
ONCOLOGY REPORTS  45:  35,  2021

Abstract. Tumour‑associated macrophages (TAMs) are 
immune cells that are present in large numbers in the tumour 
immune microenvironment. TAMs are important for the 
occurrence, development, invasion, metastasis and immune 
escape of tumours. TAMs have become a novel therapeutic 
target and prognostic indicator in the individualised treatment 
of patients. Studies have reported that the number of TAMs 
can predict the size, stage and metastasis of gastric cancer. 
Therefore, in‑depth examination of TAMs may be impor‑
tant for high‑risk screening, early diagnosis and prognostic 
judgment of patients with gastric cancer. The present review 
examined the research progress of TAMs in gastric cancer 
on the basis of previous literature studies. Moreover, this 
review systematically evaluated the three major aspects of the 
differentiation of macrophages, the tumour‑promoting mecha‑
nism of TAMs in gastric cancer and the relationship between 
TAMs and treatment of gastric cancer. Finally, this review 
aimed to provide a reference for investigating the prognostic 
indicators and treatment targets of patients with gastric cancer.
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1. Introduction

Gastric cancer is the third leading cause of cancer‑related 
mortality worldwide (1). The incidence of gastric cancer is 
lowest in Northern Europe and Northern America, and remains 
highest in Eastern and Central Asia and Latin America (1‑3). 
In all confirmed cases of gastric cancer, >1/3 of cases occur in 
China. Moreover, the incidence and mortality rates of gastric 
cancer in China rank second amongst all cancer types and are 
second only to lung cancer (4). The age‑standardised 5‑year 
survival rate of gastric cancer in the Chinese population was 
only 35.9% in 2010‑2014 (5). Although immune checkpoint 
blocking therapy can improve the survival rate of some patients 
with gastric cancer (6), not all patients can benefit from this 
immunotherapy. Numerous patients with gastric cancer have 
problems that should be addressed, such as hyperprogressive 
diseases (7‑12), low efficiency of a single drug (13‑15) and 
treatment‑related adverse events (TRAEs) (16‑26). 

For example, immune checkpoint inhibitors cause imbal‑
ances in immunological tolerance, resulting in inflammatory 
side effects which are called immune‑related adverse events 
(irAEs). Masuda et al reported that the development of irAEs 
was closely associated with clinical responses of patients with 
advanced gastric cancer in nivolumab monotherapy  (27). 
Park et al revealed that irAEs may predict overall survival 
(OS) as well as progression‑free survival (PFS) and repre‑
sent meaningful biomarkers across different types of cancer 
including gastric cancer (28).

All of these issues aforementioned may be associated 
with the complex regulation of the tumour immune microen‑
vironment, as the immune contexture can convey important 
information associated with prognosis and therapeutic 
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responsiveness (29‑35). The tumour immune microenviron‑
ment is composed of innate immune cells, adaptive immune 
cells and cytokines (CKs), amongst others. These immune 
components form a complex regulatory network. Neutrophils 
secrete tumour‑promoting factors (36), while T cells and NK 
cells secrete antitumour factors  (37,38). Moreover, regula‑
tory T cells (Tregs), regulatory B cells and myeloid‑derived 
suppressor cells (MDSCs) secrete immunosuppressive cyto‑
kines (CKs) (37). It has been revealed that macrophages secrete 
antitumour factors and tumour‑promoting factors, depending 
on their state of differentiation (39,40).

A previous study (41) has reported that the prognosis of 
colorectal cancer is positively correlated with high‑density 
macrophages. It has also been revealed that the prognosis 
of most tumours, such as liver cancer and breast cancer, is 
inversely associated with high‑density macrophages  (41). 
However, the correlation between macrophages and the 
prognosis of bone tumours, prostate cancer, lung cancer and 
gastric cancer remains controversial; therefore, these cancer 
types have a strong research value. For example, Zhang et al 
observed that the higher the number of tumour‑associated 
macrophages (TAMs), the worse the prognosis of patients 
with gastric cancer (42). Another meta‑analysis also supported 
this conclusion (43). However, Wang et al reported that the 
more TAMs, the more favourable the prognosis of patients 
with gastric cancer, and that patients with diffuse‑type gastric 
cancer had a higher macrophage infiltration density compared 
with patients with intestinal‑type gastric cancer (44). These 
research results indicated that TAMs are a research hotspot in 
the field of gastric cancer. The present review systematically 
examined the research progress of TAMs in gastric cancer in 
recent years, based on the three major aspects of the differen‑
tiation of macrophages, the tumour‑promoting mechanism of 
TAMs in gastric cancer and the relationship between TAMs 
and treatment of gastric cancer.

