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Abstract. N6‑methyladenosine (m6A) is one of the most prev‑
alent post‑transcriptional RNA modifications. The enzymes 
involved in the regulation of m6A include methyltransferase 
(writers), demethylase (erasers) and m6A recognition proteins 
(readers). Accumulating studies have demonstrated that m6A 
modifications have a distinct effect on various biological 
processes, including tumorigenesis, cell differentiation, 
embryonic development and neurogenic diseases, while 
our knowledge of the specific mechanism underlying m6A 
methylation in various cancer types is still limited. Various 
signaling pathways have an effect on tumorigenesis, inva‑
sion and apoptosis of malignant tumors. The present review 
summarizes the recent progress in research regarding the role 
of m6A in human cancer and discusses the influence of m6A 
on classic signaling pathways in malignant tumors.
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1. Introduction

As an essential part of the central dogma of molecular biology, 
mRNA and other forms of RNA serve crucial roles in biological 
systems by passing on genetic information. Although research 
on chemical modifications of RNAs began in 1965 (1), there 
is limited knowledge regarding the underlying regulatory 
mechanisms of RNA modifications in biological processes. 
According to the MODOMICS database (https://iimcb.
genesilico.pl/modomics), 172 different RNA chemical modi‑
fications, such as 5‑methylcytosine, 1‑methylguanosine, 
N6‑methyladenosine (m6A) and N1‑methyladenosine, have 
been observed in all organisms at present. Among these modifi‑
cations, m6A methylation is considered the most abundant and 
conserved internal transcriptional modification (2). Research 
on m6A methylation has been limited in the past due to a lack 
of accurate detection methods; however, with the development 
of high‑throughput m6A sequencing methods (3), the under‑
standing of the biological functions of m6A has advanced.

The process of m6A methylation is regulated by several 
enzymes, including writers, erasers and readers (Fig. 1) (4,5). 
Writers promote the formation of m6A (6‑8), erasers specifi‑
cally remove the methylated group from mRNAs, and readers 
recognize and bind m6A modifications to exert biological 
functions  (9,10). The observation of the demethylation 
functions of fat mass and fat mass and obesity‑associated 
protein (FTO) (11), and alkB homologue (ALKBH)5 (12) as an 
eraser, demonstrated that m6A methylation is a dynamic and 
reversible process. Malignant tumors are a group of abnormal 
cells with distinctly different functions and gene expression 
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compared with normal cells. Research on the mechanisms of 
m6A in cancer has recently advanced due to improvements in 
the understanding of the roles of m6A in post‑transcriptional 
modifications (4). The present review summarizes the molec‑
ular functions and mechanisms of m6A and its three regulators 
in human cancer, and discusses their roles in the regulation of 
malignant tumor signaling pathways.

2. Brief overview of the history of m6A

Since its discovery in the 1970s, m6A has been the most preva‑
lent modification in polyadenylated mRNAs (2). It has been 
estimated to be present in three m6A residues per mRNA on 
average (13). Since it is ubiquitous in nature, m6A can be found 
in yeast (14), fruit flies (15), mammals (2,16) and bacteria (17). 
Since m6A can undergo reverse transcription to form thymine 
and cannot be detected by chemical modifications, transcrip‑
tome‑wide mapping of m6A remains difficult (18). In 2012, a 
high‑throughput sequencing method based on antibodies was 
developed by two independent groups to map m6A distribution 
in the entire RNA sequence, which improved the detection 
efficiency of m6A (3,19).

It was originally hypothesized that the process of m6A 
was static; however, in 2011, FTO (11) and ALKBH5 (12) were 
demonstrated to be able to function as demethylases, indicating 
that the process of m6A is reversible. Subsequently, various 
proteins, including Vir like m6A methyltransferase associated 
(VIRMA) (8,16), insulin like growth factor 2 (IGF2BP) (10) 
and heterogeneous nuclear ribonucleoprotein (7), were demon‑
strated to function as writers and readers.

3. Readers, writers and erasers in m6A methylation

It is well‑known that writers and erasers regulate m6A 
via methylation and demethylation, respectively  (5,20,21). 
Furthermore, m6A groups exert biological functions by being 
recognized by readers, which are a type of specific binding 
protein (22,23).

