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Abstract. Ferroptosis, a relatively recently discovered type of 
cell death that is iron dependent and nonapoptotic, is involved 
in the accumulation of lipid reactive oxygen species (ROS), 
and has been shown to serve a vital role in various pathological 
processes, including those underlying neurodegeneration, isch-
emic reperfusion injury, acute organ injury, and in particular, 
tumor biology. Emerging evidence has highlighted the roles of 
ferroptosis in the development and resistance to chemoradio-
therapy in cancer. Recently, an increasing number of studies 

have shown that non-coding RNAs modulate the process of 
ferroptotic cell death, and this has further highlighted the 
potential of regulation of ferroptosis as a means of cancer 
management. Although these studies have highlighted the 
critical role of ferroptosis in cancer therapeutics, the roles of 
ferroptosis induced by non-coding RNAs in cancer develop-
ment remain unclear. Herein, the current body of knowledge 
of ferroptosis in cancer is summarized and an overview of the 
mechanisms of ferroptosis and the functions of non-coding 
RNAs in regulating ferroptotic cell death are discussed. The 
future status of ferroptosis in cancer management is deliber-
ated and strategies for treatment of therapy-resistant cancers 
are discussed.
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1. Introduction

Ferroptosis, a novel form of regulated cell death (RCD), first 
proposed by Dixon et al (1) in 2012 and is characterized by 
the overwhelming iron-dependent accumulation of lethal lipid 
reactive oxygen species (ROS). The morphological hallmarks 
of ferroptotic death are a reduction or loss of mitochondrial 
cristae (1), condensation of the mitochondrial membrane (2) 
and rupture of the outer mitochondrial membrane (3). An 
initial characterization of ferroptotic biochemical demon-
strated that cysteine depletion or inactivation of glutathione 
peroxidase 4 (GPX4) activity, which causes exhaustion of the 
intracellular pool of glutathione (GSH), iron accumulation 
and lipid peroxidation, specifically triggers this form of cell 
death (4). The genetic features of ferroptosis shows that it 
primarily dysregulates ferroptotic molecular on antioxidant 

Regulation of ferroptosis by non‑coding RNAs in the 
development and treatment of cancer (Review)

YAJUN LUO1,2*,  QINGMEI HUANG3*,  BIN HE4,  YILEI LIU2,  SIQI HUANG1  and  JIANGWEI XIAO2

1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University,  
Chongqing 400042; 2Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College,  

Chengdu, Sichuan 610513; 3Department of Oncology, The Affiliated Hospital of North Sichuan Medical College,  
Nanchong, Sichuan 637000; 4Department of Orthopedics, The First Affiliated Hospital of  

Chongqing Medical University, Chongqing 400042, P.R. China

Received May 12, 2020;  Accepted October 5, 2020

DOI: 10.3892/or.2020.7836

Correspondence to: Professor Jiangwei Xiao, The Department 
of Gastrointestinal Surgery, The key discipline of Sichuan Medical 
Science, The First Affiliated Hospital of Chengdu Medical College, 
278 Baoguang Road, Xindu, Chengdu, Sichuan 610513, P.R. China
E-mail: xiaojiangwei@126.com

*Contributed equally

Abbreviations: RCD, regulated cell death; ROS, reactive oxygen 
species; PUFAs, polyunsaturated fatty acids; GSH, glutathione; GPX4, 
glutathione peroxidase 4; ncRNAs, non‑coding RNAs; miRNA, 
microRNA; lncRNA, long non‑coding RNA; circRNA, circular RNA; 
Fe2+, ferrous iron; Fe3+, ferric iron; TfR1, Transferrin receptor 1; TF, 
Transferrin; STEAP3, six transmembrane epithelial antigen of the 
prostate 3; IREs, iron‑responsive elements; DMT1, divalent metal 
transporter 1; IRPs, iron‑regulatory proteins; FPN‑1, ferroportin 1; 
FTH1, ferritin heavy chain 1; TFRC, transferrin receptor; FTH, ferritin; 
FTL, ferritin light polypeptide; HSPB1, heat‑shock 27‑kDa protein 1; 
LOXs, lipoxygenases; ACSL4, acyl‑CoA synthetase long‑chain family 
member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3; CS, 
citrate synthase; IREB2, iron response element binding protein 2; 
SCD1, stearoyl‑CoA desaturase 1; AA, arachidonic acid; system 
xc‑, cystine/glutamate transporter; Nrf2, nuclear factor erythroid 
2‑related factor 2; Keap1, kelch‑like ECH‑associated protein 1; 
GOT1, glutamic‑oxaloacetic transaminase 1; CRR, clinically relevant 
radioresistant; ATF4, activation of transcription factor 4

Key words: ferroptosis, iron metabolism, lipid reactive oxygen 
species, non-coding RNAs, cancer therapeutics



LUO et al:  NON-CODING RNAs IN FERROPTOSIS30

metabolism, iron and lipid metabolism, such as SLC7A11, 
GPX4, TfR1, ACSL4, which are involved in the initiation of 
ferroptosis (5-7). As shown in Table I, there are no forms of 
morphological, biochemical, or genetic crosstalk between 
ferroptosis and other types of RCD, including apoptosis, 
autosis, pyroptosis, autophagy, necroptosis and various other 
forms of RCD.