2. Differentiation of macrophages

Macrophages originate from monocytes in the blood circula‑
tion (45), and are important participants in the innate immune 
response. Given their high plasticity, macrophages primarily 
exist in two different states of differentiation (46) (Fig. 1).

M1‑type macrophages are activated by interferon‑γ 
(IFN‑γ), lipopolysaccharide (LPS) and Toll‑like receptor 
(TLR) ligands. These macrophages can secrete CKs, such 
as IL‑6, IL‑12, IL‑23 and TNF‑α, and these CKs exert 
pro‑inflammatory, cytotoxic and antitumour effects (46,47). 
On the other hand, M2‑type macrophages are activated by 
IL‑4 and IL‑13. These macrophages secrete CKs, such as IL‑10 
and transforming growth factor‑β (TGF‑β), which possess 
anti‑inflammatory and tumour‑promoting effects (47,48). With 
regard to phenotype, M1‑type macrophages highly express 
CD64, CD68, CD86 and major histocompatibility complex 
(MHC) 2 (46,49), while M2‑type macrophages lowly express 
MHC2 and feature the expression of CD163, CD200 receptor 
(CD200R) and CD206 (46,49).

CD204+ macrophages in the stroma are receptors for 
M2‑type macrophages. It has been reported that an increase 
in the number of these macrophages may be associated with 
the occurrence of gastric cancer (50). However, the correlation 

between M2‑type macrophages and the prognosis of gastric 
cancer is currently controversial. For example, Kim et  al 
revealed that high‑density M2‑type macrophage infiltration 
was associated with favourable disease‑free survival (DFS) in 
patients with gastric cancer (51). However, Park et al revealed 
that high‑density M2‑type macrophage infiltration was associ‑
ated with poor DFS in patients with gastric cancer (52). Based 
on a previous study, high‑density M2‑type macrophages 
are also associated with poor OS in patients with gastric 
cancer (53).

Under the action of IL‑4, IL‑10 and IL‑13, macrophages 
can be recruited around tumour cells and eventually differenti‑
ated into TAMs (Fig. 1). Macrophages co‑cultured with gastric 
cancer cells likely differentiate into M2‑type TAMs  (54). 
M2‑type TAMs have evident immunosuppressive effects on 
diffuse‑type and genomically stable‑type gastric cancer (55). 
Furthermore, M2‑type TAMs can promote peritoneal metas‑
tasis of gastric cancer via the epidermal growth factor receptor 
signalling pathway in the abdominal cavity of gastric cancer 
patients with peritoneal metastasis (56).

A major feature of the tumour microenvironment 
of gastric cancer is the chronic inflammation caused by 
Helicobacter pylori (Hp) infection. This feature is the classic 
determinant of gastric cancer (57). It has been revealed that Hp 
can damage the immune response of M1‑type macrophages 
and lead to the differentiation of M2‑like macrophages, 
thereby promoting reactive oxygen species‑induced macro‑
phage apoptosis (58). Another major feature of the tumour 
microenvironment of gastric cancer is hypoxia. For one thing, 
macrophages and hypoxia serve an important role in regulating 
the invasive ability of gastric cancer cells in vitro (59). For 
another thing, hypoxia decreases the percentage of M1‑type 
macrophages by targeting microRNA (miR)‑30c and mTOR 
in human gastric cancer (60). Furthermore, the upregulation of 
endothelin‑2 and vascular endothelial growth factor (VEGF) 
can mediate the accumulation of TAMs in gastric cancer in 
hypoxic areas, ultimately promoting the differentiation of 
M1‑type macrophages into M2‑type macrophages (50).

3. Tumour‑promoting mechanism of TAMs in gastric 
cancer

TAMs promote angiogenesis in gastric cancer. When gastric 
cancer cells are stimulated by a hypoxic environment, 
macrophages can be recruited in the tumour microenviron‑
ment of gastric cancer and are differentiated into TAMs (61). 
On the one hand, TAMs can promote the activation of the 
hypoxia‑related signalling pathways and increase the activity 
of matrix metalloproteinases (50,61). Moreover, TAMs facili‑
tate the formation of microvessels in gastric cancer (50,61). 
On the other hand, the expression of vasohibin‑1 tissue is 
significantly and positively correlated with the expression of 
VEGF‑A in gastric cancer. TAMs can upregulate vasohibin‑1 
to promote angiogenesis in gastric cancer (62). In addition, 
thymidine phosphorylase expressed by TAMs can promote 
angiogenesis in gastric cancer (63).