In mammals, writers catalyze the methylation of m6A 
in the form of a methyltransferase complex consisting of 
methyltransferase‑like 3 (METTL3), methyltransferase‑like 14 
(METTL14)  (7) and Wilms' tumor 1‑associating protein 
(WTAP)  (7). METTL14 has a greater effect on m6A than 
METTL3 although their proportion in the complex is 1:1 (7). 
Previous studies have identified more writers, including 
methyltransferase‑like protein 16 (METTL16) (24,25), zinc 
finger CCCH domain‑containing protein 13 (ZC3H13) (26), 
VIRMA (8,16) and RNA‑binding motif protein 15 (RBM15) (27). 
METTL16 is a methyltransferase which binds to the conserved 
U6 small nuclear RNA, non‑coding RNA and precursor 
messenger RNA, and is involved in regulating intracellular 
homeostasis and mRNA splicing in response to intracellular 
S‑adenosyl‑L‑methionine levels (24,25). VIRMA (also referred 
to as KIAA1429) can promote m6A modification and knock‑
down of VIRMA, resulting in a more conspicuous decrease 
of m6A content than the effect of METTL3 and METTL14 
knockdown in A549 cells (8). RBM15 catalyzes m6A modifica‑
tion by binding to the U‑rich region in long non‑coding RNA X 
inactive specific transcript (27). In addition, ZC3H13 has been 
identified as a novel m6A writer in mice and Drosophila (26). 

The first eraser was identified in 2011 by Jia et al (11), who 
revealed that FTO could demethylate m6A. ALKBH5 was 
identified as the second eraser (12) as it demethylates m6A in 
a different way compared with FTO. The two intermediates, 
N6‑hydroxymethyladenosine and N6‑formyladenosine are 
first oxidized by FTO during the process of demethylation, 
while ALKBH5 catalyzes the direct removal of m6A (12,28). 
Readers can identify m6A modifications and bind to methylated 
RNA to transfer biological signals to downstream signaling 
pathways (21,22). Proteins containing the YT521‑B homology 
(YTH) domain, such as the YTH domain‑containing family 
(YTHDF) proteins, have been classed as readers (9). Notably, 
these recognition proteins of m6A exhibit distinct mechanisms. 
For example, Wang et al (29) reported the translation‑promoting 
role of YTHDF1 and the mRNA‑destabilizing role of YTHDF2. 
By interacting with initiation factors, including IGF2BP1 and 
stress granule assembly factor 1, YTHDF1 enhances the trans‑
lation efficiency of target RNAs and ensures efficient protein 
expression from these shared transcripts. By contrast, YTHDF2 
accelerates the degradation of m6A‑modified transcripts to 
control the lifetime of the methylated transcripts  (29,30). 
YTHDF3 serves as a hub to regulate the RNA accessibility of 
YTHDF1 and YTHDF2 (31).

4. m6A regulation of biological processes

m6A is widely expressed in eukaryotes and serves a crucial 
role in the regulation of various biological processes. In 
mammals, m6A modifications affect development  (12), 
metabolism (11,32‑34) and immunity (35‑37). Furthermore, 
previous studies have indicated that m6A has effects on stem 
cell differentiation (38,39), human metabolic diseases (40), 
viral infections (41‑44) and inflammation (45).

m6A is involved in the regulation of pluripotency and 
differentiation of stem cells. Pluripotent mouse embryonic 
stem cells (mESCs) undergo two different states during differ‑
entiation, naive and primed (46). m6A modifications serve key 
roles in the regulation of pluripotency during the transition 
from the naive state to the primed state (38). METTL3 deple‑
tion has a different effect on naïve and primed pluripotent 
stem cells. The depletion of METTL3 in naïve cells blocks 
differentiation and amplifies the highly expressed naïve 
pluripotency genes, which boosts naïve circuitry stability (38). 
When METTL3 and m6A are inhibited in epiblast stem cells, 
which are in a primed state, the expression levels of pluripotent 
genes are reduced, whereas the expression levels of lineage 
commitment markers are increased  (38). By knocking out 
METTL3, Geula et al (38) revealed m6A as a timely main‑
tainer of the balance between pluripotency and lineage 
priming factors, thus ensuring the orderly differentiation of 
mESCs. However, Batista et al (47) reported that the deletion 
of METTL3 maintains the self‑renewal capacity of mESCs 
and mouse embryonic fibroblasts. These contradictory results 
may be due to the cell state. For example, different transcripts 
are expressed and methylated in naïve and primed embryonic 
stem cells (ESCs) (48). Therefore, METTL3 inactivation regu‑
lates the expression levels of genes that affect cell fate and 
identity, and this activity maintains pluripotency in naïve stem 
cells but promotes differentiation in primed stem cells (38).
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YTH domain containing 1 (YTHDC1) is a known m6A 
reader found in the nucleus (49). Similar to METLL3, the inac‑
tivation of YTHDC1 is embryonic lethal, which demonstrates 
that YTHDC1 is required for the development of mitotic sper‑
matogonia in males and postnatal oocyte growth in females (50). 
Notably, when cytoplasmic YTHDF1and YTHDF2 are depleted, 
ESCs cannot emerge from diversification (50), indicating that the 
YTHDC1‑mediated regulation of ESC differentiation occurs in 
the nucleus rather than in the cytoplasm.

