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Abstract. Ras p21 protein activator 1 (RASA1) is a regu-
lator of Ras GDP and GTP and is involved in numerous 
physiological processes such as angiogenesis, cell prolif-
eration, and apoptosis. As a result, RASA1 also contributes 
to pathological processes in vascular diseases and tumour 

formation. This review focuses on the role of RASA1 in 
multiple tumours types in the lung, intestines, liver, and breast. 
Furthermore, we discuss the potential mechanisms of RASA1 
and its downstream effects through Ras/RAF/MEK/ERK or 
Ras/PI3K/AKT signalling. Moreover, miRNAs are capable 
of regulating RASA1 and could be a novel targeted treatment 
strategy for tumours.
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1. Introduction

Ras p21 protein activator 1 (RASA1) is located on chromo-
some 5q14.3 and is a member of the RasGAP family which 
includes NF1, DAB2IP, and RASAL2 (1). RASA1 contains 
the following domains: Src homology 2 and 3 (SH2 and SH3), 
N‑terminal C2A and C2B, GTPase‑activating protein (GAP), 
and pleckstrin homology (PH), which is attached to a Bruton's 
tyrosine kinase (Btk) motif. RASA1 is a GAP with dual‑speci-
ficity that enhances and accelerates the GTPase activity of Ras 
and Rap. Notably, intracellular Ca2+ levels regulate the GAP 
activity of RASA1. When Ca2+ concentrations are high, the 
C2 domains of Ras and Rap allow for the binding of phospho-
lipids while the PH domain remains inactive and prevents lipid 
binding. RASA1 is normally located in the cytoplasm as a 
soluble protein and is recruited to the plasma membrane upon 
receptor‑mediated increases in intracellular Ca2+ concentra-
tions (2). The RasGAP activity of RASA1 is increased when 
RASA1 associates with the membrane since RasGAP activity 
is limited in the soluble form of RASA1, although the under-
lying mechanism is not known (3). SH2‑pTyr interaction allows 
for RASA1 to interact with p190RhoGAP (p190RhoGAP‑A, 
ARHGAP35), which is a GAP for Rho (4). Due to its special 
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structure, RASA1 is involved in physiological functions such 
as cell growth, proliferation, differentiation, and apoptosis 
(Fig. 1). RASA1 mutation or epigenetic inactivation has been 
revealed in numerous human cancers, which has attracted 
interest for further investigation.

2. RASA1 involvement in physiological processes 

Henkemeyer et al first reported the physiological role of RASA1 
is the regulation of embryonic blood vessel development (5). 
Ephrin type‑B receptor 4 (EPHB4), which is a member of 
the receptor tyrosine kinase family, is a necessary factor for 
RASA1 during angiogenesis and studies have revealed that 
EPHB4 recruitment of RASA1 is required to restore blood 
flow in ischemia‑reflow‑injury in mice (6). RASA1 has been 
revealed to suppress RAS phosphorylation, which prevents 
Ras/MEK1/2/ERK1/2 and PI3K/Akt signalling and leads to 
a decrease in the growth and migratory capacities of vascular 
smooth muscle cells  (7). The microRNA (miR)‑132/212 
cluster directly targets RASA1 and Spred1, which modulates 
Ras‑MAPK signalling and promotes arteriogenesis (8,9). The 
role of RASA1 and CDC42 in the control of endothelial cell 
(EC) tube network assembly has also been studied (10) and it 
has been revealed that RASA1 is essential for the survival of 
EC during developmental angiogenesis (11). Studies in human 
umbilic vein endothelial cells (HUVECs) have revealed 
that miR‑4530 targeted RASA1 through ERK/MAPK and 
PI3K/AKT signalling and resulted in inhibition of prolif-
eration and promotion of apoptosis and that miR‑132 targeted 
RASA1 to promote angiogenesis in a myocardial infarction 
model (12,13).

The inhibition of Ras signal transduction by RASA1 
has been revealed to negatively affect the maintenance of 
lymphatic vasculature by VEGFR‑3 in a steady‑state situa-
tion (14). RASA1 has also been revealed to directly interact 
with mitogen‑activated protein kinase kinase kinase kinase 4 
(MAP4K4) for lymphatic vascular development (15‑17).

