate recognition domain) and an extended N‑terminal 
domain (1‑5). The galectin family in mammalians consists of 
15 members, including galectin‑3 (6). Based on their molecular 
structure, the 15 members of the galectin family are divided 
into three main categories: Prototype galectins (galectin‑1, ‑2, 
‑5, ‑7, ‑10, ‑11, ‑13 and ‑14), tandem repeat galectins (galectin‑4, 
‑6, ‑8, ‑9 and ‑12), and chimera galectins (galectin‑3) (5). The 
conformation of galectin‑3 alternates into homodimers or 
oligomers by assembly in its N‑terminal domain. Therefore, 
due to its oligomer form, galectin‑3, but not the other galectins, 
has unique biological properties (6‑8).

Galectin‑3 is located in the cytoplasm and nucleus, and 
it is transported to the cell surface, extracellular space and 
circulation without the secretory signal sequence (9). It has 
been reported that galectin‑3 binds with substrates in cells. 
For example, intracellular Bcl‑2 may be bound by galectin‑3 
to inhibit T‑cell apoptosis (10‑12). Furthermore, galectin‑3 
binds with T‑cell receptor (TCR) on the cell surface to restrict 
and downregulate TCR expression, thus resulting in the inhi-
bition of TCR‑mediated early activation of T cells (13,14). 
When galectin‑3 reaches the extracellular space, it reacts 
with several binding partners, mostly extracellular matrix 
(ECM) or cell surface polylactosamine‑rich molecules, and 
plays a key role in regulating tumor progression extracel-
lularly (15,16). In the inflammatory response, galectin‑3 has 
been associated with the activation of neutrophils in several 
infectious diseases, such as viral lower respiratory tract 
infection, bacterial sepsis and candidemia (17‑20). The R186S 
mutation in galectin‑3 alters its affinity for various carbo-
hydrates, thus playing an important role in its function (21). 
It was previously demonstrated that the R186S galectin‑3 
mutant was able to bind lactose, but not LacNac, and was 
unable to enter vesicles to activate primed neutrophils (22). 
Galectin‑3 has been shown to direct glycoproteins into 
vesicles, which in turn are transported though the membrane 
in a lipid raft‑independent manner (21). However, it has been 
suggested that the R186S galectin‑3 mutant is not capable of 
mediating the intracellular transport of glycoproteins, such 
as gp114 (23).
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The survival and prognosis of cancer patients are not 
only associated with cancer cells, but also with the tumor 
microenvironment (TME), which is constituted of cancer 
cells, immune cells, stromal cells, the ECM, as well as other 
components. Furthermore, the TME contributes to tumor 
growth, invasion, metastasis and immunosuppression. For 
example, it is well known that tumor‑associated macrophages, 
fibroblasts and tumor cells secrete suppressive cytokines 
and chemokines that are involved in the immune response. 
Furthermore, the production of inhibitory metabolites, migra-
tion failure due to rigid ECM, poor antigen expression and 
decreased TCR signaling all contribute to tumor progres-
sion (24). Tumor‑secreted galectin‑3 has been found to inhibit 
the permeation of interferon‑γ (IFN‑γ) in the TME, thus 
resulting in reduced CXC motif chemokine ligand 9 content 
and decreased recruitment of CD8+ T‑cells to the tumor. 
However, treatment with galectin‑3 inhibitors recovered the 
content of IFN‑γ and chemokines in the TME, whereas the 
immune cell infiltration was enhanced (25).

Galectin‑3 also participates in cell glycolysis and mito-
chondrial metabolism in some tumors, thus improving the 
metabolic reprogramming of tumors and enabling them to 
adapt to the microenvironment stress caused by oxygen and 
nutrient deprivation (4,21,26‑28). Under high‑fat diet condi-
tions, galectin‑3 knockout (KO) mice exhibited increased 
levels of fasting blood glucose, insulin and HbA1c. However, 
the levels of the glucose transporters were lower compared 
with those in the control group. This finding was hypoth-
esized to be one of the reasons for the increased blood 
glucose levels observed in KO mice (29). It was previously 
demonstrated that galectin‑3 was co‑expressed with glucose 
transporter 1 (GLUT1) in breast and lung cancer, and their 
expression was upregulated in tumor cells surrounding the 
necrotic region inside the tumor (26). Galectin‑3 may also 
be transported to the mitochondrial membrane and interact 
with Bcl‑2, thereby inhibiting the release of mitochondrial 
cytochrome c and reducing cell apoptosis (30). In addition, 
inconsistent galectin‑3 expression patterns have been iden-
tified in different tumors, possibly due to the variation of 
the TME content or the cellular localization of galectin‑3 
in different tumor cells (4). For example, previous studies in 
various cancers have suggested that intracellular galectin‑3 
plays an important role in maintaining mitochondrial 
homeostasis, whereas extracellular galectin‑3 binds to 
the CD29 and CD7 glycoproteins on the surface of T‑cell 
lymphoma cells and activates mitochondrial apoptotic 
signaling  (31‑33). A mind map of the present study is 
presented in Fig. 1.