Other erasers and readers of m6A have also been demon‑
strated to regulate the development and differentiation of ESCs. 
Knocking out YTHDF2 enhances the proliferation of mouse 
and human hematopoietic stem cells, highlighting its potential 
role in transplantation‑related applications (51). Notably, m6A 
modification has not only been demonstrated to regulate differen‑
tiation in ESCs (38), but also in developmental cancer cells (52). 
Lobo et al (52) revealed that abundance of m6A and expression 
of its writer VIRMA/reader YTHDF3 are different among 
testicular germ cell tumor (TGCT) subtypes, with higher levels 
in seminomas. Higher VIRMA and YTHDF3 mRNA levels in 
seminomas maintain a low differentiation level compared with 
teratoma, which represents more differentiated TGCTs. However, 
Lobo et al (52) observed a stronger m6A immunostaining inten‑
sity in teratoma, suggesting that other writers may be responsible 
for establishing m6A in teratoma and/or that m6A modification 
may target other RNAs and even impart them a different fate.

m6A regulates biological metabolism. m6A is involved in 
metabolism and regulation of metabolic genes. It has been 

demonstrated that the demethylase FTO is involved in the 
metabolism of glucose and lipids in mammals  (33,40). As 
a classic target of fat metabolism, FTO can induce mRNA 
expression of FOXO1, glucose‑6‑phosphatase catalytic subunit 
and diacylglycerol O‑acyltransferase 2, and is closely associ‑
ated with glucose metabolism in type 2 diabetes (40). FTO 
has also been demonstrated to regulate the expression levels of 
activating transcription factor 4 to control glucose production 
in the liver (53). Wu et al (54) demonstrated that FTO modu‑
lates the deposition of triglycerides and the accumulation of 
lipids by regulating the m6A‑YTHDF2 signaling pathway. At 
present, the specific sites and complete mechanisms in glucose 
or fat production are unknown, and thus, future studies are 
required to address this.

m6A controls various aspects of immunity. Researchers have 
highlighted the roles of m6A in anti‑inflammatory immu‑
nity, antitumor immunity and adaptive immunity  (36,37). 
Yu et al (45) have demonstrated that YTHDF2 is involved in 
the inflammatory response of macrophages. Knockdown of 
YTHDF2 markedly increased the expression levels of IL‑6, 
TNF‑α and IL‑12, which were induced by lipopolysaccharide, 
and the phosphorylation levels of p65, p38 and ERK1/2 in 
macrophages were also upregulated. Furthermore, silencing 
of YTHDF2 could induce upregulation of mitogen‑activated 
protein kinase 4 and mitogen‑activated protein kinase 4 by 
stabilizing mRNA, activating MAPK and NF‑κB signaling 
pathways, and this aggravates the inflammatory response in 
macrophages. Liu et al (55) reported that YTHDF2 recognized 

Figure 1. Process of m6A methylation. m6A methylation is a dynamic and reversible process coordinated by a series of methyltransferases (m6A writers), 
demethylases (m6A erasers) and m6A readers. Methylation of m6A in the nucleus occurs via two mechanisms. ALKBH5 directly catalyzes the removal of 
m6A. FTO can oxidize m6A to hm6A and f6A sequentially. hm6A and f6A are moderately stable and can be hydrolyzed to adenine. Readers, such as YTHDC1 
and HNRNP family, bind to m6A‑modified mRNA in the nucleus, while other readers, including YTHDF1/2/3, IGF2BP family, YTHDC2 and eIF3, recognize 
m6A modification in cytosol. N6‑methyladenosine; ALKBH5, alkB homologue 5; FTO, fat mass and obesity‑associated protein; hm6A, N6‑hydroxymethyla
denosine; f6A, N6‑formyladenosine.