M2‑type TAMs serve an important role in the angiogen‑
esis of gastric cancer. M2‑type macrophage culture medium 
treated with high‑mobility group protein B1 (HMGB1) can 
promote the angiogenesis of human gastric cancer MKN‑45 
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cell line in vitro. It has also been revealed that CD163+ TAMs 
in gastric cancer are associated with the increased density 
of microvessels in cancer nests, tumour stroma and tumour 
invasive margins, indicating that M2‑type TAMs can promote 
angiogenesis in gastric cancer (52).

TAMs promote the invasion and metastasis of gastric cancer. 
Invasion and metastasis are important causes of poor prognosis 
of patients with gastric cancer (64‑73). These processes repre‑
sent a multistep biological cascade that leads to widespread 
dissemination of gastric cancer cells in various tissues (74). 
TAMs can induce the expression of transcription factor forkhead 
box Q1 (FOXQ1) (75) and TGF‑β1 (76) to promote the epithe‑
lial‑mesenchymal transition (EMT), invasion and metastasis 
of gastric cancer cells. The coexistence of TAMs and TGF‑β is 
associated with tumour aggressiveness, which can be an inde‑
pendent prognostic factor for gastric cancer (50). Moreover, 
the cytoskeleton rearrangement during EMT is an important 
mechanism of tumour invasion and metastasis. TAM‑derived 
exosomes can activate the PI3K/AKT signalling pathway, 
thereby mediating the transfer of apolipoprotein E from TAMs 
to gastric cancer cells, and ultimately induce the cytoskeletal 
rearrangement and metastasis of gastric cancer (77,78) (Fig. 2). 
In addition, the expression of chemokine CXCL12 is closely 
associated with the recruitment of M2‑type TAMs in tumour 
invasive margins. It has been suggested that CXCL12 may be 
involved in the invasion of gastric cancer (52). C‑X‑C Motif 
Chemokine Ligand 8 (CXCL8), ADAM metallopeptidase 

domain (ADAM) 8, ADAM9, C‑C motif chemokine ligand 
(CCL) 5, secreted phosphoprotein 1, semaphorin 4D, TIMP 
metallopeptidase inhibitor 3, T‑cell immunoglobulin mucin 
family member 3 (Tim‑3) and Vinculin‑2 are also indicated 
to be involved in the invasion and metastasis of gastric cancer 
cells caused by TAMs (79‑82).

TAMs can spread through the lymphatic vessels of patients 
with gastric cancer, thus promoting the invasion and metas‑
tasis of gastric cancer cells  (83). The interaction between 
lymph node‑derived lymphatic endothelial cells and TAMs in 
gastric cancer may be an important initial step in the progres‑
sion of lymphangiogenesis to lymph node metastasis  (54). 
HMGB1 is also associated with the lymph node metastasis of 
gastric cancer. HMGB1 can activate the receptor for advanced 
glycosylation end products to increase the tumour‑promoting 
activity of M2‑type macrophages and enhance the invasive 
ability of the co‑cultured human gastric cancer MKN‑45 
cells (84).

TAMs in gastric cancer promote chemotherapy resistance. 
Cisplatin is a commonly used drug for the treatment of 
advanced gastric cancer. However, long‑term medication can 
result in resistance. In addition to increased drug efflux and 
enhanced anti‑apoptotic effects caused by genetic changes in 
tumour cells, the protection of the tumour microenvironment 
on tumour cells can lead to drug resistance. Considering that 
the overexpression of miR‑21 has no effect on the ATP‑binding 
cassette transporter gene of gastric cancer cells in the tumour 

Figure 1. Macrophage differentiation and their roles. M1‑type macrophages are activated by IFN‑γ, LPS or TLR ligands. M1‑type macrophages can secrete 
pro‑inflammatory cytokines and serve anti‑tumorigenic roles. M2‑type macrophages are activated by IL‑4 and IL‑13, and can secrete anti‑inflammatory 
cytokines and serve pro‑tumorigenic roles. TAMs exert pro‑tumorigenic roles. IFN, interferon; LPS, lipopolysaccharide; TRL, Toll‑like receptors; TAMs, 
tumour‑associated macrophages.
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microenvironment, TAM‑derived exosomes can transport 
miR‑21 from M2‑type TAMs to gastric cancer cells. This 
extracellular transport can downregulate PTEN and enhance 
the activity of AKT, thereby increasing the survival rate of 
gastric cancer cells (85). Thus, targeted therapy of miR‑21 
extracellular transport caused by TAM‑derived exosomes 
may improve the resistance of patients with gastric cancer to 
cisplatin.