As a cellular process, ferroptosis can be triggered by various 
pathological conditions in humans and animals (4,8-10). 
Notably, emerging evidence has indicated that ferroptosis 
likely prevents tumorigenesis, such as gastric cancer (11), 
non-small-cell lung carcinoma (12), glioblastoma (13) and 
colorectal cancer (14). Ferroptosis is now accepted as an 
adaptive process in biological systems that acts as a tumor 
suppressive mechanism to eradicate the malignant cells, but 
the activation of oxidative stress pathways when metabolism is 
dysregulated leads to tumorigenesis (15). Interestingly, recent 
evidence has suggested that non-coding RNAs (ncRNAs), 
particularly micro RNAs (miRNAs/miRs), long non-coding 
RNAs (lncRNAs) and circular RNAs (circRNAs), serve vital 
roles in regulating ferroptosis (16). These ncRNAs are involved 
in iron metabolism, ROS metabolism and ferroptosis-related 
amino-acid metabolism, which regulates the process of 
ferroptosis initiation (17). Of particular interest, the accu-
mulation of abundant lipid ROS in cells is the most critical 
factor for triggering ferroptosis (18). Conversely, ncRNAs can 
directly or indirectly regulating lipid ROS-related molecules 
to maintain redox dynamics during periods of high levels of 
ROS generation, and work to reduce ROS levels below toxic 
thresholds, which allows tumor cells to exhibit tolerances to 
relatively high levels of cellular ROS and avoids initiating 
ferroptosis (19). A moderate increase in cellular ROS levels 
promotes cell proliferation, survival and malignant transfor-
mation (19). These findings highlight the potential targets for 
anticancer treatments via genetic or pharmacological interfer-
ence in ncRNA-regulated ferroptotic cell death. In the present 
review, the primary mechanism of ferroptosis initiation and 
the involvement of ncRNAs in ferroptosis in various types 
of cancer cells is summarized, with the aim of highlighting 
potentially novel strategies for personalized cancer treatment.

2. Mechanism of ferroptosis

Iron metabolism. Iron is an essential nutrient, as it is neces-
sary for the maintenance of cellular metabolism and all several 
important physiological activities, such as oxygen transport, 
DNA synthesis and ATP production (20). As iron is ubiqui-
tously present, cellular iron homeostasis is a complex and 
tightly regulated process though the acquisition, utilization, 
storage and recycling of iron (5). The cellular iron balance is 
maintained through the redox cycle and iron intake (Fig. 1). 
The cellular iron redox cycle is primarily dependent on the 
Fenton reaction (21). In the cellular Fenton reaction, ferrous 
iron (Fe2+) is oxidized to ferric iron (Fe3+) during the conver-
sion of H2O2 into reactive hydroxyl radicals; conversely, Fe3+ 
is then reduced back to Fe2+ through superoxide radicals (22). 
In of iron intake, transferrin receptor 1 (TfR1) is expressed on 
the surface of the majority of cells, where it primarily takes up 
transferrin (TF)-bound iron into cells. The TfR1/TF-(Fe3+)2 
complex is endocytosed (23), and Fe3+ is released from TF (24), 

reduced to Fe2+ by ferric reductase six-transmembrane epithe-
lial antigen of the prostate 3 (STEAP3), and then transported 
across the endosomal membrane by divalent metal trans-
porter 1 (DMT1) (25).

The imported cellular iron enters the transient cytosolic 
labile iron pool, a pool of chelatable and redox-active iron (26), 
which is utilized by cells for various metabolic processes or 
stored in ferritin (27). Excess cellular iron is exported out of the 
cell and transported into circulation by ferroportin 1 (FPN-1), 
after which it is oxidized by the ferroxidase-ceruloplasmin 
and binds to serum TF (28). Furthermore, cellular iron balance 
is also regulated by a network of iron-dependent proteins: 
The iron-responsive elements (IREs) and iron-regulatory 
proteins (IRPs). IRPs are cytosolic proteins that regulate the 
expression of genes involved in iron import (TfR1, DMT1), 
storage [ferritin (FTH), FTH1 and FTL] and export (FPN-1) 
by binding IREs (29).

Iron metabolism is an indispensable component of ferrop-
tosis that distinguishes it from other types of RCD. Iron can 
gain and lose electrons, rendering it capable of contributing to 
free radical formation. When cellular iron is overloaded, the 
free radicals accumulate aberrantly, causing increased produc-
tion of ROS. This effect leads to oxidative stress, which results 
in ferroptotic cell death (30). However, dysregulation of iron 
metabolism also serves an active role in carcinogenesis and 
promotes tumor growth (5,31).

TfR1 is a major regulator of intracellular iron uptake, and 
researchers found that abnormal accumulation of TfR1 on the 
cell surface is a specific marker of ferroptosis (32). In hepatocel-
lular carcinoma, TfR1 and FTH1 are upregulated in erastin and 
sorafenib induced ferroptotic cell death (33), and TfR1 is also 
upregulated in erastin-induced cell death in myeloid leukemia 
cell lines (34). Furthermore, in Calu-1 lung cancer cells and 
HT‑1080 fibrosarcoma cells, IRE‑binding protein 2 (IREB2) is 
an essential gene for erastin-induced ferroptosis by regulating 
TFRC, FTH1 and FTL (1). Furthermore, several studies have 
suggested that inhibition of DMT1 may prevent iron transloca-
tion, leading to lysosomal iron overload, ROS production and 
ferroptotic cell death in cancer stem cells (35), and sulfasala-
zine induced ferroptosis is reduced by the inhibitory effect 
of estrogen receptor on TFRC and DMT1 in breast cancer 
cells (36). Artemisinin compounds sensitize cancer cells to 
ferroptosis by regulating IRP/IRE-controlled iron homeo-
stasis (37). Therefore, targeting iron metabolic pathways may 
offer novel therapeutic options for cancer therapy.

Lipid metabolism. Fatty acid (FA) metabolism provides 
specific lipid precursors for energy storage, membrane 
biosynthesis, generation of signaling molecules and lipid 
oxidation that result in an accumulation of an abundance of 
lipid ROS (38). Although ferroptosis is induced by multiple 
stimuli, the accumulation of abundant lipid ROS in cells 
is the most critical factor causing ferroptotic cell death. In 
addition to iron-generated ROS production via the Fenton 
reaction, ROS from lipid oxidation appears to serve a role in 
ferroptosis (Fig. 1). Therefore, lipid peroxidation is crucial for 
induction of ferroptosis.