LIU  and  SU:  m6A MODIFICATIONS IN SIGNALING PATHWAYS IN HUMAN CANCER4

and degraded, long non‑coding RNA Dpf3 in dendritic cells 
specifically, which markedly inhibited C‑C motif chemokine 
receptor 7‑mediated dendritic cell migration and contributed 
to inflammatory responses. Studies of the m6A‑induced effect 
on antitumor immunity are emerging and still in their infancy. 
Han et al (56) demonstrated that the antigen‑specific CD8+ T 
cell antitumor response was improved in YTHDF1‑deficient 
mice compared with mice in the wild‑type group. Blocking 
programmed death‑ligand 1 could promote tumor regression 
in YTHDF1‑deficient mice (57). In addition, the mechanisms 
by which m6A regulates adaptive immunity is an emerging 
field of investigation (58). Li et al  (58) first elucidated the 
function of m6A in CD4+ T helper cells. The result suggested 
that deletion of METTL3 in mouse T cells disrupted T cell 
homeostasis and differentiation. The mRNAs of the suppressor 
of cytokine signaling (SOCS) family, which are involved in 
STAT signaling, exhibit slower mRNA decay and increased 
expression levels in Mettl3‑deficient naïve T cells (58). This 
increased SOCS family activity consequently inhibits IL‑7 
mediated STAT5 activation and T cell homeostatic prolifera‑
tion and differentiation (58).

m6A in infectious diseases. m6A modifications are involved 
in viral infections. Human immunodeficiency virus type 1 
(HIV‑1) RNA is methylated by m6A in infected cells, and 
readers, including YTHDF1‑3, bind to methylated HIV‑1 
RNA to inhibit viral reverse transcription and transla‑
tion  (41,42). Partial knockout of m6A writers decreases 
HIV‑1 Gag synthesis and viral release, whereas knockout 
of FTO has the opposite effect  (42). This indicates that 
m6A can enhance HIV‑1 protein synthesis and viral 
release, thereby contributing to the infection. Additionally, 
the proteins regulated by m6A are known to modulate the 
life cycle of hepatitis C virus (HCV)  (43). Depletion of 
METTL3 and METTL14 can increase the levels of HCV 
infection by promoting infectious viral particle production 
without affecting viral RNA replication (43,59). By contrast, 
inhibition of the m6A demethylase FTO, but not ALKBH5, 
has the opposite effect  (26). Furthermore, m6A has been 
demonstrated to serve important roles in other Flaviviridae, 
such as Zika virus (44). Lichinchi et al (44) revealed that the 
depletion or overexpression of the RNA methyltransferase 
could impact viral replication, demonstrating that the host 
RNA methyltransferase machinery acts as a key post‑tran‑
scriptional regulator of Zika virus. Furthermore, YTHDF 
proteins binding to Zika RNA indicates another regulatory 
aspect of m6A readers, which serves a role in viral RNA 
metabolism (44). Both RNA modification layers may act as 
pro‑ or anti‑viral factors in the host (44).

In addition, m6A serves a critical regulatory role in inflam‑
mation (60,61), gametogenesis  (62,63) and nervous system 
development (64,65). Importantly, the immune regulatory role 
of m6A may provide a novel idea for cancer immunotherapy 
research.

5. Role of m6A modifications in cancer

Consistent with the regulation of m6A modifications in normal 
biological processes, m6A is associated with a variety of human 
cancer types. However, the catalysis of m6A in cancer is not 

unitary. Numerous studies have demonstrated that m6A serves 
an important role in various cancers, often via the actions of 
regulators that influence m6A modifications and expression of 
oncogenes or tumor suppressor genes. The special roles of m6A 
regulators in human cancer types are summarized in Table I; 
however, the mechanisms by which m6A regulators contribute 
to carcinogenesis remain to be elucidated. The present review 
summarizes how the three types of m6A regulatory proteins 
function in human cancer and discusses the role of m6A in 
several classic signaling pathways.