RASA1 is necessary for the normal development and func-
tion of T cells and a study has revealed that RASA1‑deficiency 
in mice increased apoptosis of CD4+CD8+ double‑positive 
thymocytes (18). Motility of macrophages and cytoskeletal 
and adhesion structures have been revealed to be modulated 
by RASA1‑mediated translocation of p190RhoGAP (GRLF1) 
induced by BCL6 (19). RASA1 has been discovered to play 
a role in the development of neuron axons  (20), dendritic 
cell differentiation (21), follicular development (22), epidid-
ymal development  (23), skin wound healing  (24,25), and 
stress (26) (Table I).

3. RASA1 involvement in pathological processes

Since RASA1 is a central player of angiogenesis, studies have 
focused on RASA1 mutation or loss‑of‑function in vascular 
diseases such as capillary malformation‑arteriovenous malfor-
mation (CM‑AVM) syndrome, Klippel‑Trenaunay‑Weber 
syndrome (KTWS), Sturgeon‑Weber syndrome (SWS), vein 
of Galen aneurysmal malformation (VGAM), MEF2C‑related 
disorders, and Parkes‑Weber syndrome (PKWS). Atypical 
capillary malformation (CM) is a key characteristic of 
CM‑AVM and is frequently paired with multiple arteriovenous 

malformations (AVMs) and at least one of the following: 
Rapid vascular malformation, arteriovenous fistulas (AVFs), 
parks Weber syndrome (PWS), and hereditary haemorrhagic 
telangiectasia (HHT) (27). CM usually manifests as multi-
focal wine spots on the skin due to inactivating mutations of 
RASA1 in 68% of cases (28). p120RASGAP is encoded by 
RASA1 and directly affects EPHB4, which acts on capillaries, 
leading to HHT and CM (29,30). KTWS may rarely occur in 
the affected limb of patients with cutaneous haemangioma, 
venous varicosity, and hypertrophy of osseous‑soft tissue (31). 
Mutations in RAP1A have been associated with KTWS and 
interact with RASA1 and Krev interaction trapped protein 1 
(KRIT1) (32,33). Patients with SWS harbour vascular malfor-
mations in the face, eyes, and brain due to a mutation in RASA1. 
The underlying mechanism is thought to be Nrf2‑mediated 
oxidative stress, although the causal relationship has not been 
fully elucidated (34,35). VGAM encompasses a rare vascular 
malformation in the brain of children caused by RASA1, 
endoglin, and activin receptor‑like kinase 1 (ACVRL1) muta-
tions, which encode for ALK1 and SMAD4 (36,37). Patients 
with MEF2C‑related disorders are severely intellectually 
impaired and have limited mobility and speech. In addition, 
they show hypotonia, seizures, and multiple minor anomalies 
of the brain. Moreover, RASA1 mutation and a decrease in 
MECP2 and CDKL5 expression have been correlated with 
this disease  (38). PKWS is a rare vascular malformation 
syndrome with extensive capillary malformations that appear 
at birth or during early childhood and patients exhibit muta-
tion of RASA1 that leads to a loss of function (39,40). ENG, 
ACVRL1, and SMAD4 are components of transforming 
growth factor‑beta (TGB‑β) signalling and mutations in these 
genes can cause HHT, which is the most commonly inherited 
vascular disorder. HHT has also been correlated with RASA1, 
BMP9, and GDF2 (32,35,41,42).

Cardiovascular and cerebrovascular diseases bring great 
pressure on countries with an ageing population. A previous 
study has revealed that RASA1 and its associated factors 
and vascular smooth muscle cell dysfunction through angio-
tensin II are central pathways involved in cardiovascular 
diseases. miR‑132 was revealed to prevent CREB activation 
by angiotensin II via RASA1 (43). Myocardial fibrosis is an 
important process of cardiac hypertrophy and heart failure, 
which has been correlated to an upregulation of RASA1 via 
miR‑21 (44,45). Obesity is a risk factor for cardiovascular 
disease and A study has demonstrated that PPARγ/miR‑223 
participates in the deposition of adipocytes by targeting 
RASA1  (46). Another study has linked tricuspid atresia, 
a congenital heart defect with fatal consequences, with 
the homozygous RASA1 germline mutation c.1583A>G 
(p.Tyr528Cys) (47). An animal model of cerebral ischemia has 
revealed that the GAS5/miR‑335/RASA1 axis is regulated to 
inhibit neuron apoptosis and promote neuroprotection (48).