In the process of lipid metabolism, arachidonic acid (AA), 
a fatty acid substrate, is activated by acyl-CoA synthetase 
long-chain family member 4 (ACSL4) to produce AA-CoA, 
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and then AA‑CoA is esterified by lysophosphatidylcholine 
acyltransferase 3 (LPCAT3) to phosphatidyl-(PE)-AA (39). 
PE-AA is oxidized to cytotoxic PE-AA-OOH by lipoxy-
genases (LOXs) that are activated during catalysis of 
Fe2+ (40). Under physiological conditions, glutathione 
peroxidase 4 (GPX4) reduces cytotoxic PE-AA-OOH 
to non-cytotoxic PE-AA-OH, which protects cells from 
oxidative damage. When GPX4 is inactivated or depleted, 
PE-AA-OOH accumulates in the cell, and this induces 
ferroptosis (40). Thus, lipid peroxidation accounts for a large 
proportion of ferroptosis initiation.

ACSL4 is a key enzyme involved in the synthesis of long 
chain unsaturated fatty acids. ACSL4 was found to sensitize 
RSL3-induced ferroptosis through altering the cellular lipid 
composition (8). In hepatocellular carcinoma patients who had 
complete or partial responses to sorafenib-induced ferrop-
tosis, and had higher ACSL4 expression in the pretreated 
tumor tissues than those who did not respond, ACSL4 was 
a predictive biomarker for sensitivity of sorafenib in hepato-
cellular carcinoma (41). Consistently, ACSL4 suppresses the 
proliferation of tumor cells through activation of ferroptosis 
in glioma cells (42). Furthermore, a CRISPR-based genetic 
screen identified ACSL4 and LPCAT3 as promoting of 
RSL3- and DPI7-induced ferroptosis, but they did not affect 
erastin-induced ferroptosis (39). Several studies have supported 
the conclusion that PUFAs can be oxidized, producing the 
lipid peroxides that promote the induction of ferroptosis (43). 
Therefore, targeting the lipid metabolism pathway may also be 
a novel means of tumor therapy.

Antioxidant metabolism. GSH, a thiol-containing tripeptide, is 
a potent antioxidant whose synthesis is limited by the constant 
import of cysteine and the availability of cystine/cysteine. 
The system Xc- antiporter is a cystine/glutamate transporter 
that takes up extracellular cystine in exchange for intracellular 
glutamate (44). SLC7A11, expressed at the cell surface, is a 
regulatory light chain component of the system Xc- transporter 
and is essential for cystine cellular uptake and serves a role 
in intracellular GSH synthesis (19). Once imported into cells, 
intracellular cystine is reduced to cysteine, a precursor of GSH 
used in GSH biosynthesis. GPX4, a central mediator of ferrop-
tosis, which has phospholipid peroxidase activity, catalyzes 
the reduction of lipid peroxides to lipid alcohols using GSH as 
an essential co-factor, thus preventing cells from undergoing 
too much lipid peroxidation (45). Blockade of a member of the 
system Xc- antiporter, SLC7A11, and inhibition of GPX4 were 
shown to induce ferroptosis (1). Both interventions impaired 
cellular antioxidant defenses, thereby facilitating toxic ROS 
accumulation, suggesting antioxidant pathways as potential 
regulators of ferroptosis.

Erastin, a RAS-selective lethal compound, triggers ferrop-
tosis by directly inhibiting system Xc- activity to reduce GSH 
levels in cancer cells (1,2). Similarly, sulfasalazine, a drug 
used to treat chronic inflammation, also triggers ferroptosis 
through directly inhibiting SLC7A11 activity (46). Similar to 
the above two compounds, p53, a well-characterized tumor 
suppressor, was also shown to sensitize cells to ferroptosis 
through the repression of SLC7A11 (47,48). Furthermore, the 
tumor suppressor BRCA1-associated protein 1 suppresses 

Figure 1. Overview of the mechanism of ferroptotic cell death. Fe3+ is loaded into the circulating apo-Tf, forming a TfR1-Tf-(Fe3+)2 complex, which is endocy-
tosed by TfR1, and iron is released from TF at same time. Fe3+ is reduced to Fe2+ by the ferric reductase STEAP3, and Fe2+ is then transported to the cytosol by 
DMT1, where it enters the cytosolic LIP for various metabolic needs. Excess iron is effluxed into circulation by FPN‑1 and an associated ferroxidase, which 
causes the production of ROS, in‑turn initiating ferroptosis. Lipid metabolism: Fatty acids are activated (ACSL4) and esterified (LPCAT3) into PL‑PUFAs, 
then LOXs catalyze the dioxygenation of PL-PUFAs and generate PL-PUFAs-OOH. Lipid-OOHs are regulated by the balance of GPX4 activity. An excess 
of PUFAs enhances generation of ROS and toxic lipid peroxides and simultaneously decreases GPX4 activity, which initiates ferroptosis. Ferroptosis-related 
amino-acid metabolism: System Xc- imports cystine in exchange for glutamate, which is reduced to cysteine and used to synthesize GSH, a necessary cofactor 
of GPX4 for eliminating ROS. GSH is an antioxidant particularly important in protecting cells from ferroptosis. TfR1, Transferrin receptor 1; TF, Transferrin; 
LIP, labile iron pool; DMT1, divalent metal transporter 1; GPX4, glutathione peroxidase 4; STEAP3, six transmembrane epithelial antigen of the prostate 3; 
FPN‑1, ferroportin 1; ROS, reactive oxygen species; PUFA, polyunsaturated fatty acids; LOXs, lipoxygenases; GSH, glutathione.
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SLC7A11 transcription by decreasing H2Aub, leading to 
elevated lipid peroxidation and thus, increased ferroptosis (49). 
kelch‑like ECH‑associated protein 1 (Keap1) can also suppress 
the expression of SLC7A11 through degrading the transcrip-
tion factor nuclear factor erythroid 2-related factor 2 (Nrf2), 
which is a master transcription factor of the antioxidant 
response (50). Another molecular mechanism of ferroptosis 
is the direct suppression of GPX4 by promoting its degrada-
tion or the loss of its activity. GPX4 was identified as a target 
protein of the classical ferroptosis inducer RSL3 (51), which 
directly binds to GPX4 to inactivate the peroxidase activity of 
GPX4 and induce ferroptosis (52). Several ferroptosis inducers 
directly inhibit GPX4 function including DPI7, DPI10, DPI12, 
DPI13, DPI17, DPI18, DPI19 and ML162 (52,53), and several 
ferroptosis inducers have an indirect effect on GPX4 function, 
including SRS13-45 (46), SRS13-60 (46), buthionine (54), 
sulfoximine (52), DPI2 (52), lanperisone (55), sorafenib (56) 
and erastin derivatives (52). Taken together, these studies show 
that the SLC7A11-GSH-GPX4 axis primarily mediates the 
initiation of ferroptosis, and that GPX4 serves a central role in 
regulating ferroptosis.