Methyltransferases/writers in cancer. Writers positively 
regulate m6A modifications. The aberrant expression of writer 
proteins in tumors affects oncogenes and tumor suppres‑
sors, thus influencing tumorigenesis (66), invasion (66) and 
metastasis  (67). Interestingly, the mechanisms of writers 
in different types of cancer are not uniform. METTL3 is 
highly expressed in acute myeloid leukemia (AML) (68), and 
contributes to the translation of oncogenes. In gastrointestinal 
cancer, METTL3 has been demonstrated to be closely associ‑
ated with the processes involved in the progression of cancer, 
including tumor cell proliferation, apoptosis, metastasis, 
angiogenesis and cancer stem cell maintenance (69). A number 
of studies have demonstrated that METTL3 generally acts as 
an oncogene in gastrointestinal cancer types, such as gastric 
cancer (GC) (70,71), colorectal cancer (CRC) (72), hepatocel‑
lular carcinoma (HCC) (73) and pancreatic cancer (74,75). 
Furthermore, the modified mRNA targets of METTL3 are 
diverse. For example, METTL3‑mediated m6A modification 
can increase the expression levels of mRNA targets, including 
zinc finger MYM‑type containing 1 (ZMYM1) (70), SEC62 
homolog, preprotein translocation factor (76) and MYC (71), 
in a way of enhancing mRNA stability in GC, and promotes 
tumor cell proliferation, migration and invasion. Similarly, 
other writers, including METTL16  (24,25), ZC3H13  (26), 
VIRMA (8,16) and RBM15 (27), have been reported to have 
a complicated effect in other malignancies, such as hepa‑
tocellular carcinoma  (77), colorectal cancer  (78), prostate 
cancer (79) and breast cancer (80). It was hypothesized that 
induction mechanisms other than m6A regulation cause this 
phenomenon.

Demethylases/erasers in cancer. Increasing numbers of 
studies of erasers in cancer are being performed. These 
studies have identified that the m6A demethylase, FTO, serves 
a critical oncogenic role in AML (57,81,82). Specifically, its 
high expression in AMLs with mixed lineage leukemia rear‑
rangements and fms related receptor tyrosine kinase 3‑internal 
tandem duplication and/or nucleophosmin 1 mutations is 
associated with increased tumorigenesis and invasion of AML 
cells (81). Enhancing the expression levels of FTO can reduce 
the levels of m6A and mRNA transcription of ankyrin repeat 
and SOCS box containing 2 (ASB2) and retinoic acid receptor 
α (RARA)  (81). ASB2 and RARA are known to regulate 
the differentiation of leukemia cells by inhibiting all‑trans 
retinoic acid (81). In addition, FTO serves a crucial role in 
cholangiocarcinoma (83) and glioblastoma stem cells (84). 
In contrast to FTO, an AML study based on The Cancer 
Genome Atlas (TCGA) has suggested that ALKBH5, another 
m6A demethylase, exhibits frequent copy number loss that 
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Table I. Tumor‑suppressing and tumor‑promoting roles of m6A regulators in human cancer types.

	 m6A	 Type of	 Role in
First author, year	 regulator	 cancer	 cancer	 Mechanism	 (Refs.)