4. TAMs in gastric cancer and immune checkpoint

Programmed death protein 1 (PD‑1) and its two ligands 
programmed death‑ligand 1 (PD‑L1) as well as programmed 
death‑ligand 2 (PD‑L2) serve as an immune checkpoint axis 
which can suppress T‑cell proliferation in carcinoma (86,87). 
While the prognosis of gastric cancer remains poor, PD‑1 and 
PD‑L1/PD‑L2 are promising prognostic biomarkers (88).

TAMs in gastric cancer and PD‑1/PD‑L1. PD‑1/PD‑L1 
signalling pathway has become the hot spot of current immu‑
notherapies for gastric cancer. D'Ignazio et al observed a 
higher number of CD68+ macrophages with a lower number 
of CD163+ macrophages and the inhibition of the PD‑1/PD‑L1 
in gastric and colorectal patients treated with enteral immuno‑
nutrition (89). Consequently, there is an intricate relationship 
between macrophages and the PD‑1/PD‑L1 signalling pathway 
during the progression and treatment of gastric cancer.

PD‑1 is one of the best‑studied and most clinically 
successful immune checkpoint drug targets. Kono  et  al 
performed double immunohistochemical staining of PD‑1 and 
CD68 in gastric cancer tissue and found numerous PD‑1+CD68‑ 

tumour infiltrating cells  (90). They also determined the 
frequency of PD‑1+ macrophages in gastric cancer tissue by 
flow cytometry. Flow cytometric analysis revealed that PD‑1+ 
macrophages in gastric cancer express more CD206, indicating 
that these PD‑1+ macrophages exhibited an M2‑type profile. 
Similarly, Wang et al revealed that PD‑1+ TAMs express an 
M2‑type surface molecule, such as a significant increase in the 

expression of CD206, and a clear decrease in the expression of 
an M1‑type surface molecule including CD64 (91).

PD‑L1 is a key protein upregulated by tumour cells to 
suppress the immune response. PD‑L1+ TAMs were revealed 
to account for approximately 50% of all PD‑L1+ cells in gastric 
cancer (92). Harada et al performed immunohistochemical 
staining of PD‑L1, CD68 and CD163 in 217 gastric adeno‑
carcinoma tissue specimens from the tissue microarrays (93). 
These authors observed that M2‑type TAMs could promote 
the expression of PD‑L1 in gastric cancer cells. Moreover, 
the expression of PD‑L1 in gastric adenocarcinoma cells was 
examined, and a high density of CD68+ cells and CD163+ 
cells was identified (CD68, P=0.0002; CD163, P<0.0001; the 
P‑value indicated that the correlation between the expression 
of PD‑L1 and CD163 was closer). In addition, Huang et al also 
identified CD206+ macrophages to be most relevant to high 
PD‑L1 expression (92).

To summarize, both PD‑1 and PD‑L1 are markedly more 
closely associated with M2‑type TAMs in gastric cancer. 
Targeting M2‑type TAMs may represent an effective approach 
to modulate the activity of anti‑PD‑1/PD‑L1 agents and 
combined M2‑type TAM‑centered strategies should be devel‑
oped to maximize the efficacy of anti‑PD‑1/PD‑L1 agents in 
gastric cancer.