2. Role of galectin‑3 in the TME

TME induces the production of galectin‑3. It has been reported 
that galectin‑3 may be activated in chronic myeloid leukemia 
(CML), following interaction of leukemic cells in the TME 
with stromal and mesenchymal stem cells (MSCs) (34‑37). 
A study demonstrated that galectin‑3 was upregulated, 
particularly when leukemic cells were co‑cultured with bone 
marrow stromal cells (BMSCs) in vitro, while its expression 
was predominant in CML cells (35). Additionally, the expres-
sion of galectin‑3 was significantly increased when CML 

cells were co‑cultured with MSCs, and the protein expression 
was the highest during the chronic phase (35). In addition, 
overexpression of galectin‑3 in CML cells promoted CML 
cell and BMSC proliferation, thereby accelerating the deposi-
tion of leukemia cells in the bone marrow. In acute myeloid 
leukemia, high galectin‑3 expression was associated with poor 
prognosis (38). It has been suggested that galectin‑3 supports 
leukemic cell survival in the TME via the AKT‑mediated 
inactivation of glycogen synthase kinase (GSK)3, which is 
involved in the anti‑apoptotic pathway, pro‑cell proliferation 
cascade, metabolic pathway, and other processes  (39‑43). 
In addition, Krause et al demonstrated that galectin‑3 was 
induced when t(1;19)‑positive acute lymphoblastic leukemia 
(ALL) cells were co‑cultured with glioma‑derived U343 cells. 
Galectin‑3 was considered as ligand of Mer tyrosine kinase 
and the feedback mechanism between those two elements 
may mediate the relapse of ALL in the central nervous system 
(CNS) (44).

The TME, a hypoxic environment, may be regulated by 
the primary regulator hypoxia inducible factor‑1α (HIF‑1α), 
which is known to upregulate the expression of several genes, 
including galectin‑3, to maintain cellular homeostasis and 
promote cell survival in skeletal tissues (45). Galectin‑3 was 
found to be increased in hypoxic/nutrient‑deprived areas from 
both glioblastoma and mammary tumor tissues (26,46‑48). In 
addition, several studies have demonstrated that the interfer-
ence of nuclear factor (NF)‑κB activation inhibits galectin‑3 
expression, resulting in cell apoptosis (49). Taken together, the 
interactions among galectin‑3, NF‑κB, HIF‑1α and common 
stress conditions in the TME are crucial for tumor progression 
(Fig. 2).

Galectin‑3 regulates TME immunosuppression. Galectin‑3 
plays a key role in promoting tumor‑driven immunosup-
pression. The specific effects of galectin‑3 on the innate and 
adaptive immunity are summarized in Table I (15). A study 
revealed that co‑culture of T cells from the peripheral blood 
with autologous tumor cells suppressed galectin‑3 expression 
in tumor cells and mediated galectin‑3‑induced expansion of 
tumor‑reactive T cells (6). In addition, tumor cell‑secreted 
galectin‑3 may regulate the polarization of macrophages from 
the M1 (antitumor) to the M2 (tumor‑promoting) subtype, 
trigger CD8+ T‑cell apoptosis, and downregulate the expres-
sion of TCRs  (50). Emerging evidence has suggested that 
galectin‑3 binds to lymphocyte‑activation gene‑3 (LAG‑3) 
on activated terminally differentiated T cells, and functional 
LAG‑3 is required for galectin‑3‑mediated T‑cell suppres-
sion (51). In addition, depletion of galectin‑3 was associated 
with increased activation of the proinflammatory signaling 
pathways in CD8+ T cells (51). Galectin‑3 suppressed T‑cell 
function via inducing T‑cell anergy, and this effect was rescued 
by depleting surface galectin‑3  (52,53). The mechanism 
underlying galectin‑3‑induced immunosuppression is mainly 
mediated by triggering apoptosis via its binding to antitumor 
T cells (54,55), and shielding the ligands on the surface of 
tumor cells from the activated receptors of natural killer (NK) 
cells (56,57). Furthermore, galectin‑3 is a soluble ligand of 
NKp30, which is expressed on the surface of NK cells and acts 
as an immunomodulator to mediate immune escape of tumor 
cells from NK cells (58).
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Galectin‑3 regulates T‑cell function through several mech-
anisms, including the negative regulation of the TCR‑mediated 
cell response (13). Demotte et al demonstrated that treating 
CD8+ tumor‑infiltrating T lymphocytes (TILs) with an 