Vu et al, 2017	 METTL3	 AML	 Oncogene	 Promotes the translation of c‑MYC, BCL2 and PTEN	 (68)
				    mRNA	
Chen et al, 2019		  BC	 Oncogene	 METTL3‑mediated m6A modification operates a	 (118)
				    regulatory network which involves AFF4/NF‑κB/MYC	
				    to promote BC progression	
Shen et al, 2020		  CRC	 Oncogene	 Activates glycolysis and enhances colorectal cancer	 (72)
				    progression
Li et al, 2019		  GBM	 Oncogene	 Modulates mediated mRNA decay of splicing factors	 (119)
				    and alternative splicing isoform switches	
Yue et al, 2019		  GC	 Oncogene	 Enhances ZMYM1 mRNA stability and facilitates the	 (70)
				    EMT program and metastasis	
Yang et al, 2020		  GC	 Oncogene	 Mediates MYC target genes, and promotes proliferation	 (71)
				    and migration	
Chen et al, 2020		  HCC	 Oncogene	 Inhibits SOCS2 mRNA expression, and reduces HCC	 (73)
				    cell proliferation, migration, and colony formation	
Wang et al, 2020		  THCA	 Oncogene	 Regulates methylation of TCF1 mRNA and the activated	 (120)
				    Wnt signaling pathway	
Weng et al, 2018	 METTL14	 AML	 Oncogene	 Regulates MYB and MYC mRNA via m6A	 (121)
				    modification	
Ma et al, 2017		  HCC	 Suppressor	 Interacts with DGCR8 and positively modulates the	 (67)
				    primary microRNA‑126 process	
Cui et al, 2017		  GBM	 Suppressor	 Suppresses glioblastoma stem cell proliferation and	 (84)
				    self‑renewal	
Bansal et al, 2014	 WTAP	 AML	 Oncogene	 Promotes proliferation and arrests differentiation of	 (122)
				    leukemia cells	
Chen et al, 2019		  HCC	 Oncogene	 Facilitates progression of HCC via m6A‑HuR‑dependent	 (123)
				    epigenetic silencing of ETS1	
Qian et al, 2019	 VIRMA	 BC	 Oncogene	 Promotes BC progression by modulating CDK1	 (80)
Cheng et al, 2019		  HCC	 Oncogene	 Promotes the migration and invasion of HCC by altering	 (124)
				    m6A modification of ID2 mRNA	
Li et al, 2017	 FTO	 AML	 Oncogene	 Regulates expression of targets, such as ASB2 and 	 (81)
				    RARA, by reducing m6A levels, and enhances leukemic	
				    oncogene‑mediated cell transformation and leukemogenesis	
Xu et al, 2017		  GC	 Oncogene	 Unclear	 (125)
Li et al, 2019		  LC	 Oncogene	 Promotes the proliferation of LC cells by regulating	 (126)
				    USP7 mRNA	
Li et al, 2019		  HCC	 Oncogene	 Triggers the demethylation of PKM2 mRNA and	 (127)
				    accelerates translation	
Zhang et al, 2017	 ALKBH5	 GBM	 Oncogene	 Maintains tumorigenicity by sustaining FOXM1	 (86)
				    expression	
Chao et al, 2020		  LC	 Oncogene	 Affects the proliferation and invasion of LC cells by	 (128)
				    downregulating m6A modification of FOXM1 mRNA	
Lin et al, 2019	 YTHDF1	 HCC	 Oncogene	 Mediates m6A‑increased translation of Snail mRNA	 (129)
Nishizawa et al, 2019		  CRC	 Oncogene	 Induces the translation of m6A‑modified FZD9 and	 (88)
				    Wnt6 mRNA	
Mapperley et al, 2021	 YTHDF2	 AML	 Suppressor	 Suppresses proinflammatory signaling pathways and	 (60)
				    sustains hematopoietic stem cell function	
Li et al, 2020		  PC	 Oncogene	 Mediates the mRNA degradation of the tumor	 (130)
				    suppressors LHPP and NKX3‑1	
Dixit et al, 2020		  GBM	 Oncogene	 Stabilizes oncogene MYC and VEGFA transcripts in	 (131)
				    glioblastoma stem cells	
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results in non‑carcinogenic effects in AML (85). Furthermore, 
Zhang  et  al  (86) demonstrated that ALKBH5 methylated 
FoxM1 to maintain proliferation and development in glioblas‑
toma stem‑like cells.

Readers in cancer. The characterization of m6A readers 
has provided valuable insight into to the mechanisms of 
m6A‑mediated post‑transcriptional gene regulation in cancer. 
It has been demonstrated that YTHDF1 is expressed at higher 
levels in CRC tissues, and that it contributes to malignant 
phenotypes and poor patient prognosis (87). A further study 
has indicated that YTHDF1 is induced by the oncogene 
c‑MYC, and high YTHDF1 expression in malignant tumors 
can enhance the resistance to anticancer drugs, including 
oxaliplatin and fluorouracil (88). As another member of the 
YTH domain‑containing family, YTHDF2 recognizes m6A 
modifications in the cytoplasm (31). A previous study has 
identified that YTHDF2 could directly bind to the 3' end 
of the SOCS2 transcript, and that knockdown of YTHDF2 
augmented SOCS2 expression in HCC cells (73). The SOCS 
family of proteins are essential tumor suppressors in different 
cancer types, suggesting an important role of YTHDF2 in 
human cancer (73). YTHDC2 is known to promote the mRNA 
translation of hypoxia inducible factor α1 (HIF‑1α) to induce 
the metastasis of CRC (89). Knockdown of YTHDC2 attenu‑
ates the protein expression of metastasis‑related genes, such as 
HIF‑1α, and inhibits the metastasis in vitro and in vivo (89). 
IGF2BP has been demonstrated to be highly expressed in a 
variety of malignant tumors, such as HCC, cervical cancer and 
AML (10,90). Huang et al (90) reported that IGF2BP has a 
positive effect on the stability and translation levels of c‑MYC, 
indicating the potential latent relationship between IGF2BP 
and other readers.