TAMs in gastric cancer and PD‑L2. PD‑L2 is a less‑studied 
ligand of PD‑1 in gastric cancer. Nakayama et al revealed that 
IFN‑γ (which can activate M1‑type macrophages), and also to 
a lesser extent, IL‑4 (which can activate M2‑type macrophages 
and TAMs) could upregulate PD‑L2 expression in gastric 
cancer cells (94). Thus, correlation analysis was conducted 
between PD‑L2 proteins and CD proteins from M1‑type 
TAMs as well as M2‑type TAMs in gastric cancer, by our 
research group. Public genomic data sets from The Cancer 
Genome Atlas (TCGA; https://portal.gdc.cancer.gov)  (95) 
were analysed and TCGA RNA‑Seq data of gastric adenocar‑
cinoma were first assessed. As indicated in Figs. 3 and 4, the 
correlation between the expression of PD‑L2 and CD163 was 

Figure 2. PI3K/AKT signalling pathway mediates TAM‑derived exosomal ApoE‑induced metastasis. Exosomes secreted by TAMs transfer ApoE into gastric 
cancer cells, leading to PI3K/AKT signalling pathway activation, cytoskeletal rearrangement and metastasis of gastric cancer cells. TAMs, tumour‑associated 
macrophages; ApoE, apolipoprotein E.
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closer. Hence, PD‑L2 was revealed to be significantly more 
closely associated with M2‑type TAMs in gastric cancer and 
its expression should be considered when determining the 
optimal immunotherapy for gastric cancer.

5. TAMs affect the immune response of patients with 
gastric cancer

PD‑1+ TAMs in gastric cancer impair CD8+ T cells via IL‑10. 
TAMs express PD‑1 at a significantly higher level compared 
with that in the surrounding healthy tissues. Wang  et  al 
provided a new insight into possible manipulation of PD‑1+ 
TAM‑mediated immunosuppression in gastric cancer  (91). 
These authors reported that TAMs from patients with 
gastric cancer shared markedly increased PD‑1 levels, which 
promoted tumour progression by impairing the antitumour 
functions of CD8+ T cells. Moreover, PD‑1+ TAMs possessed 
stronger immunosuppressive activity of CD8+ T‑cell function 

compared with PD‑1− TAMs. When PD‑1+ TAMs interacted 
with PD‑L1+ cells, IL‑10 was produced in large quantities to 
induce the dysfunction of CD8+ T cells and impaired the anti‑
tumour immune response. These results indicated that PD‑1 
signal immunotherapies may function through a direct effect 
on PD‑1+ TAMs.

Lipid‑accumulated TAMs in gastric cancer reduce 
phagocytic potency and upregulate PD‑L1. Previous studies 
have addressed the important role of lipids in immune cells, 
including myeloid‑derived suppressor cells and dendritic 
cells  (96‑98). Luo et al provided evidence that lipid accu‑
mulation also presents in TAMs  (99). They demonstrated 
that the effect of lipid accumulation conferred the M2‑type 
polarization of TAMs in gastric cancer. On the one hand, 
lipid‑accumulated TAMs in gastric cancer reduced phagocytic 
potency against tumour cells. On the other hand, lipid‑accu‑
mulated TAM upregulated PD‑L1 expression, which blocks 
antitumour T‑cell responses to support their immunosuppres‑
sive functions. There is an abundance of lipids in the tumour 
microenvironment of gastric cancer that can be acquired by 
TAMs. Increased serum lipid levels are present in patients with 
gastric cancer and favour tumour progression. Thus, exploring 
the mechanisms of lipid‑laid TAMs holds potential for the 
development of therapeutic interventions in gastric cancer. 
Moreover, these authors also revealed that the PI3‑kinase‑γ 
(PI3K‑γ) signalling pathway may contribute to the intrinsic 
lipid generation in TAMs in the murine gastric cancer cell 
line MFC, and the reduced lipid accumulation in TAMs may 
be due to the dominant M1‑type TAMs after PI3K‑γ inhibitor 
treatment. To sum up, targeting of PI3K‑γ signalling pathways 
in TAMs may provide a novel potential approach to improve 
the long‑term survival of patients with gastric cancer.

Dendritic cell‑specific intercellular adhesion 3‑grabbing 
non‑integrin (DC‑SIGN)+ TAMs in gastric cancer promote 
an immunoevasive tumour microenvironment. DC‑SIGN is 
one of the most widely researched C‑type lectin receptors, 
and these are mainly expressed on certain macrophages and 
dendritic cells. Liu et al identified that DC‑SIGN+ TAMs 
were highly infiltrated in patients with gastric cancer and this 
high infiltration of DC‑SIGN+ TAMs was closely associated 
with a higher ratio of Foxp3+ Tregs/CD8+ T cells (100). These 
CD8+ T cells in the high DC‑SIGN+ TAMs subgroup failed to 
exert antitumour immunity. There were decreased expression 
levels of IFN‑γ, granzyme B and perforin, as well as increased 
expression levels of PD‑1 and CTLA‑4 in the tumour micro‑
environment of gastric cancer, suggesting that DC‑SIGN+ 
TAMs in gastric cancer could promote an immunoevasive 
tumour microenvironment. Conclusively, DC‑SIGN+ TAMs 
may be independent prognosticators for gastric cancer and 
could improve the therapeutic strategy of fluorouracil‑based 
adjuvant chemotherapy and immune checkpoint inhibitors.