anti‑galectin‑3 antibody could restore their ability of IFN‑γ 
secretion (52). Furthermore, the proliferation of tumor‑reactive 
T cells was improved following treatment with supernatants 
isolated from galectin‑3‑depleted cells, indicating an impor-
tant role of the tumor‑secreted galectin‑3 in the suppression 
of T‑cell activation (59). CD146/MCAM has been reported to 
act as a functional binding ligand of galectin‑3 on the surface 
of endothelial cells, and is responsible for galectin‑3‑induced 
secretion of metastasis‑promoting cytokines (60). Certain cyto-
kines, such as interleukin (IL)‑1, IL‑6, tumor necrosis factor‑α 
and INF‑γ, are associated with metastasis and prognosis in 
several types of cancer  (61). The interaction of galectin‑3 
with endothelial CD146/MCAM in the circulation resulted in 
increased secretion of IL‑6, granulocyte colony‑stimulating 
factor and other cytokines; therefore, they may exert an impor-
tant effect on the progression and metastasis of cancer (60).

Extracellular and intracellular galectin‑3 exert different 
effects on lymphocytes; therefore, understanding the function 
of galectin‑3 is complicated (6). Interestingly, the cellular local-
ization of galectin‑3 determines whether it exerts apoptotic or 
anti‑apoptotic effects on T cells. It has been reported that extra-
cellular galectin‑3 induces apoptosis, whereas intracellular 

Figure 1. Mind map of article. Galectin‑3 mainly plays a role in the TME and tumor metabolism, and exerts specific effects on lung cancer, thyroid carcinoma 
and melanoma. TME, tumor microenvironment.

Figure 2. Role of galectin‑3 in tumor progression. Galectin‑3 transcrip-
tion depends on the activities of both HIF‑1α and NF‑κB in the TME, 
particularly under hypoxic conditions. NF‑κB, nuclear factor‑κB; 
HIF‑1α, hypoxia‑inducible factor‑1α; TME, tumor microenvironment.

Table I. Typical functions of galectin‑3 in innate and adaptive immunity (15).

Innate immunity	 Adaptive immunity

Promotes acute inflammation	 Induces apoptosis of T cells (extracellular)
Potentiates eosinophil migration	 Protects T cells from apoptosis (intracellular)
Promotes neutrophil transmigration and degranulation	 Favors Th2 responses (extracellular)
Inhibits IL‑12 production from DCs	 Favors Th1 responses (intracellular)
Mediates alternative activation of macrophages	 Favors differentiation toward memory B cells

DCs, dendritic cells; Th1, T helper cell 1; Th2, T helper cell 2; IL, interleukin.
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galectin‑3 inhibits apoptosis by promoting cell proliferation 
and stimulating TCR signaling (5). Therefore, extracellular 
galectin‑3 may induce apoptosis of human thymocytes and 
T cells via directly binding to the glycoprotein receptors CD45 
and CD71 (62). On the contrary, overexpression of galectin‑3 
in the intracellular compartment of Jurkat T cells was associ-
ated with the inhibition of apoptosis induced by an anti‑Fas 
antibody and staurosporine (63). In addition, a study revealed 
that depletion of galectin‑3 in CD4+ T cells upregulated TCR 
expression and IFN‑γ secretion compared with wild‑type 
CD4+ T cells (13).