3. Role of ncRNAs in ferroptosis and cancer development

Well-established regulatory mechanisms that regulate changes 
in iron and ROS metabolism in cancer have recently been 
identified. ncRNAs are being increasingly recognized as vital 
regulatory mediators of ferroptosis.

miRNAs in ferroptosis. A set of miRNAs that post-transcrip-
tionally regulate gene expression by RNA silencing have been 
demonstrated to be involved in the regulation of iron and ROS 
metabolism. The levels of these miRNAs are directly or indi-
rectly correlated with ferroptosis.

As shown in Table II, miRNAs can participate in the 
ferroptotic process. In A375 and G-361 melanoma cell lines, 
miR-9 directly suppresses glutamic-oxaloacetic transami-
nase 1 (GOT1) by binding to its 3'‑UTR, which subsequently 
inhibited erastin- and RSL3-induced ferroptosis (57). In A549 
and SPC-A-1 lung cancer cell lines, miR-6852 regulates the 
expression of cystathionine-β-synthase (CBS), a surrogate 
marker of ferroptosis, by competing for LINC00336, which 
increases the intracellular concentrations of iron, lipid ROS 
and mitochondrial superoxide and decreases the mitochon-
drial membrane potential (58). Another study showed that 
miR-137 suppressed erastin- and RSL3-induced ferroptosis 
through directly targeting the glutamine transporter SLC1A5 
in melanoma (58). In the STKM2, MKN45 and OE33 gastric 
cancer cell lines, miR‑4715‑3p inhibited AURKA expression 
by directly targeting its 3'-UTR, leading to downregulation 
of expression of GPX4. Therefore, depletion of miR-4715-3p 
promoted ferroptotic cell death by inhibiting GPX4 (60). 
In MGC‑803, MKN‑45 and other gastric cancer cell lines, 
miR-103a-3p directly suppressed glutaminase 2 expression, 
promoting physcion 8-O-β-glucopyranoside-induced ferrop-
tosis by increasing intracellular Fe2+ and ROS levels (61). 
miR-7-5p expression was shown to be upregulated in clinically 
relevant radioresistant (CRR) cells, and increased miR-7-5p 
levels could decrease mitoferrin levels and thus reduce Fe2+, 
causing CRR cells to suppress ferroptosis (62). miR‑K12‑11 

was found to suppress BACH-1 to induce SLC7A11 expres-
sion, leading to Kaposi's sarcoma‑associated herpesvirus 
dissemination and persistence in an environment of oxidative 
stress via inhibition of ferroptosis (63). In endothelial cells, 
miR-17-92 directly suppressed the expression of ACSL4 
by directly targeting A20, protecting endothelial cells from 
erastin-induced ferroptosis (64). In HepG2 and Hep3B cells, 
erastin enhanced the activation of transcription factor 4 (ATF4), 
whereas overexpression of miR-214-3p could sensitized cells to 
erastin-induced ferroptosis by directly suppressing the expres-
sion of ATF4 (65). miR-761 expression is downregulated in 
glioma, whereas overexpression of miR-761 confers resistance 
to erastin-induced ferroptosis by directly repressing integrin 
subunit β8 expression in LN229 and U251 cells (66).

lncRNAs and circRNAs in ferroptosis. lncRNAs are a class 
of non-coding RNAs >200 nucleotides in length that func-
tion to regulate gene expression by epigenetic, transcriptional 
and translational modulation. lncRNAs have been implicated 
in various biological processes. Recent studies have shown 
dysregulation of several lncRNAs is also involved in the 
ferroptotic process (Table II).

lncRNA P53RRA is downregulated in lung cancer and 
acts as a tumor suppressor. In the cytoplasm, P53RRA inter-
acts with G3BP1 to activate the p53 signaling pathway, which 
in-turn promotes erastin-induced ferroptosis by increasing 
lipid ROS and altering the iron concentration (67). lncRNA 
LINC00336 is upregulated in lung cancer and functions as 
an oncogene. LINC00336 competes with miR-6852 for CBS, 
inhibiting ferroptosis by decreasing iron concentrations, ROS 
and mitochondrial superoxide levels, as well as the mitochon-
drial membrane potential (58). lncRNA GABPB1-AS1 is an 
antisense lncRNA of GABPB1 that downregulates GABPB1 
levels by blocking GABPB1 translation, leading to perox-
iredoxin-5 peroxidase suppression and increased lipid ROS 
concentrations, ultimately promoting erastin-induced ferrop-
tosis (68).

CircRNAs are class of non-coding RNA characterized by 
a covalently closed loop structure leaving no free ends and 
have been demonstrated to be involved in tumorigenesis. 
CircTTBK2 is upregulated in glioma and functions as a 
master regulator of CPEB4 by sponging miR‑217. Knockdown 
of circTTBK2 promoted erastin‑induced ferroptosis accom-
panied with an increase in the intracellular concentrations of 
ROS, iron and ferrous iron by competing with miR-217 for 
CBS in glioma cells (66).

NcRNA related modulators of ferroptosis. Iron metabolism 
(Table III), lipid metabolism (Table IV) and antioxidant 
metabolism (Table V) are basic functions in the ferroptotic 
process, and they serve a vital role in ferroptosis. The primary 
modulators of iron, lipid and antioxidant metabolism-related 
genes are also involved in regulating the process of ferroptosis 
and act as ferroptotic markers. Therefore, these metabo-
lism-related ncRNAs may also be involved in regulating the 
process of ferroptosis.