TAMs in gastric cancer impair NK cells via TGFβ1. The 
percentage of NK cells in tumour tissue is significantly 
decreased in advanced gastric cancer, and this low percentage 
of NK cells positively correlates with poor OS of patients with 
gastric cancer. Peng et al investigated the relationship between 
macrophages and NK cells in tumour tissue from patients with 

Figure 3. Correlation assay between PD‑L2 and CD68 expression in gastric 
adenocarcinoma from TCGA datasets. PD‑L2, programmed death‑ligand 2; 
TCGA, The Cancer genome Atlas.

Figure 4. Correlation assay between PD‑L2 and CD163 expression in gastric 
adenocarcinoma from TCGA datasets. PD‑L2, programmed death‑ligand 2; 
TCGA, The Cancer genome Atlas.
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gastric cancer, and their results demonstrated a role for TAMs 
in NK‑cell functional impairment  (101). On the one hand, 
TAMs in gastric cancer suppressed the expression of Ki‑67, 
IFN‑γ and TNF‑α in NK cells. On the other hand, TAMs in 
gastric cancer isolated from tumour tissue produced higher 
TGFβ1 (a known inhibitor of NK cell function) compared with 
those from non‑tumour tissues, and flow cytometric analysis 
revealed that TGFβ1 was absent on the surface of TAMs in 
gastric cancer, suggesting that TAMs in gastric cancer may 
secrete TGFβ1 to mediate NK‑cell functional impairment. To 
further confirm this hypothesis, an antibody against TGFβ1 
was added to the coculture system of TAMs in gastric cancer 
and NK cells. Eventually, these authors demonstrated that 
TGFβ1 blockade subsequently attenuated TAM‑mediated 
suppression of Ki‑67, IFN‑γ and TNF‑α expression in NK 
cells. In conclusion, blockade of TGFβ1 could restore the 
function of NK cells and could be a useful therapeutic strategy 
for patients with gastric cancer.

6. TAMs and treatment strategies of gastric cancer

The treatment of gastric cancer involves surgical resection, 
chemotherapy, radiation therapy and immunotherapy (102). 
The current overall treatment strategy for gastric cancer is 
a comprehensive treatment based on surgery. Furthermore, 
radical gastrectomy is the only radical treatment for gastric 
cancer. Although various therapies have developed in recent 
years, the mortality rate of gastric cancer remains high as the 
early stage of this cancer type is asymptomatic (103). Thus, 
traditional treatments must be improved, and novel treatment 
regimens should be developed.

Methionine enkephalin (MENK). MENK is an endogenous 
opioid penta‑peptide  (104). MENK at a suitable range of 
concentrations not only possesses immunotherapeutic 
activity (105‑107), but also promotes the polarization of TAMs 
from M2‑type to M1‑type.

Wang et al identified that human gastric cancer cell lines 
HGC27 and SGC7901 expressed opioid receptor (OGFr) (49). 
These authors revealed that MENK upregulated the expres‑
sion of OGFr, while it inhibited proliferation and induced 
HGC27 as well as SGC7901 cell line apoptosis by blocking 
the PI3K/AKT/mTOR signalling pathway. They also demon‑
strated that MENK increased the expression levels of CD64 
and TNF‑α, but decreased the expression levels of CD206 
and IL‑10, suggesting that MENK could exert its antitumour 
function by inducing TAM polarization from the M2‑type 
to M1‑type in gastric cancer. These findings may provide 
evidence to improve the clinical treatment of gastric cancer. 
However, Wang et al did not indicate specific opioid receptor 
subtypes. Which subtype opioid receptor (Mu, Delta Kappa) 
involved here should be further investigated.

Sophoridine. Sophoridine is an alkaloid extracted from seeds 
of Sophora  alopecuroides  L., which has anti‑arrhythmia 
function (108) and antitumour activities (109).