Function of intracellular galectin‑3 in the TME. An increasing 
number of studies have investigated the expression levels of 
galectin‑3 in different types of cancer, and its expression was 
found to differ among diverse malignancies (64). Galectin‑3 
was shown to be upregulated in thyroid, liver, stomach and 
CNS cancers, and downregulated in breast, ovarian, uterine 
and prostate cancers  (65‑67). During tumor progression, 
galectin‑3 is often localized in the cytoplasm, as has been 
reported for tongue and prostate cancer (64), and its expres-
sion was decreased in the nucleus during the transition of 
tongue tissue from normal to cancerous (64). It was, therefore, 
hypothesized that the nuclear translocation of galectin‑3 
observed during tumor progression may be a prognostic 
factor for patients with tongue cancer (68). A similar research, 
including 145 prostate cancer patients, reported that galectin‑3 
was usually not expressed or decreased in prostate cancer 
compared with normal prostate tissues (64). When galectin‑3 
was detected in cancer cells, it was always absent from the 
nucleus and was only present in the cytoplasm (69). In addi-
tion, it has been reported that the expression of galectin‑3 in 
the cytoplasm is closely associated with vascular invasion, cell 
differentiation and tumor progression (70).

Galectin‑3 exerts opposite biological effects, depending 
on its cellular localization; therefore, nuclear and cyto-
plasmic galectin‑3 exert antitumor and tumorigenic effects, 
respectively (69,71,72). It has been suggested that galectin‑3 
is involved in several different signal transduction cascades 
and pro‑survival processes, including the Ras, Bcl‑2 and Myc 
signaling pathways (73‑75). For example, galectin‑3 regulated 
Bcl‑2 and other members of the Bcl‑2 family by directly 
binding to them (76). The expression of galectin‑3 between the 
cytoplasmic and nucleal regions differs in different types of 
skin cancer. For example, the cytoplasmic galectin‑3 expres-
sion in cutaneous squamous cell carcinoma was significantly 
higher compared with that in circumscribed and infiltrative 
basal cell carcinoma. Furthermore, the immunoreactivity of 
galectin‑3 in the cytoplasm was increased compared with 
that in the nuclei of non‑melanoma skin cancer cells (77). In 
addition, it has been hypothesized that tumor size is associ-
ated with the cytoplasmic expression of galectin‑3. The 
nuclear and cytoplasmic expression of galectin‑3 has been 
considered as an important factor in the malignant progres-
sion of non‑melanoma skin cancer. Therefore, the expression 
of galectin‑3 was reported to be decreased in the nucleus and 
increased in the cytoplasm during the transition of normal 
cells to tumor cells (50). Consistently, melanoma patients with 
low survival rate exhibited increased cytoplasmic galectin‑3 
expression compared with its nuclear expression (78).

Function of extracellular galectin‑3 in the TME. 
Notably, several studies have shown that the behavior of 
tumor‑stromal cells, including endothelial cells, immune 
cells, cancer‑associated fibroblasts, myofibroblasts and MSCs, 
is affected by the extracellular expression of galectin‑3, 
whereas it has been found that these cells may also secrete 
galectin‑3 (5,79‑82). Upregulation of the galectin‑3 expression 
increases the ability of cancer cell migration and invasion in 
several tumors, including breast, melanoma, lung, sarcoma, 
gastric cancer and CML (12,35,82‑85). In addition, galectin‑3 
interacts with ECM glycoproteins, such as fibronectin, 
collagen IV, elastin and laminin, which play pivotal roles in cell 
migration (86‑89). Studies have shown that galectin‑3 also inter-
acts with epidermal growth factor receptor (EGFR) to induce 
its phosphorylation and re‑localization from the membrane 
to the cytoplasm. In the case of colon cancer cell migration, 
extracellular galectin‑3 may bind with EGFR to affect EGFR 
dynamics  (90). Researchers demonstrated that galectin‑3 
exhibited an increased affinity to β‑1,6‑N‑acetylglucosamine 
branched glycans. This interaction mediated the binding of 
galectin‑3 to several types of glycoproteins and glycolipids 
on the cell membrane, including carcinoembryonic antigen, 
mucin‑1 and glycosylated transmembrane tyrosine kinase 
receptors of EGF (91,92). The aforementioned findings suggest 
that galectin‑3 may play multiple roles in regulating cell‑matrix 
and cell‑cell interactions in cancer.