Chronic kidney disease is related to renal fibrosis and 
miR‑132 has been revealed to inhibit the development of 
renal fibrosis by targeting RASA1, leading to reduced prolif-
eration of myofibroblasts (49). A leading cause of blindness is 
age‑related macular degeneration (AMD), where studies have 
revealed abnormal expression of RASA1 in OXYS rats (50). 
Myelodysplastic syndromes (MDS) encompass a group of 
haematopoietic stem cell disorders that are characterised 



ONCOLOGY REPORTS  44:  2386-2396,  20202388

by abnormal myeloid cell differentiation and development, 
ineffective haematopoiesis, refractory hemocytopenia, and 
haemopoietic failure. Notably, it has been revealed that MDS 
is related to RASA1 downregulation (51). In a mouse model for 
CCI‑induced neuropathic pain, intrathecal injection of miR‑144 
mimics reduced the mechanical and thermal pain experienced 
by mice through the downregulation of RASA1 (52) (Table II).

4. RASA1 and cancers

Investigation into changes in genomic DNA and RNA in HL‑60 
cells revealed that RASA1 is related to tumorigenesis (53). The 
Ras‑GAP SH3 domain inhibits Rho‑GAP activity and inhibits 
tumour development (54). RASA1 has also been reported as 
an oncogene through large‑scale tumour sequencing studies 
that are based on 3D mutation clusters in relation to the protein 
structure (55).

In tumour development, mutations of Ras at residues 12, 13, 
or 61 affect the activity of intracellular guanosine triohosphte 
(GTP), which alternates between GDP and GTP forms and 
activates RasGAP proteins and Ras by Ras GTPase, regu-
lating the guanine nucleotide exchange factors (RasGEFs). 
The understanding of RASA1 and its relationship with tumour 
formation is qualitative and is limited to the abnormal expres-
sion of RASA1 and several other genes from the sequencing 

of certain tumours. It has been revealed that abnormal or 
downregulation of RASA1 expression affects tumorigenesis 
and the continued technological development in the field of 
molecular biology allows for more in‑depth research, where it 
has been found that the expression of RASA1 in most tumour 
cells is associated with intracellular miRNA. Furthermore, a 
small portion of tumorigenesis may be due to the coupling of 
RASA1 to its associated protein or gene (56). Nevertheless, 
the role of RASA1 in tumour formation requires further study.

Lung cancer. Lung cancer incidence and deaths continue to 
rise and place high pressure on health care with its high inci-
dence (2.09 million new cases in 2018 vs. 1.8 million in 2012) 
and mortality rate (1.76 million deaths in 2018 vs. 1.6 million 
in 2012) compared with other tumours (57). The occurrence 
of lung cancer has been linked to RASA1 mutations by 
next‑generation sequencing (58,59). Zhu et al revealed that 
hsa‑miR‑182 downregulated RASA1 to suppress proliferation 
of lung squamous cell carcinoma through tissue microarray 
and quantitative PCR (60). Recently, Shi et al demonstrated 
that miR‑30c and miR‑21 were significantly upregulated by 
two KRAS isoforms in small‑cell lung cancer and induced 
drug resistance by inhibiting key tumour suppressor genes 
such as neurofibromatosis type one (NF1), RASA1, BID, and 
RASSF8 (61). Mutations of EGFR result in drug resistance 

Figure 1. RASA1 domain and potential function. The GAP domain at RASA1 C‑terminus functions mainly as a catalyser for GTP. PH is connected to a Btk 
motif that facilitates membrane binding upon C2 interaction with the lipid. SH2 and SH3 domains at the N‑terminal of RASA1 promote protein‑protein 
interactions. RASA1, Ras p21 protein activator 1; PH, pleckstrin homology domain; Bruton's tyrosine kinase; SH2, Src homology 2; SH3, Src homology 3; 
GAP, GTPase‑activating protein; GTP, guanosine triohosphte.

Table I. Role of RASA1 and related factors in various physiological processes.

Various physiological processes	 RASA1 and RASA1‑associated factors 	 (Refs.)