6. m6A modifications in classic signaling pathways of cancer

As more research on m6A in cancer is being conducted, several 
studies have examined whether m6A can regulate cancer by 
affecting signaling pathways, and explored the specific mecha‑
nisms of m6A. As a result, studies have demonstrated that 

m6A can promote or inhibit malignant tumors by regulating 
different signaling pathways (Figs. 2 and 3).

Wnt signaling pathway. Wnt signaling is a pivotal regulatory 
signaling pathway that has diverse roles in cancer progression. 
The m6A modification targeting Wnt signaling has been a 
focus of cancer research. According to a study conducted by 
Zhang et al (91), the Wnt signaling pathway is activated after 
the levels of m6A are reduced by inhibiting METTL14 in 
GC. By contrast, FTO knockout exhibits the opposite effect 
on the Wnt signaling pathway (91). This suggests that m6A 
can affect the activity of the Wnt signaling pathway in GC. 
Similarly, E‑cadherin is modulated by m6A; however, more 
studies are required to improve the understanding of these 
mechanisms (92). In endometrial cancer, FTO promotes tumor 
metastasis and invasion (93). FTO catalyzes demethylation 
modification in the 3'‑untranslated region (3'‑UTR) of HOXB13 
mRNA, thereby inhibiting m6A modification recognition by 
the YTHDF2 protein (93). This leads to decreased HOXB13 
mRNA decay and increased HOXB13 protein expression and 
activation of the Wnt signaling pathway (93). Enhanced m6A 
modification is also considered to be an oncogenic mecha‑
nism in hepatocellular carcinoma; METTL3 expression is 
upregulated and Wnt/β‑catenin signaling pathway activity is 
induced via promotion of catenin β1 expression, which ulti‑
mately accelerates hepatocellular carcinoma development (94). 
The Wnt signaling pathway activates several cancer‑related 
markers, including key regulators of the cell cycle, prolifera‑
tion, invasion, angiogenesis and drug resistance (95). Therefore, 
examining the effect of m6A on the Wnt signaling pathway will 
provide guidance to explore the detailed mechanisms in cancer.

Epithelial‑mesenchymal transition (EMT) signaling pathway. 
The EMT signaling pathway is a hot spot for cancer research 
due to its role in the initial process of tissue carcinogenesis. 
Furthermore, the markers of EMT are closely associated with 
tumor progression processes, such as migration, invasion, 
proliferation, anti‑apoptosis, stemness and tumor radio/chemo‑
sensitivity of cancer cells (96,97). Yue et al (70) revealed the 
METTL3‑mediated m6A modification process in GC cells and 

Table I. Continued.

	 m6A	 Type of	 Role in
First author, year	 regulator	 cancer	 cancer	 Mechanism	 (Refs.)

Chang et al, 2020	 YTHDF3	 BRC	 Oncogene	 Enhances the translation of ST6GALNAC5, GJA1 and	 (132)
				    EGFR, associated with brain metastasis	
Ma et al, 2020	 YTHDC2	 LC	 Suppressor	 Inhibits LC tumorigenesis by suppressing SLC7A11‑	 (133)
				    dependent antioxidant function	
Wu et al, 2019	 hnRNP	 CRC	 Oncogene	 m6A‑induced lncRNA RP11 can trigger the	 (134)
				    dissemination of CRC cells via post‑translational
				    upregulation of Zeb1	