In addition, it has been reported that tumor‑secreted 
galectin‑3 is involved in angiogenesis via binding through 
carbohydrate recognition, thus affecting endothelial 
cell behavior and regulating capillary formation during 
tumor progression  (79). The mechanism underlying 
galectin‑3‑mediated angiogenesis has been associated with the 
binding of galectin‑3 with αvβ3 integrins on endothelial cells 
to induce aggregation of integrin clusters and the activation of 
several signaling pathways. As a result, galectin‑3 may affect 
the angiogenic activity of vascular endothelial growth factor 
and basic fibroblast growth factor, as well as the promotion of 
focal adhesion kinase phosphorylation (93).

Galectin‑3 as a targeted therapy. Due to the immunosup-
pressive effects of galectin‑3, its role in promoting tumor 
invasion, migration and angiogenesis in the TME has been 
attracting increasing attention. Therefore, galectin‑3 is 
considered as a potential target for the clinical therapy of 
cancer. Although the pre‑clinical study of a clinical grade 
galectin antagonist (GM‑CT‑01) is still at an early stage, 
a report demonstrated that this antagonist restored CD8+ 
T‑cell function, suggesting that this compound may be an 
effective approach to cancer therapy (94). Furthermore, the 
effects of galectin‑3 antagonists, combined with immune 
checkpoint inhibitors or T‑cell agonists, were investigated to 
reveal their potential role on enhancing antitumor immunity 
and promoting regression of solid tumors (95). Preclinical 
studies demonstrated that treatment with a galectin‑3 
inhibitor, namely GR‑MD‑02, a carbohydrate‑based drug 
that binds to galectin‑3, promoted antigen‑specific T‑cell 
proliferation in patients with advanced cancer (95,96). In 
addition, GR‑MD‑02 combined with an irritant (anti‑OX40) 
improved the survival rate of MCA‑205 sarcoma, 4T1 breast 
cancer and transgenic adenocarcinoma of mouse prostate 
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cell (TRAMP‑C1) models (95,97). In addition, GR‑MD‑02 
attenuated liver pathological changes, collagen deposition 
and fibrosis in mice with non‑alcoholic steatohepatitis (96). 
The combination of GR‑MD‑02 with anti‑OX40 treat-
ment also reduced lung metastasis in a 4T1 breast cancer 
model (98). The successful application of lectin inhibitors 
indicates that these inhibitors may represent a potential 
promising approach to cancer therapy.

3. Association between galectin‑3 and tumor metabolism

Role of galectin‑3 in tumor metabolism. Differentiated or 
undifferentiated normal cells rely heavily on the glycolytic 
pathway to generate energy. Glycolysis refers to the anaerobic 
conversion of glucose to pyruvate through a series of intercel-
lular enzymatic reactions to produce adenosine triphosphate 
(ATP), a high‑energy phosphate compound (99). The Warburg 
effect describes a type of mitochondrial dysfunction, where 
cancer cells do not allow pyruvate to enter mitochondria; 
instead, lactate dehydrogenase (LDH) enters mitochondria 
to degrade pyruvate to lactic acid, which in turn enters the 
Cori cycle  (99,100). In tumor cells, galectin‑3 overexpres-
sion was associated with HIF‑1α and p53 activity (21,101), 
and enhanced phosphoinositide 3‑kinase (PI3K) signaling 
to promote GLUT1‑mediated aerobic glycolysis in tumor 
cells (28,32,102). In addition, galectin‑3 promoted RAS and 
extracellular signal‑regulated kinase (ERK) 1/2 activation 
to induce GLUT1 expression and the activity of hexokinase, 
phosphofructokinase and LDHA (103‑106).

It has been reported that galectin‑3 is involved in main-
taining mitochondrial homeostasis  (107). Therefore, in 
ovarian cancer, cisplatin promoted the release of cytochrome c 
and mitochondrial reactive oxygen species in cells with 
galectin‑3‑silencing. However, the effect of cisplatin was atten-
uated following galectin‑3 overexpression (108). Inhibition of 
galectin‑3 expression in colorectal cancer cells reduced epiru-
bicin‑induced ATP‑binding cassette transporter expression and 
activated the mitochondrial apoptotic pathway (33). Galectin‑3 
has also been suggested to be associated with pivotal regu-
lators of mitochondrial metabolism, such as AMP‑activated 
protein kinase and peroxisome proliferator‑activated receptor, 

two indicators of fatty acid oxidation in mitochondria that 
regulate metabolic balance in tumor cells (109,110).