Angiogenesis 	 RASA1, EPHB4, miR‑132/212, cdc42, miR‑4530	 (5‑13)
Lymphangiogenesis	 RASA1,VEGFR‑3, MAP4K4	 (14‑17)
T cell mature	 RASA1	 (18)
Macrophages motility	 RASA1, GRLF1, BCL6	 (19)
Development of neuron axon	 RASA1, miR‑132	 (20)
Dendritic cells differentiation	 RASA1, mmu‑miR‑223‑3p	 (21)
Follicular development	 RASA1, miR‑132	 (22)
Epididymal development	 RASA1, miR‑335	 (23)
Skin damage repair	 RASA1, miR‑132, miR‑31	 (24,25)
Stress	 RASA1, caspase‑3, NF‑κB	 (26)

RASA1, Ras p21 protein activator 1; EPHB4, ephrin type‑B receptor 4; miR, microRNA; MAP4K4, mitogen‑activated protein kinase kinase 
kinase kinase 4.
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and relapse in patients with non‑small cell lung cancer 
(NSCLC)  (62). Furthermore, miR‑31 directly inhibits the 
expression of RASA1 and FIH‑1, leading to at least partial 
activation of Raf/MEK/ERK and PI3K/Akt signalling in 
gefitinib‑resistant NSCLC (63). Kitajima and Barbie classified 
NF1 or RASA1 mutations in small‑cell lung carcinoma and 
proposed the clinical evaluation of MAPK inhibition in an 
analysis of large genomic datasets of NSCLC [MSK‑IMPACT 
dataset at MSKCC (n=2,004) and TCGA combined lung cancer 
dataset (n=1,144)] (64). RASA1 and NF1 mutations are strong 
drivers of NSCLC (65). Fibroblast growth factor receptor‑2 
(FGFR‑2) is a tyrosine kinase receptor, which can selectively 
bind to fibroblast growth factor (FGF) to promote autophos-
phorylation and mediate cell response through downstream 
MAPK and Akt signalling. A previous study has revealed that 
FGFR‑2 mutation is an important driver of lung cancer, which 
has become a key target of lung cancer drug development. In 
an FGFR2‑mutant resistant model, RASA1 was found to be 
inactivated (66).

Colorectal cancer. The incidence of colorectal cancer (CRC) 
is rising and is predicted to increase to 2.5 million new cases 
by 2035 and is ranked third among malignant tumours across 
the world and second in some developing areas  (67,68). 
Colorectal specimens including 468 colorectal tumour samples 
from a large personalised medicine initiative and 17  paired 
primary‑metastatic and 2 metastatic‑metastatic specimens 
from 18  CRC patients were analysed by next‑generation 
sequencing to reveal the presence of RASA1 mutations (69). 
RASA1 expression has been linked to multiple miRNAs in 
colorectal cancer. In vivo, miR‑31 has been revealed to be 
negatively correlated with RASA1 protein level and miR‑31 
was a key player in RAS signalling activation through the inhi-
bition of RASA1 translation, resulting in accelerated growth 
of colorectal cancer cells and stimulation of tumour forma-
tion (70). In rectal cancer cells, expression of miR‑21 reduced 

the expression level of RASA1 resulting in the promotion of cell 
proliferation, anti‑apoptosis, and tumour cell formation (71). 
RASA1 encoding RAS GTPase is one of the target genes that 
is continuously downregulated in cells overexpressing miR‑21 
and upregulated in cells exposed to miR‑21 inhibitors (72). 
These results coincide with a study by Sun et al in which 
upregulation of miR‑223 can be detected in colon cancer cells 
and promotes tumour growth. Conversely, miR‑223 inhibition 
may reduce or halt the growth of solid tumours (73). miR‑335 
has been revealed to inhibit the expression of the RASA1 gene 
by targeting a specific sequence of the 3'UTR of RASA1. Low 
expression of RASA1 has been revealed to promote tumour 
cell development and miR‑335 expression was increased in 
patients with CRC compared with normal mucosa, whereas 
high expression of miR‑335 was significantly associated with 
tumour size and CRC differentiation. miR‑335 overexpression 
in CRC cells was revealed to promote cell proliferation and 
tumour growth in vivo (74). Antoine‑Bertrand et al observed 
an interaction between p120RasGAP and cancer cells in CRC, 
which regulates axonal growth mediated by netrin‑1 and 
guides the development of cortical neurons in embryos (75). 
KRAS mutations are found in 40% of patients with CRC and 
the effective treatment of CRC with late KRAS mutation is 
limited at present (76). RASA1 is as an effector of KRAS 
mutation and may play an important role as a drug treatment 
target (77). However, studies using CRISPR technology have 
described that only loss of NF1 promotes resistance to EGFR 
inhibition (78).