Iron metabolism. Previous studies have demonstrated that 
cellular iron overload causes ferroptosis. TfR1 is a critical 
transporter involved in iron uptake and a specific ferroptosis 
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marker, which imports Tf-iron from the extracellular environ-
ment into cells, contributing to the cellular iron pool required 
for ferroptosis (32). miR-320 (69), miR-107 (70), miR-148a (71), 
miR-7-5p/miR-141-3p (72), miR-152 (73) and miR-210 (74) are 
all involved in suppression of TfR1 by directly targeting TfR1. 
Therefore, it has been reasonably shown that these miRNAs 
can suppress ferroptosis by targeting TfR1.

FTH1, a major intracellular iron storage protein, is an iron 
regulators involved in iron storage. Expression levels of FTH1 
are regulated by oncogenic RAS signaling, which controls the 
cellular iron pool and ferroptosis sensitivity in tumor cells (51). 

FTH1 is regulated by NRF2 in ferroptosis, knockdown of FTH1 
enhances erastin or sorafenib-induced ferroptosis sensitivity in 
hepatocellular carcinoma, suggesting that reduced iron storage 
may contribute to cellular iron overload causing ferroptosis and 
that FTH1 may serve as a specific marker of ferroptosis marker 
as well (54). miR-200b is involved in the repression of FTH1 
by directly targeting FTH1, which transforms H2O2 and O2 into 
the reactive •OH radical, thus inducing tumor cell death (75). 
Oncogenic miR-638 and miR-362 have been identified as 
targets of FTH1 transcript or multiple FTH1 pseudogenes by 
an unbiased screen in prostate cancer (76). lncRNA H19 is the 

Table II. Summary of non-coding RNAs involved in ferroptosis.

A, MicroRNA

First author, year Modulatory effect Cell lines (Refs.)

Zhang et al, 2018  Decreases lipid peroxidation and inhibits erastin- and A375, G-361 (57)
 RSL3-induced ferroptosis
Wang et al, 2019 Promotes ferroptosis by regulate CBS expression ADC, A549, SPC-A-1, PC9 (58)
Luo et al, 2018 Suppresses erastin- and RSL3-induced ferroptosis by A375, G-361 (59)
 repression of SLC1A5 expression
Gomaa et al, 2019 Overexpression confers resistance to ferroptosis by STKM2, MKN45, OE33 (60)
 promoting of GPX4
Niu et al, 2019 Promotes PG‑induced ferroptosis by suppressing MGC‑803, MKN‑45 (61)
 GLS2 expression
Tomita et al, 2019 Decreases mitoferrin and overexpression sensitizes to  HeLa, SAS (62)
 ferroptosis induced by radiation
Qin et al, 2010 Induces SLC7A11 expression and inhibits ferroptosis RAW (63)
 induced by oxidative stress
Xiao et al, 2019 Suppresses erastin‑induced ferroptosis by repression HUVECs (64)
 of ACSL4 expression
Bai et al, 2020 Overexpression sensitizes to erastin-induced ferroptosis HepG2, Hep3B (65)
 by directly target ATF4
Zhang et al, 2020 Overexpression sensitizes to erastin-induced ferroptosis  LN229, U251 (66)
 by directly target ITGB8

B, Long non-coding RNA

First author, year Modulatory effect Cell lines (Refs.)

Mao et al, 2018 Knockdown suppresses erastin‑induced ferroptosis SPCA1, H522, A549  (67)
Wang et al, 2019 Overexpression suppresses erastin- and RSL3-induced ADC, A549, SPC-A-1, PC9 (58)
 ferroptosis by repression of CBS expression
Qi et al, 2019 Knockdown sensitizes to erastin‑induced ferroptosis HepG2, Huh7, Hep3B (68)
 by downregulating of GABPB1

C, Circular RNA

First author, year Modulatory effect Cell lines (Refs.)

Zhang et al, 2020 Knockdown sensitizes to erastin‑induced ferroptosis  LN229, U251 (66)
 by directly target ITGB8
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pre-miRNA template of miR-675, and knockdown of FTH1 
upregulates H19 expression and thus its cognate miR-675, and 
H19/miR-675 activation primarily contributes to altered iron 
metabolism induced by FTH1 silencing (77). Therefore, it has 
been reasonably confirmed that these miRNAs may suppress 
ferroptosis by targeting TfR1. Together, these studies have 
shown that these ncRNAs may be involved in regulating the 
process of ferroptosis through iron storage.

IREB2 is an intra-cellular iron metabolism RNA-binding 
protein which regulates the translation and the stability of iron 
homeostasis related genes. Knock down of IREB2 suppresses 
erastin-induced ferroptosis by amino acid/cystine depriva-
tion (1). miR-29 regulates IREB2 directly, thus affecting both 
energy production and redox status of the cell (78). Furthermore, 
miR-29a-related genetic variants alter the expression of IREB2 
and may modify the risk of lung cancer together with dietary 
iron intake (79). Oncogenic miR-935 is elevated in renal cell 
carcinoma, and miR-935 directly suppresses the transcription 
of IREB2 by binding to the 3'-UTRs of IREB2 (80). Therefore, 
these miRNAs may suppress ferroptosis by targeting IREB2.

DMT1 is a widely expressed key iron transporter located 
within the plasma membrane and membranes of lysosomes 
and endosomes, which enables the uptake of Fe2+ to the cytosol 
following iron endocytosis. DMT1 inhibitors were selected as 
a target in cancer stem cells by blocking lysosomal iron trans-
location, which leads to lysosomal iron accumulation, and thus 
production of ROS and induction of ferroptotic cell death (35). 
DMT1 is also involved in sulfasalazine-induced ferroptosis 
via activation of iron metabolism in breast cancer cells (36). 
miR-Let-7d binds to the 3'-UTR of DMT1-IRE decreasing its 
expression at both the mRNA and protein levels in K562 and 
HEL cells (81). miR-16 family members miR-16, miR-195, 
miR-497 and miR-15b have been shown to suppress intestinal 
DMT1 expression by targeting DMT1 3'-UTR in HCT116 
cells (82). These miRNAs may be involved in ferroptosis by 
targeting DMT1.