Galectin‑3 was found to be significantly upregulated in 
human glioblastoma T98G cells under conditions of hypoxia 
and nutrient deprivation  (48). Consistently, overexpression 
of galectin‑3 enhanced T98G cell survival and adaptation 
viability. These findings suggested that galectin‑3 mediated 
tumor progression via promoting angiogenesis and main-
taining homeostasis in the TME (48,111). In addition, previous 
studies in melanoma cells have demonstrated that extracel-
lular galectin‑3 activates the p38 mitogen‑activated protein 
kinase pathway, thereby inducing the expression of matrix 
metalloproteinase (MMP)9, which in turn provides nutritional 
support for tumor angiogenesis (32,112). Therefore, galectin‑3 
overexpression may be considered as an adaptive metabolic 
mechanism of the tumor to maintain cellular viability and 
homeostasis under conditions of TME stress induced by 
hypoxia and nutrient deficiency.

Galectin‑3 is involved in multiple signaling pathways 
regulating tumor metabolism. It has been reported that the 
AKT‑mediated PI3K signaling pathway is involved in the 
regulation of GLUT1, glucose uptake and phosphofructokinase 
activity, thus affecting cell survival, cell cycle progres-
sion and therapeutic outcome  (99,113‑117). Furthermore, 
galectin‑3 has a high affinity for and is cross‑linked with 
β1,6‑GlcNAc‑branched N‑glycans and glycoproteins to form 
molecular complexes on the cell surface and ECM, thus 
affecting the distribution of glycoproteins and cell signal 
transduction (66). Kariya et al demonstrated that the reactiva-
tion of PI3K mediated by β4‑integrin N‑glycans was inhibited 
following treatment with a neutralizing antibody against 
galectin‑3  (118). Elad‑Sfadia  et al revealed that galectin‑3 
was required for the RAS‑induced PI3K/AKT activation 
in response to growth factor stimulation (11). Additionally, 
galectin‑3 increased β‑catenin expression and accumulation in 
the nucleus, thereby enhancing Wnt signaling in human colon 
cancer cells via regulating GSK‑3β phosphorylation/activity 
through the PI3K/AKT signaling pathway (39).

NF‑κB serves an important role in inducing pro‑ 
inflammatory cytokines in several types of cancer (119,120). 
Emerging evidence has suggested that HIF‑1α, NF‑κB, cave-
olin‑1 and TP53‑inducible glycolysis and apoptosis regulator 
acted as inducers of cancer‑stroma metabolic coupling via 
modulating oxidative stress and autophagy (121). Upregulation 
of galectin‑3 in a hypoxic microenvironment relies on tran-
scription factors such as HIF‑1α and NF‑κB (48,122). Nucling, 
an apoptosis‑associated molecule, downregulated galectin‑3 
mRNA and protein expression via mediating the nuclear 
translocation of NF‑κB/p65 (Fig. 3). Therefore, nucling‑defi-
cient cells were resistant to pro‑apoptotic stress, whereas the 
expression of galectin‑3 and the incidence of inflammatory 
injury were increased in mice lacking nucling (49). Galectin‑3 
also promoted IL‑8 transcription and secretion via NF‑κB 
signaling in pancreatic stellate cells; however, treatment with a 
NF‑κB inhibitor and integrin‑linked kinase (cdp33) completely 
inhibited the galectin‑3‑mediated transcriptional activities of 
NF‑κB and IL‑8 (123).

Several signaling pathways have been found to be 
involved in the metabolic process in tumors. Overexpression 