Liver cancer. Primary liver cancer has the seventh‑highest 
incidence (0.84 million new cases in 2018 year) and second 
highest mortality (0.78 million deaths in 2018) worldwide 
(79). China has the highest prevalence owing to an increased 
prevalence of 18.3 per 100,000 and its population of 
1.4 billion (80). Mutations of RASA1 have been found by 
detecting RASA1 and other members of the RasGAP family 

Table II. Role of RASA1 and related factors in various pathologic processes.

Various pathological processes	 RASA1 and RASA1‑associated factors	 (Refs.)

CM‑AVM	 RASA1, EPHB4	 (29,30)
KTWS	 RASA1, KRIT1	 (31,33)
SWS	 RASA1, Nrf2	 (34,35)
VGAM	 RASA1, ACVRL1	 (36,37)
MEF2C‑related disorders	 RASA1, MECP2, CDKL5	 (38)
PKWS	 RASA1	 (39,40)
HHT	 RASA1, EPHB4, ACVRL1, GDF2	 (32,35,41,42)
Cardiovascular and cerebrovascular	 RASA1, miR‑132, miR‑21, miR‑223, 	 (43‑48)
diseases	 GAS5/miR‑335
Chronic renal disease	 RASA1, miR‑132	 (49)
Age‑related macular degeneration	 RASA1	 (50)
Neuropathic pain	 RASA1, miR‑144	 (51,52)

RASA1, Ras p21 protein activator 1; CM‑AVM, capillary malformation‑arteriovenous malformation; KTWS, Klippel‑Trenaunay‑Weber 
syndrome; SWS, Sturgeon‑Weber syndrome; VGAM, vein of Galen aneurysmal malformation; MEF2C‑related disorders, myocyte enhancer 
factor 2C‑related disorders; PKWS, Parkes‑Weber syndrome; HHT, hereditary haemorrhagic telangiectasia; EPHB4, ephrin type‑B receptor 4; 
KRIT, Krev interaction trapped protein 1; ACVRL1, activin receptor‑like kinase 1; miR, microRNA.
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through sequencing of liver cancer tissue genes (81). The 
analysis of RASA1 expression and the prognosis of patients 
revealed that the expression of RASA1 was closely related to 
tumour size and differentiation and that the prognosis was 
poor with low RASA1 expression, indicating that RASA1 
could be a predictive factor for the prognosis of patients 
with liver cancer (82). RASA1 is also regulated by miRNA 
although other potential oncogenes also contribute to the 
development of liver cancer. Increased miR‑31 expression 
and low RASA1 expression have been detected in cells 
and tissues from liver cancer patients. Furthermore, it has 
been confirmed that miR‑31 promotes cellular proliferation 
and inhibits liver cancer cells apoptosis by downregulating 
RASA1 expression (83). When liver cancer cells are exposed 
to a hypoxic environment, a significant increase in miR‑182 
expression occurs, which then promotes angiogenesis via 
RASA1 and leads to proliferation of cancer cells (84). Thus, 
RASA1 levels are related to liver cancer cell proliferation. 
In addition, RASA1 is regulated by pituitary homeobox 1 
(PITX1) and protein tyrosine phosphatase 1B (PTP1B). 
PITX1 has a tumour suppressing function through the 
regulation of RasGAP expression. PITX1 is downregulated 
by PTP1B, which drives proliferation and inhibits apoptosis 
of tumour cells by acting on RASA1 (85). In cells exposed 
to mild stress, RASA1 is cleaved into an N‑terminal frag-
ment (fragment N) by caspase‑3, which potently inhibits the 
activity of NF‑κB by augmenting its translocation to the cyto-
plasm (26). Studies have revealed that liver cancer incidence 
is reduced by the caspase‑3/p120 RasGAP stress‑sensing 
module. However, the overall survival is not affected (26,86).