Lipid metabolism. ACSL is expressed on the mitochondrial 
outer membrane and endoplasmic reticulum, where they 
catalyze fatty acids to form acyl-CoAs, which are lipid 

Table III. Summary of primary modulators of iron metabolism-related ncRNAs involved in ferroptosis.

First author, year Gene Function ncRNA Modulatory effect (Refs.)

Schaar et al, 2009 TfR1 Cellular transferrin-iron miR-320 Suppresses the expression of (69)
  uptake  TfR1 directly
Fu et al, 2019   miR-107  (70)
Babu et al, 2019   miR-148a  (71)
Miyazawa et al, 2018   miR-7-5p, miR-141-3p  (72)
Kindrat et al, 2016   miR-152  (73)
Yoshioka et al, 2012   miR-210  (74)
Xu et al, 2015 FTH1 Subunit of major miR-200b Suppresses the expression of (75)
  intracellular iron   FTH1 directly
  storage protein
Chan et al, 2018   miR-638, miR-362  (76)
Di Sanzo et al, 2018   miR-675  (77)
Di Sanzo et al, 2018   H19 The pre-miRNA template for (77)
    the miR-675 and suppresses
    the expression of FTH1 by 
    miR-675
Ripa et al, 2017 IREB2 Regulates iron levels miR-29 Suppresses the expression of (78,79)
Zhang et al, 2017  in the cells by regulating  IREB2 directly
  the translation and 
  stability of mRNAs that 
  affect iron homeostasis
Liu et al, 2019   miR-935  (80)
Andolfo et al, 2010 DMT1 Metal-iron transporter miR-Let-7d Suppresses the expression of (81)
  that is involved in iron  DMT1 directly
Jiang et al, 2019  Absorption and use miR-16, miR-195,  (82)
   miR-497, miR-15b

ncRNA, non‑coding RNA; miR, microRNA; TfR1, transferrin receptor 1; FTH1, ferritin heavy chain 1; IREB2, iron response element binding 
protein 2; DMT1, divalent metal transporter 1.
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metabolic intermediates that facilitate fatty acid metabolism 
and membrane modifications (83). According to genome‑wide 
recessive genetic screening, ACSL4 has been identified as 
an essential pro-ferroptotic gene and as a critical deter-
minant of ferroptosis sensitivity by shaping cellular lipid 
composition (8). Another study also showed that ACSL4 is a 
biomarker and contributor of ferroptosis via ACSL4-mediated 
production of 5-hydroxyeicosatetraenoic acid (5-HETE) (84). 
miR-34a-5p/miR-204-5p (85), miR-141 (86), miR-3595 (87), 
miR-34a/c (88,89), miR-548p (90), miR-205 (91), 
miR-224-5p (92) and miR-19b-3p/miR-17-5p/miR-130a-3p/ 
miR-150-5p/miR-7a-5p/miR-144-3p/miR-16-5p (93) can 
suppress the transcription of ACSL4. These miRNAs may 
inhibit ferroptosis by targeting ACSL4. In addition, a recent 
study reported that lncRNA NEAT1 promotes the transcription 
of ACSL4 by competing with miR-34a-5p and miR-204-5p, 
which may suppress ferroptosis (85).

LOXs are a family of iron-containing enzymes, including 
six LOX genes in humans; LOX5, LOX12, LOX12B, LOX15, 
LOX15B and LOXE3 (94). These genes can catalyze dioxy-
genation of PUFAs to produce fatty acid hydroperoxides in 
a stereospecific manner (94). Oxidation of PUFAs by LOXs 
had been implicated in erastin-induced ferroptosis (94). 
LOX15-driven enzymatic generation of lipid peroxidation is 
a hallmark of ferroptotic signals (95). In the miR-17 family, 
miR-18a and miR-203 bind to four sites of the 3'-UTR 
in 15-LOX1, and miR-17, miR-20a, miR-20b, miR-106a, 
miR-106b, miR-93 and miR-590-3p bind to four sites of the 
3'-UTR of 15-LOX2 (96). Oncogenic miR-219-2 (97) directly 
targets the 3'-UTR of 15-LOX, whereas miR-674-5p (98), 
miR-216a-3p (99) and miR-19a-3p/miR-125b-5p (100) regulate 
5-LOX through directly targeting the 3'-UTR of 5-LOX.

GPX4, unlike other members of the GPX family, serve 
a unique role in physiology; they catalyze the reduction of 
lipid peroxides in a complex cellular membrane environment. 
Overexpression or knockdown of GPX4 modulates the lethality 
of ferroptosis inducers, indicating that GPX4 is an essential 
regulator of ferroptotic cell death (52). miR-181a-5p decreases 
the expression of GPX4 by targeting SBP2 or SECISBP2 and 
reduces the ability to counter oxidation, which may promote 
ferroptosis (101,102).

Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting step 
catalytic enzyme in mono-unsaturated fatty acid (MUFA) 
synthesis that serves a central role in FA metabolism by 
converting the saturated fatty acids palmitate and stearate 
to the MUFAs palmitoleate (PMA) and oleate. SCD1, as 
an inhibitor of ferroptosis, serves an important role in the 
negative regulation of ferroptosis through the products of 
MUFAs (103). miR-27a (104), miR-212-5p (105), miR-103 (106), 
miR-192* (107), miR-378 (108), miR-4668 (109), miR-600 (110) 
and let‑7c (111) significantly suppress the relative expression of 
SCD1 by directly binding to its 3'-UTR. Moreover, lncRNA 
uc.372 promotes the transcription of SCD1 by competing with 
miR-4668 (109).