Figure 3. Nucling regulates the expression of galectin‑3. Nucling interferes 
with NF‑κB activity through preventing the nuclear translocation of the 
NF‑κB‑p65 complex from the cytoplasm, thereby inhibiting the expression 
of galectin‑3. NF‑κB, nuclear factor‑κB.
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of galectin‑3 in the hypoxic TME was considered to regu-
late tumor cell migration, invasion and adaptability  (32). 
In addition, the Wnt/β‑catenin pathway was found to be 
involved in the regulation of cell migration via MMPs (124). 
Shimura et al demonstrated that galectin‑3 interacted with the 
β‑catenin/TCF complex and was co‑localized with β‑catenin 
in the nucleus, thereby regulating the transcriptional activity 
of transcription factor 4 (TCF4) in breast cancer cells (125). 
Consistently, Song  et al reported that galectin‑3 mediated 
β‑catenin expression and TCF4 activity by regulating GSK‑3β 
phosphorylation and activation via the PI3K/AKT pathway 
in colon cancer cells (39). Additionally, downregulation of 
galectin‑3 resulted in reduced phosphorylated (p)‑AKT and 
p‑GSK‑3β expression, and increased GSK‑3β activity, thus 
mediating the phosphorylation of β‑catenin. This effect was 
considered as a critical step for the recognition of β‑catenin 
by the F‑box protein β‑Trcp (126). These findings indicated 
that galectin‑3 participates in multiple signaling pathways to 
regulate tumor metabolism.

4. Role of galectin‑3 in tumors

Lung cancer. Lung cancer is one of the most common types 
of cancer worldwide, and non‑small cell lung cancer (NSCLC) 
accounts for ~80% of lung cancer cases (127). The expression 
of galectin‑3 varies among different types of lung cancer. For 
example, in small‑cell lung cancer, galectin‑3 is not expressed 
or downregulated compared with NSCLC, in which galectin‑3 
is upregulated in the majority of cases (128). mRNA microar-
rays revealed that forkhead box D1 (FOXD1) was associated 
with poor prognosis and lung cancer cell proliferation (129). 
FOXD1 has been shown to promote lung cancer cell invasive-
ness via its binding with ERK1/2 and targeting galectin‑3 (95). 
In addition, it has been demonstrated that galectin‑3 regulates 
the expression of FOXD1 via the integrin‑β1/ERK/E26 
transformation specific‑1 cascade, which in turn mediates the 
formation of a positive ring between FOXD1 and galectin‑3 and 
promotes lung cancer invasiveness (130). A study suggested 
that the expression of galectin‑3 may be a potential biomarker 
for predicting NSCLC recurrence after radical resection (131). 
However, the level of galectin‑3 in the serum had no prog-
nostic value in NSCLC, and no significant correlation was 
observed between NSCLC and galectin‑3 serum levels (131). 
Knockdown of galectin‑3 in NSCLC cell line‑derived 
spheres decreased the expression of stemness‑associated 
genes, suggesting that galectin‑3 may play a synergistic role 
by interacting with β‑catenin and increasing the transcrip-
tional activity of downstream stemness‑associated genes. 
Furthermore, cells lacking galectin‑3 were less invasive, more 
vulnerable to chemotherapy, and inefficient in initiating tumor 
formation (132).

In NSCLC, galectin‑3 not only mediates the malignancy 
of cancer cells, but also attenuates the effect of immune cells 
on inducing tumor cell evasion from the immune response. 
It has been demonstrated that the intracellular expression 
of galectin‑3 and galectin‑1 in tumor cells may block apop-
tosis; however, the extracellular galectins within the TME 
induce T‑cell apoptosis via binding with CD45 and CD7 
on the surface of T  cells, and exacerbating the immune 
escape of tumor cells  (133). In particular, the galectin‑3 

multivalent N‑glycan complex impaired TCR clustering on 
the T‑cell surface and increased the agonist threshold for 
TCR signaling (133). In fact, molecular interactions between 
T‑cell surface glycans and certain galectins are functionally 
capable of regulating T‑lymphocyte death and inflammatory 
responses  (25,133‑136). Antigen‑presenting cells (APCs) 
and macrophages also play an important role in establishing 
immune cell homeostasis (137). Significant changes in the 
glycan chain have been identified during dendritic cell matu-
ration in order to regulate the binding of specific galectins to 
mature or immature APCs (138).

Thyroid carcinoma. A recent meta‑analysis has suggested that 
galectin‑3 may be considered as a potentially useful immune 
marker for distinguishing patients with papillary thyroid 
cancer (PTC) from those with non‑PTC (139). PTC patients 
with positive galectin‑3 expression are prone to lymph node 
metastasis  (139). A study compared the serum galectin‑3 
levels between patients with thyroid cancer and healthy 
individuals. The results revealed that the serum galectin‑3 
levels in patients with thyroid cancer were significantly higher 
compared with those in patients with benign thyroid lesions 
or healthy controls  (140,141). PTC and papillary thyroid 
micro‑carcinoma (PTMC) are the most common types of 
thyroid malignancies (142,143). However, distinguishing PTC 
and PTMC from thyroid papillary hyperplasia is challenging 
due to tumor heterogeneity (144,145). Furthermore, the expres-
sion profiles of galectin‑3, cytokeratin  19, CD56, thyroid 
peroxidase and BRAF mutations are commonly used for the 
diagnosis of PTC and PTMC (145‑148).