Breast cancer. Breast cancer is the second leading cause of 
cancer related‑deaths in women (2.08 million new cases and 
0.62 million deaths in 2018) and although the genotyping 
of breast cancers and the subsequent targeted treatment 
significantly improve the curative rate to more than 65%, 
it remains necessary to discover more tumour markers for 
further treatment optimisation (79,87). Some studies have 
shown that the low expression of RASA1 is related to the 
occurrence of breast cancer (88,89). This is consistent with a 
study that demonstrated the presence of 7 genetic mutations 
in breast cancer, which included RASA1 mutations  (90). 
The expression of RASA1 is prevalent in triple‑negative 
breast cancer (TNBC) tumours and tumour cells with low 
estrogenic receptor expression (91). Both docking protein 
2 (Dok2) and RASA1 function as tumour suppressors 
and have been detected in several types of solid tumours. 
Our previous study revealed that a weak Dok2/RASA1 
expression was associated with poorly differentiated breast 
adenocarcinoma. Moreover, a decrease in Dok2 and RASA1 
expression was linked to larger tumour size and a height-
ened chance of metastasis to the axillary lymph node (92). 
RASA1 is also regulated by miRNA and other potential 
oncogenes contribute to the development of breast cancer. 
miR‑206/21 has been revealed to promote the growth of 
hepatoma cells by inhibiting the translation of RASA1 and 
promoting Ras/Erk signal transduction and cell differentia-
tion (92). miR‑421 which targets RASA1, has been revealed 
to inhibit TNBC tumour growth and metastasis (93). As C2 
domains of RASA1 participate in the regulation of calcium 

signalling, L‑type voltage‑gated calcium channel gamma 
subunit 4 (CACNG4) can promote the stability of the internal 
environment of breast cancer cells and improve the survival 
and metastasis ability of tumour cells through alternating 
calcium signalling events and invading key survival and 
metallic pathway genes including RASA1 (94).

Gynaecologic tumours. RASA1 mutation and abnormal 
expression is also regarded as a contributing factor to the 
development of gynaecologic tumours such as cervical and 
ovarian cancer (95,96). The incidence (98,900 new cases in 
2015) of cervical cancer in China has been ranked second 
in the world after Chile with a clear trend towards younger 
age of onset  (97). However, research examining the rela-
tionship between cervical cancer and RASA1 is limited. 
Zhang  et  al revealed that miR‑21 was highly expressed 
in the serum of cervical cancer patients compared with 
healthy control subjects. In addition, the cervical cancer 
cell lines HeLa and HT‑3 were used and it was revealed that 
miR‑21 decreased the expression of RASA1, which led to 
increased cell proliferation and migration via Ras‑induced 
epithelial‑mesenchymal transition (95). In the development 
of ovarian cancer, the circular RNA circ‑ITCH was revealed 
to extensively inhibit the viability and motility of ovarian 
cancer cell lines SK‑OV‑3 and Caov‑3 and dampens tumori-
genesis in xenografted NOD mice by upregulating RASA1 
expression (96).

Leukaemia. Leukaemia (0.43 million new cases and 
0.31 million deaths in 2018) is the most common type of cancer 
in children and young adults, highlighting the importance of 
discovering novel tumour markers for early diagnosis (79). 
Scans at DNA and RNA levels using microarray technology 
in HL‑60 cells have demonstrated that RASA1 is a candidate 
cancer‑related gene (53). Lubeck et al confirmed that a lack of 
RasGAP alone in T cells in RASA1 and NF1 double‑deficient 
mice leads to the development of T cell acute lymphoblastic 
leukaemia/lymphoma (98). Falconi et al revealed that RASA1 
was downregulated and inhibited MSC clone formation in 
acute myeloid leukaemia patients  (51). RASA1 has been 
revealed to be regulated by miR‑223 although the mechanism 
in leukaemia requires further research (99).

Oral squamous cell carcinomas (OSCCs). OSCCs are a group 
of aggressive tumours known for their rapid spread to the 
lymph nodes and a high treatment failure rate. In addition, 
the incidence rate of OSCC is increasing (incidence increase 
ranging from 0.4  to  3.3% per year) among young people 
below the age of 50 (100). By sequencing the entire genome of 
50 paired primary tumours of the tongue and 120 OSCC from 
male individuals in Taiwan, it has been revealed that RASA1 
variants are related to cigarette smoking, betel nut chewing, 
human papillomavirus infection, and tumour stage (101,102). 
The development of betel quid chewing‑associated tongue 
carcinomas has been revealed to be related to mutations in 
RASA1 and CpG islands (103). The expression of miR‑182 
in OTSCC was revealed to be significantly upregulated, and 
negatively correlated with RASA1 levels, suggesting that the 
miR‑182/RASA1 axis is a potential target for the treatment of 
OSCC (104).
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Other cancers. While pancreatic cancer is not as common as 
other tumours, the outcome is markedly poor (105). In pancre-
atic cancer, several gene mutations including RASA1 are more 
pronounced (106). Kent et al reported that the expression of 
RASA1 was decreased in pancreatic cancer cells and further 
study revealed that RNAi knockdown of RASA1 significantly 
enhanced the progression of pancreatic cancer for both 
Capan‑1 and MiaPaCa2 cell lines consistent with the miR‑31 
overexpression phenotype (107).