Citrate synthases (CSs) are implicated in the regulation of 
mitochondrial fatty acid metabolism, which supply a specific 
lipid precursor necessary for ferroptotic cell death (1). Silencing 
CS suppresses erastin-induced ferroptosis (1). miR-122 
suppresses the expression of mRNAs and proteins related to 
CS (112), whereas miR-19 only regulates the expression of 
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proteins related to CS (113). Therefore, these ncRNAs have 
been implicated in promoting ferroptosis by targeting lipid 
metabolism-related genes.

Antioxidant metabolism. Nrf2 is a pivotal inhibitor of ferrop-
tosis due to its ability to inhibit cellular iron uptake, limit ROS 
production, and upregulate SLC7A11 expression by regulating 
the Nrf2-targeted genes FTH1, HO-1 and NQO1. Certain 
miRNAs can directly or indirectly suppress the transcrip-
tion of Nrf2 or Nrf2 signaling to promote ferroptosis. For 
example, miR-675 (114), miR-181 (115), miR-302b-3p (116), 
miR-141 (117,118), miR-1225 (119), miR-25 (120), 
miR-128-3p (121), miR-19b (122), miR-125b (123) and 
miR-494 (124) restrain Nrf2 signaling by targeting Nrf2-related 
genes. In contrast, miR-365 (125), miR-495 (126), miR-136 (127), 
miR-34a (128), miR-340-5p (129), miR-125b (130), 
miR-101-3p (131,132), miR-155 (133), miR-380-3p (134), 
miR-144 (135-137), miR-153 (138), miR-28/miR-708 (139), 
miR-129-3p (140), miR-27b (141), miR-140-5p (142), 
miR-93 (143) and miR-365-1/miR-193b/miR-29-b1 (144) have 
been shown to decrease Nrf2 levels through directly binding 
to the 3'-UTR of Nrf2. Additionally, certain miRNAs activate 
Nrf2 signaling via a variety of mechanisms, ultimately resulting 
in inhibition of ferroptosis. For example, miR-152-3p (145), 
miR-101 (146), miR-455 (147), miR-601 (148), miR-7 (149), 
miR-200a (150), miR-873-5p (151), miR-24-3p (152), 
miR-34b (153), miR-223 (154), miR-146b-5p (155) and 
miR-98-5p (156) activate Nrf2 signaling by targeting 
Nrf2-related genes. It is thus hypothesized that these miRNAs 
can regulate ferroptosis by targeting Nrf2, but this has not yet 
been demonstrated.

Emerging evidence has indicated that lncRNAs 
Blnc1 (157), MALAT1 (158-162), Nrf2-lncRNA (163), 
AK094457 (164), Linc01213 (165), lncRNA74.1 (166), 
ODRUL (167), SNHG14 (168), UCA1 (126), LUCAT1 (169), 
TUG1 (170-172), Loc344887 (173), H19 (174), Mhrt (175), 
MIAT (176), MRAK052686 (177), AATBC (178), 
HOTAIR (179), NRAL (129), H19 (114), Sox2OT (180), 
MT1DP (125), MEG3 (127,128,181) and KRAL (117) may 
activate Nrf2 signaling by targeting Nrf2-related genes. 
Furthermore, circRNA-4099 may activate Nrf2 signaling by 
targeting miR-706, which augments H2O2-induced cell damage 
in the L02 cells (182). Notably, these ncRNAs are involved in 
regulating ferroptosis and may be a potential target for cancer 
therapy.

SLC7A11, the subunit of cystine-glutamate antiporter, is 
a crucial mediator in the process of ferroptosis. Studies have 
shown that miR-27a (183), miR-375 (184) and miR-26b (185) 
directly suppress the transcription of SLC7A11 by binding 
to its 3'-UTR. Therefore, these miRNAs have been 
implicated in promoting ferroptosis by directly targeting 
SLC7A11. Furthermore, lncRNAs SLC7A11-AS1 (186) and 
AS-SLC7A11 (187), the antisense lncRNAs of SLC7A11, 
suppress the transcription of SLC7A11. Therefore, these two 
SLC7A11-antisense lncRNAs have been hypothesized to 
suppress ferroptosis by downregulating SLC7A11 levels.

Keap1 is a member of the BTB‑kelch protein family, 
which are primarily located in the perinuclear region of the 
cytoplasm (188). Keap1 represses Nrf2 transcriptional activity, 
a transcriptional target of Keap1. Overexpression of Keap1 

enhanced erastin- and RSL3-induced ferroptosis, while knock-
down conferred resistance to ferroptosis (189). Studies have 
shown that overexpression of miR-7 (149), miR-873-5p (151), 
miR-24-3p (152), miR-34b (153), miR-223 (154), miR-26b (190), 
miR-941 (191), miR-200a (192,193), miRNA-421 (194), 
miR-626 (195), miR-1225 (119), miR-141 (118) and 
miR‑432 (196) suppressed Keap1 3'‑UTR expression and 
downregulated its mRNA and protein expression. Notably, 
lncRNA MALAT1 could epigenetically downregulate Keap1 
expression (161). lncRNA KRAL functions as a ceRNA by 
effectively binding to miR‑141 and then restoring Keap1 expres-
sion (117). These studies suggest that Keap1 related‑ncRNAs 
are involved in the process of ferroptosis.

GOT1 is essential for cell sustaining proliferation and 
maintenance of redox homeostasis. Reduced GOT1 suppresses 
erastin-induced ferroptosis by amino acid/cystine depriva-
tion (197). According to previous studies, both in pancreatic 
cancer and melanoma, miR-9-5p inhibited the expression of 
GOT1 by directly binding to its 3'-UTR, ultimately resulting 
in decreased proliferation, glutamine metabolism and 
redox homeostasis, which suppresses the process of 
ferroptosis (57,198).

Collectively, the modulators of ferroptotic markers are 
their related ncRNAs, which serve critical roles in the regula-
tion of ferroptosis. As discussed above, ncRNAs possess tumor 
suppressor or oncogenic roles in the process of ferroptosis 
during the course of tumorigenesis and progression. Thus, 
targeting ncRNAs may be a viable strategy in the development 
of novel cancer treatments.