It has been suggested that the galectin family plays an 
important role in Ras membrane anchoring and Ras‑mediated 
cell transformation (11,149). Ras proteins (H‑Ras, K‑Ras and 
N‑Ras) are important members of the GTPase family, which 
regulate cell differentiation, proliferation and cell death (150). 
Ras mutations are known to be involved in 25‑30% of all 
human cancers (151,152). In addition, galectin‑3 interacts with 
oncogenic Ras proteins, preferentially with K‑Ras, to promote 
the activation of important signaling cascades, including 
serine/threonine kinase (RAF1), PI3K and Ras signaling 
pathways, and to regulate gene expression at the transcrip-
tional level (11). A study demonstrated that the combination 
of galectin‑3 inhibitor, S‑trans,trans‑farnesylthiosalicylic acid 
and modified citrus pectin was able to induce cell cycle arrest 
and apoptosis, thereby inhibiting the growth of anaplastic 
thyroid carcinoma in vitro and in vivo (153‑155).

Melanoma. Melanoma is the most aggressive skin cancer and 
is considered as a highly immunogenic tumor  (156). Over 
the past few years, studies have identified the characteristics 
of progressive biomarkers and their underlying mechanisms 
based on deep research on the invasion and chemoresistance 
abilities of melanoma cells, and the association between 
galectin‑3 expression and melanoma pathogenesis (59). The 
results demonstrated that, compared with benign nevus, the 
galectin‑3 expression levels were increased in thin primary 
melanomas. However, this expression pattern was lost during 
tumor progression, and galectin‑3 expression was decreased in 
both thick and metastatic melanomas (70,157). Other studies 
indicated that the expression of galectin‑3 in melanocytes 
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and melanoma cells treated with a mutated BRAF inhibitor, 
vemurafenib, exerted a pivotal effect on reducing autophagic 
activity and determining cell fate (158,159).

It was previously demonstrated that the expression 
levels of galectin‑3 and its nuclear:cytoplasmic ratio was 
higher in metastatic lesions compared with that in primary 
melanoma lesions. Additionally, an association between 
the nuclear expression of galectin‑3 and prognosis was 
proposed  (78). Mourad‑Zeidan  et  al demonstrated that 
melanoma cells lacking galectin‑3 expression exhibited 
reduced tumorigenic potential and decreased expression 
of tumor markers  (160). However, other studies reported 
the opposite result. Therefore, a study using a xenograft 
melanoma model constructed with human melanoma cell 
lines demonstrated that the expression of galectin‑3 was 
upregulated in thin primary melanoma lesions compared 
with benign pigmented skin lesions or metastases, and was 
negatively correlated with cell invasiveness (2). It was also 
suggested that, in more advanced melanoma lesions, attenu-
ated galectin‑3 expression may be associated with high risk 
of tumor metastasis. Related results indicate that melanoma 
cells may separate from the basement membrane and enter 
the circulation via attenuating their interaction with the 
ECM (2).

5. Conclusions and future perspectives

The unique molecular structure of galectin‑3 determines its 
importance in the TME and tumor metabolism. In the TME, 
tumor cells are more prone to inducing the production of 
galectin‑3 in order to promote their proliferation and survival. 
In addition, galectin‑3 interacts with immune cells and inhibits 
the normal functions of lymphocytes, thereby mediating the 
immune escape of tumor cells. In the TME, intracellular and 
extracellular galectin‑3 serve different functions. Of note, 
galectin‑3 is also involved in metabolic pathways in tumors, 
not only affecting mitochondrial homeostasis, but also 
contributing to tumor cell adaptation to a hypoxic metabolic 
environment and metastasis. The characteristic functions of 
galectin‑3 in the TME provide a novel direction for cancer 
immunotherapy in the clinical setting; however, further 
studies are required to elucidate the more comprehensive 
mechanisms underlying the multifaceted biological functions 
of galectin‑3.
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