Prostate cancer incidence is high in Europe and North 
America with ~0.45 million and 0.23 million new cases in 
2018, respectively (108). RASA1 has been discovered to be 
a potential target gene for advanced drug‑resistant recurrent 
prostate cancer by whole transcriptome sequencing (109). In 
a genome‑wide association study that included 12,518 cases 
of prostate cancer, RASA1 was revealed to be associated with 
aggressive prostate cancer while it exhibited no association 
with nonaggressive prostate cancer (110).

Melanoma samples in patients with metastatic disease 
often exhibit a loss of RASA1 expression and low RASA1 
mRNA has been linked to a decrease in overall survival in 
patients with BRAF‑mutated melanoma (111,112).

In thyroid or gastroenteropancreatic neuroendocrine 
tumours, the relationship between BRAF and multiple gene 
mutations including RASA1 has been documented (113,114). 
Kidney cancer has many subtypes with a clear increasing 
trend in the incidence in the United States. A similar rise 
in incidence is also seen in Chinese men. In renal clear 
cell carcinoma, QKI‑5‑stable RASA1 mRNA has been 
found to directly bind to the reactive elemental region of 

RASA1 QKI and subsequently prevents the activation of the 
RAS‑MAPK signalling, leading to inhibition of cell growth 
and inducing cell cycle arrest (115). Another study revealed 
that RASA1 may play a key role in the progression of RCC 
by decreasing miR‑223‑3p and subsequently increasing 
F‑box/WD repeat‑containing protein 7 (FBXW7) expres-
sion (116).

Gastric cancer (GC) is ranked third in mortality among all 
cancers (79). The incidence of gastric cancer in China is more 
pronounced in rural areas and is one of the primary malignant 
tumours which accounts for a marked 42.5% of worldwide 
GC cases and 45.0% of worldwide deaths that endanger public 
health (117). Mutations in RASA1 are also present in gastric 
cancer. Li et al revealed that low miR‑335 expression acceler-
ated the invasion and metastasis of cancer cells. Furthermore, 
miR‑335 can be silenced by promoter hypermethylation and 
is heavily involved in metastatic gastric cancer through its 
target genes such as RASA1 (118). In oesophageal squamous 
cell carcinoma cells (ESCC), high expression of miR‑21 
was revealed to significantly downregulate the expression 
of RASA1 (119). Mutation or aberrant expression of RASA1 
has also been revealed to be related to the development of 
cutaneous squamous cell carcinoma and sarcoma (120,121). 
RASA1 and related factors in various cancers are presented 
in Table III.

5. Potential mechanism of RASA1 and tumorigenesis

Ras can be activated by inhibiting RasGAPs and increases 
tumour development risk (122). In this review, we revealed 

Table III. RASA1 with multiple gene proteins and related cancers.

Cancers	 RASA1 associated gene or protein	 (Refs.)

Lung cancer	 RASA1, hsa‑miR‑182, miR‑31, miR‑30c, miR‑21, NF1	 (58‑66)
Colorectal cancer 	 RASA1, miR‑31, miR‑21, miR‑335, miR‑223, K‑RAS, 	 (69‑78)
	 Netrin‑1, NF1
Liver cancer 	 RASA1, miR‑31, miR‑182, PITX1, caspase‑3	 (26,81‑86)
Breast cancer 	 RASA1, miR‑206/21, miR‑421, CACNG4	 (88‑94)
Gynecologic tumors	 RASA1, miR‑21, circ‑ITCH, miR‑145	 (94,96)
Leukemia	 RASA1, miR‑223	 (51,53,98,99)
Oral tongue squamous cell	 RASA1, miR‑182	 (101‑104)
carcinomas
Pancreatic cancer 	 RASA1, miR‑31	 (106,107)
Prostate cancer	 RASA1	 (109,110)
Melanoma	 RASA1, hsa‑miR‑223, hsa‑miR‑23b	 (111,112)
Thyroid cancer	 RASA1, BRAF	 (113,114)
Renal clear cell carcinoma	 RASA1, QKI‑5, miR‑223‑3p	 (115,116)
Gastric cancer	 RASA1, miR‑335	 (118)
Esophageal cancer	 RASA1, miR‑21	 (119)
Cutaneous squamous cell	 RASA1	 (120)
carcinoma
Sarcoma	 RASA1, BRAF	 (121)