4. Therapeutic approaches for ncRNAs targeting ferroptosis 
in cancer

Ferroptosis likely inhibits tumor development and/or 
progression, thus inducing ferroptosis is a promising strategy 
for anticancer therapy. ncRNA expression patterns show speci-
ficity for specific tumor and tissue types, highlighting ncRNAs 
as potential therapeutic targets in cancer. With advances in 
biotechnologies, such as genome editing, high-throughput 
sequencing and nanotechnology, ncRNAs can be theoreti-
cally used as molecular targets for cancer therapy. Therefore, 
ncRNAs are considered as an emerging and viable candi-
dates for precision medicine depending on its property of 
tissue‑specific expression.

Thus far, among the annotated ncRNAs, miRNAs, 
lncRNAs and circRNAs are the most extensively investigated. 
They function as either oncogenes or tumor suppressors, 
which induce or inhibit ferroptosis by targeting their mRNAs, 
respectively. Previously, several preclinical studies have 
investigated RNA-guided precision medicine for cancer treat-
ment (161,199-201). For example, miR-34a mimic-mediated 
tumor suppression was the first miRNA‑based therapy to be 
used in the clinic (202). lncRNA MALAT1 with antisense 
oligonucleotide-conjugated nanostructure inhibited metas-
tasis of lung cancer cells (203). In total, three strategies have 
been proposed for ncRNA-based therapy: i) ncRNA-guided 
nanoparticles, ii) ncRNA modification and iii) an oncolytic 
adenovirus strategy (204).

The methods described above are currently the most 
promising ncRNA-based treatment strategies for cancer. These 
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therapeutic approaches can also be used in ncRNAs targeting 
ferroptosis for cancer treatment. Most of the ncRNAs regulate 
lipid ROS-related molecules and antioxidant metabolism-related 
molecules, which leads to increased tumor cell tolerance for 
relatively higher ROS levels and thus reduced possibility of 
initiating ferroptosis. At same time, high levels of cellular ROS 
promote tumor cell growth. To initiate ferroptotic cell death, 
stimulating ncRNAs need to activate lipid and iron metabolism 
or otherwise activate antioxidant metabolism, which in turn 
leads to an accumulation of cellular ROS and eventually cell 
death (Fig. 2). Thus, ncRNAs have been considered not only 
as therapeutic targets for cancer therapy, but also as potentially 
promising therapeutic tools for precision medicine. However, 
the majority of studies regarding the use of ncRNAs therapeuti-
cally are still in their early stages. Several problems need to 
be overcome before they can be used clinically, such as the 
off-target effects, short half-life, severe toxicity and low trans-
fection efficiency in ncRNA guided strategies (204). A large 
number of further studies are still required.

5. Conclusions and future perspectives

Ferroptosis is a novel type of cell death with distinct func-
tions intricately involved in numerous physiological processes 
and various diseases. Substantial progress in exploring the 
mechanisms of ferroptosis and understanding on how onco-
genic states drive sensitivity to ferroptosis has been made. 
Collectively, these studies have demonstrated ferroptosis as a 
tumor suppressive mechanism that inhibits tumor growth and 
contributes to chemotherapy sensitivity, and that induction of 
ferroptosis is a viable anticancer therapeutic strategy, particu-
larly for drug-resistant tumors.

However, cellular sensitivity to ferroptosis likely depends 
on the cell type and physiological conditions. What types of 
physiological processes are associated with ferroptosis? Under 
what context do cells benefit from ferroptotic cell death? 
Studies exploring the association between cancer and ferrop-
tosis are still limited. Although several candidate primary 
markers of ferroptosis have been identified, and the pathways 
they target are known, several candidates fail to acquire their 
special cellular conditions and exhibit poor pharmacokinetics. 
A large number of recent studies have demonstrated that 
miRNAs, lncRNAs and circRNAs serve an important role 
in the process of ferroptosis, and that these ncRNAs may 
affect the regulation of ferroptosis in a cell type-dependent 
or tissue type-dependent manner. Due to the heterogeneity 
of gene expression on a per individual basis, ncRNA-based 
treatment strategies can be used for personalized cancer 
treatment and may eventually exhibit more specificity than 
ferroptosis-inducing drugs such as erastin, sulfasalazine and 
RSL3. Thus, targeting ncRNAs may at present be considered a 
prototypic intervention which has the potential to be superior 
in terms of precision compared with established anti-tumor 
drugs. Moreover, with the development of gene related tech-
nologies, ncRNAs constitute promising potential targets for 
gene therapy. However, a deeper understanding of the mecha-
nisms by which ncRNAs regulate ferroptosis is still required, 
and tissue specific expression of ncRNAs and the variety of 
off-target effects are major challenges.

In summary, ncRNAs may serve as anticancer targets by 
regulating ferroptosis, which is a novel and promising means 
of treating drug-resistant cancer. Targeting key ncRNA-related 
ferroptotic molecules may create novel opportunities for gene 
therapy for the treatment of cancer.

Figure 2. Therapeutic approaches for use of ncRNAs for targeting ferroptosis in cancer. In anticancer approaches, induction of the occurrence of ferroptosis 
by lipid ROS is the primary approach of ferroptosis based cancer therapy. Targeting ncRNA-related ferroptosis via activation of lipid and iron metabolism or 
suppression of antioxidant metabolism by ncRNA‑guided nanoparticles, ncRNA modification or oncolytic adenovirus strategy. NcRNA‑guided nanoparticles 
strategies primarily include self‑assembled oligonucleotide nanoparticles, LNPs, inorganic nanoparticles, and polymeric nanoparticles; ncRNA modification 
strategies primarily include RNAi, ASOs, LNAs, Morpholinos and CRISPR‑associated system; and oncolytic adenovirus strategies primarily includes the 
use of Ad‑shRNA. LNPs, lipid‑based nanoparticles; RNAi, double stranded RNA‑mediated interference; ASOs, single stranded antisense oligonucleotides; 
LNAs, locked nucleic acids; Ad‑shRNA, adenovirus‑shRNA. ncRNA, non‑coding RNA; ROS, reactive oxygen species.
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