Zhuang et al demonstrated that sophoridine upregulated 
IL‑12α and TNF‑α, while it downregulated IL‑10 and CD206 
via the TLR4/IRF3 signalling pathway in the tumour micro‑
environment of gastric cancer, suggesting that sophoridine 

promoted TAMs in gastric cancer to polarize towards the 
M1‑type, as well as suppressed M2‑type polarization (109). 
As is well known, CD8+ T cells are a major antitumour 
factor (110). Sophoridine‑treated TAMs could increase the 
cytotoxic function of CD8+ T cells and the percentage of gastric 
cancer cell lysis by upregulating granzyme B and perforin, 
and downregulating PD‑1 and Tim‑3. Furthermore, the C‑C 
motif chemokine receptor 2 (CCR2)/CCL2 signalling pathway 
is considered to be associated with macrophage infiltration 
into the tumour microenvironment  (111,112). Sophoridine 
could also inhibit macrophage infiltration into the tumour 
microenvironment of gastric cancer by downregulating the 
expression of CCR2 (109). Therefore, Chinese medicine may 
have important implications in gastric cancer treatment, and 
sophoridine may be a potential therapeutic candidate.

Emactuzumab in combination with selicrelumab. The most 
significant signalling pathway associated with TAM recruit‑
ment and proliferation is CSF‑1/CSF‑1 receptor (CSF‑1R), 
vital to the transition from M1‑type TAM into M2‑type 
TAM (50). The anti‑CSF‑1/CSF‑1R signalling pathway can 
reduce the infiltration of M2‑type macrophages into tumour 
tissues (50). Emactuzumab is a monoclonal antibody directed 
against CSF‑1R expressed by macrophages (113). Selicrelumab 
is a selective agonistic cluster of differentiation 40 (CD40) 
monoclonal antibody (114), which has been tested clinically 
along with tremelimumab (115). 

Machiels et al evaluated the phase Ib study of selicrelumab 
in combination with emactuzumab in 37 advanced solid tumour 
patients including 3 patients with gastric carcinoma (116). They 
revealed that the best objective clinical response was stable 
disease in 40.5% of patients. The most frequently TRAEs 
were infusion‑related reactions (75.7%), fatigue (54.1%), facial 
edema (37.8%), increase in aspartate aminotransferase (35.1%) 
and creatinine phosphokinase (35.1%). Selicrelumab in combi‑
nation with emactuzumab demonstrated a manageable safety 
profile and triggered CD8+ T‑cell increase and a decrease of 
TAMs in the solid tumour. However, this combination therapy 
did not translate into objective clinical responses.

Nanoparticle albumin‑bound (nab)‑paclitaxel in combina‑
tion with ramucirumab. Paclitaxel is one of the most effective 
antineoplastic agents for the treatment of numerous forms 
of cancer  (117). Nab‑paclitaxel was developed to improve 
paclitaxel solubility and does not need premedication to avoid 
infusion‑related reactions associated with solvent‑based pacli‑
taxel (118). Ramucirumab is the first targeted drug approved 
by the U.S. Food and Drug Administration for the treatment 
of advanced gastric cancer, after failure of previous chemo‑
therapy (119). The inhibition of ramucirumab on the VEGF 
receptor 2 can reduce the immune infiltration of TAMs and the 
release of CKs and chemokines, as well as inhibit the prolif‑
eration and reproduction of gastric cancer cells and improve 
the clinical prognosis of patients with gastric cancer (50).

Bando et al conducted a single‑arm phase II study to 
investigate the efficacy and safety of nab‑paclitaxel plus 
ramucirumab combination therapy in patients with advanced 
gastric cancer in refractory to first‑line chemotherapy (120). 
It was demonstrated that the overall response rate of this 
combination therapy for pre‑treated patients with advanced 
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gastric cancer was 54.8%. The median PFS was 7.6 months, 
and the toxicities were manageable. Moreover, the main grade 
3/4 TRAEs included decreased neutrophil count (76.7%), 
decreased white blood cell count (27.9%), anaemia (11.6%), 
decreased appetite (7.0%), hypertension (4.7%), proteinuria 
(4.7%) and febrile neutropenia (4.7%). No treatment‑related 
mortalities occurred. It was determined that dose modifica‑
tion of nab‑paclitaxel due to febrile neutropenia may decrease 
the cumulative dose of nab‑paclitaxel. Correspondingly, 
treatment continuation may be longer. However, in general, 
nab‑paclitaxel in combination with ramucirumab demon‑
strated favourable activity and a manageable safety profile. 
Therefore, this combination therapy may be a promising 
treatment option for previously treated patients with advanced 
gastric cancer.