RASA1, Ras p21 protein activator 1; miR, microRNA; NF1, neurofibromatosis type one; PITX1, pituitary homeobox 1; CACNG4, calcium 
channel gamma subunit 4.
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that mutations or aberrant expression of RASA1 are present 
in almost all cancers and tumour cells and that during the 
development of tumours, Ras/Raf/MEK/ERK play a central 
role (59,78,104). This signalling pathway is connected by 
small GTP protein‑membrane binding ligands that initiate 
a cascade of receptor tyrosine kinases and cytoplasmic 
proteins. The first protein kinase RAF in the RAS recruitment 
cascade is activated after GTP binding on the cell membrane 
through a series of complex processes including changing 
the phosphorylation state of the protein and binding with the 
skeleton protein and other kinases. The activated Raf kinase 
continues to phosphorylate and activate MAPKK protein 
kinase MEK1/2 and finally phosphorylates and activates 
ERK1/2, inducing abnormal proliferation, invasion, growth, 
and distant metastasis of malignant tumours  (75,123). In 
addition, loss of RASA1 function can enhance RAS‑ERK 
signal amplification (66,78). PI3K/AKT have been described 
as key regulators of cell proliferation and differentiation 
and are involved in tumour cell proliferation, invasion, 
and metastasis  (124). Some studies have revealed that 
aberrant RASA1 expression activates PI3K/AKT signal-
ling  (51,63,64). Moreover, numerous miRNAs have been 
revealed to regulate RASA1 expression in several cancers 
such as lung, colorectal, hepatocellular, and triple‑negative 
breast cancers (60,70,83,91). The miRNA/RASA1 axis is an 
attractive target for tumour treatment and its effectiveness 
has been demonstrated in numerous studies (60,70,71,83,92). 
miRNAs are capable of regulating RASA1 and could be a 
novel targeted treatment strategy for tumours. Numerous 
miRNAs have been revealed to be involved in different 
cancers, such as miR‑21 in lung cancer, and thus these 
miRNAs should be focused on as targeted treatments (125). 
Various genes or proteins such as RASA1 have fundamental 

roles at normal levels, however an imbalance of these genes 
or proteins has been revealed to result in disease or tumors, 
therefore, targeted therapies such as oncolytic viruses can 
correct local discordance and treat tumors without affecting 
overall function (Fig. 2).

6. Conclusion

Although RASA1 primarily participates in angiogenesis 
and vascular‑related diseases, whole‑genome sequencing 
confirmed the importance of RASA1 in tumorigenesis, inva-
sion, metastasis, and drug resistance (120). RASA1 was first 
reported in blood vessel development or angiogensis and its 
other functions including antitumor have been gradually 
revealed, RASA1 play the similar role in physiological process 
such as angiogenesis, vascular‑related diseases or cancers, 
only the outcome are not same. Normal or balanced expression 
levels of RASA1 promote normal blood vessel development; 
aberrant or imbalanced RASA1 expression levels result 
vascular‑related diseases such as CM‑AVM or KTWS (40,126). 
RASA1 has more than one mechanism of action in the devel-
opment of cancers. In some cancers, the role of RASA1 is 
more profound and precise (127). From these pathways, we 
can conduct genetic screening or testing, including RASA1 
testing in serum, before the cancer fully develops to achieve 
early detection and prevention of cancer. Furthermore, these 
findings may lead to the development of novel drugs that halt 
cancer progression by blocking the pathways it uses for growth 
and dissemination. In addition, RASA1 also serves as a good 
reference for the prognosis of cancer after surgery and treat-
ment. Therefore, for some cancers with a less clear mechanism 
of action, the aberrant expression of RASA1 may be used to 
advance cancer treatment strategies.

Figure 2. The potential role of RASA1 in tumorigenesis. RASA1 encodes p120RasGAP, which inhibits signal transduction by activating Ras p21, and intrinsic 
GTPase inhibits Ras‑GTP. miRs inhibit RASA1 and it subsequently loses its ability to regulate Ras, leading to activation of the MAPK/MEK/ERK or 
PI3K/AKT pathways involved in abnormal cell proliferation. RASA1, Ras p21 protein activator 1; miR, microRNA.
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