Lenvatinib in combination with pembrolizumab. It has been 
reported that the response rates with pembrolizumab (a PD‑1 
inhibitor) treatment were limited to ~15% in patients with 
advanced gastric cancer who had a PD‑L1 combined posi‑
tive score of ≥1 (14). The development of novel combination 
therapies is required to improve the treatment response rates. 
Lenvatinib, a multi‑kinase inhibitor, increased the infiltra‑
tion of CD8+ T cells and decreased TAMs levels, as well as 
enhanced the activation of the IFN signalling pathway and the 
antitumour function of PD‑1 inhibitors (121). 

Kawazoe et al conducted a single‑arm phase II study to 
investigate the efficacy and safety of lenvatinib plus pembro‑
lizumab combination therapy in patients with gastric cancer 
in the first‑line or second‑line settings (122). These authors 
identified that the objective response rate of this combination 
therapy was 69% and the median PFS was 7.1 months. The 
main grade 3 TRAEs included hypertension (38%), proteinuria 
(17%) and decreased platelet count (7%). No grade 4 TRAEs 
and treatment‑related mortalities occurred. Although all 
patients required at least one dose reduction of lenvatinib owing 
to proteinuria and serious adverse effects of anti‑angiogenic 
therapies, such as gastric haemorrhage and gastric perforation, 
lenvatinib in combination with pembrolizumab demonstrated 
promising antitumour function and manageable toxicities. 

7. Future challenges

One reason for the controversy between TAMs and gastric 
cancer prognosis is the absence of histological sites. Park et al 
reported that CD163+ TAMs in the tumour stroma and tumour 
invasive margins were associated with not only size, depth of 
invasion, TNM staging, lymph node metastasis and lymphatic 
invasion of gastric cancer, but also with poor OS and DFS of 
patients with gastric cancer (52). Moreover, TAMs in cancer 
nests are associated with histological types and poor DFS, 
but not with OS. M2‑type TAMs in the tumour stroma and 
tumour invasive margins have a stronger influence on the 
progression and poor prognosis of gastric cancer compared 
with the M2‑type TAMs in the cancer nest. In another study, 
Wang et al revealed that, while macrophages in healthy tissues 
and adjacent tissues had no effect on the prognosis of patients 
with gastric cancer, the greater the number of the combination 
of macrophages and Tregs in the tumour tissue, the higher the 
survival rate of patients with gastric cancer. Therefore, TAMs 

at different histological sites may have different effects on 
the progression and prognosis of patients with gastric cancer. 
Thus, future in‑depth investigations of TAMs in gastric cancer 
must consider the differences caused by various histological 
sites (53).

The prognostic effects of different histological types 
of TAMs on gastric cancer are significant. For example, 
Kawahara  et  al observed that high‑density TAMs were 
significantly associated with the poor prognosis of patients 
with intestinal‑type gastric cancer but not with the survival 
of patients with diffuse‑type gastric cancer (63). In another 
study, Liu et al conducted a multivariate survival analysis of 
598 patients with gastric cancer (123). These authors reported 
that CD163+ M2‑type TAMs were independent prognostic 
factors. Moreover, it was revealed that expression levels of 
CD163+ M2‑type TAMs was low in signet‑ring cell carci‑
noma and mucinous adenocarcinoma, and was high in poorly 
differentiated adenocarcinoma. However, the high‑density 
M2‑type TAM infiltration in signet‑ring cell carcinoma and 
mucinous adenocarcinoma indicated a favourable prognosis. 
Therefore, the prognostic significance of M2‑type TAMs 
in gastric cancer in different histological types should be 
further clarified.

8. Conclusions

TAMs serve a significant role in the development of gastric 
cancer. The tumour‑promoting mechanism of TAMs in 
gastric cancer involves angiogenesis, invasion, metastasis, 
chemotherapy resistance and immune tolerance. TAMs also 
demonstrated a favourable application potential in the prog‑
nostic evaluation and treatment of patients with gastric cancer. 
With the continuous optimisation of technology and progres‑
sion of research, the findings of TAMs will gradually enter 
the clinical field and provide references for the individualised 
treatment of patients with gastric cancer.
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