Tumor‑suppressing and tumor‑promoting roles of m6A regulators in different human cancer types are shown. This illustrates the different 
effects of m6A regulators and their mechanisms. m6A, N6‑methyladenosine; AML, acute myeloid leukemia; BC, bladder cancer; BRC, breast 
cancer; CRC, colorectal cancer; GBM, glioblastoma; GC, gastric cancer; HCC, hepatic cell carcinoma; LC, lung cancer; PC, prostate cancer; 
THCA, thyroid carcinoma.
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identified ZMYM1 as a target of METTL3. The elevated expres‑
sion levels of ZMYM1 repress the activation of E‑cadherin 
promoter by recruiting C‑Terminal Binding Protein/Human 
lysine specific demethylase l/CoREST complex, thus facilitating 
the EMT process. YTHDF2 is highly expressed in various 
cancer types and is involved in dual regulation  (60,98). In 
pancreatic cancer, YTHDF2 knockdown increases the expres‑
sion levels of YAP, which is a key protein of the TGF‑β/Smad 
signaling pathway (98). A previous study has demonstrated that 
there are two m6A sites in YY1 associated protein 1 (YAP), 
which suggests that YTHDF2 directly binds to YAP mRNA 
to decrease the stability of mRNA and regulate EMT via YAP 
signaling inhibition (98). Progress has also been achieved in the 
development of novel drug targets based on m6A modifications. 
Chen et al (99) reported that simvastatin induced METTL3 
downregulation in lung cancer tissues, which further influenced 
EMT via m6A modification on EZH2 mRNA and inhibited the 
malignant progression of lung cancer.

PI3K/Akt signaling pathway. The PI3K/Akt signaling pathway 
is important for cancer progression. Although aberrant activity 
of the PI3K/Akt signaling pathway could be associated with 

tumorigenesis, it also has a great impact on the proliferation, 
adhesion, invasion and angiogenesis of malignant tumors (100). 
Increasing evidence suggests that m6A modification is 
involved in carcinogenesis by targeting the PI3K/Akt signaling 
pathway (101‑105). In renal cell carcinoma, METTL3 inhibits 
the PI3K/Akt/mTOR signaling pathway and serves a role as a 
tumor suppressor gene (101). Zhao et al (102) conducted an anal‑
ysis for sequencing data of gastrointestinal cancer from TCGA 
and Gene Expression Omnibus, and demonstrated that m6A 
modification directly modulates PI3K/Akt and mTOR signaling 
pathway activity by regulating critical kinases in human gastro‑
intestinal cancer. This conclusion was supported and validated 
by a study by Chen et al (103). According to Chen et al (103), 
knockdown of METTL14 markedly abolished SOX4 mRNA 
m6A modification and elevated SOX4 mRNA expression, 
whereas METTL14‑mediated SOX4 mRNA degradation stimu‑
lated PI3K/Akt signaling and inhibited CRC malignant process. 
A study revealed that m6A modification can affect the activity 
of the PI3K/Akt signaling pathway by regulating miRNA (104). 
Bi et al (104) demonstrated that METTL3 promoted miR‑126‑5p 
maturation by modifying pri‑miR‑126‑5p in ovarian cancer. 
METTL3 knockdown inhibits the effect of miR‑126‑5p to 

Figure 2. m6A regulators are involved in signaling pathways and promote cancer progression. Diagram showing the mechanism via which m6A regulators 
affect classic signaling pathways to promote tumor progression in gastric cancer, hepatocellular carcinoma, endometrial cancer, pancreatic cancer, acute 
myeloid leukemia, ovarian cancer and cocancer. m6A, N6‑methyladenosine.



LIU  and  SU:  m6A MODIFICATIONS IN SIGNALING PATHWAYS IN HUMAN CANCER8

upregulate PTEN, which prevents PI3K/Akt/mTOR signaling 
pathway activation. Furthermore, Liu et al (105) demonstrated 
that reductions of m6A methylation mediated by METTL14 
mutation or reduced expression levels of METTL3 lead to the 
activation of the Akt signaling pathway by decreasing PHLPP2 
expression and increasing mTORC2 expression, which promotes 
cell proliferation in endometrial cancer.

ERK signaling pathway. The ERK signaling pathway has 
been demonstrated to be important for cancer progression. 
The substrates of ERK signaling are broad, which make 
ERKs key regulators of proliferation, migration, apoptosis and 
chemo‑immune‑resistance, as well as appealing therapeutic 
targets in cancer (106). Zhong et al (107) revealed that YTHDF2 
directly bound to the m6A modification site of the EGFR 
3'‑UTR to promote the degradation of EGFR mRNA in HCC 
cells, and this mechanism suppressed MEK and ERK activa‑
tion, cell proliferation and tumor growth. However, previous 
studies, have revealed the interaction between m6A modifica‑
tion and the ERK signaling pathway (108,109). Xie et al (109) 
demonstrated that basic leucine zipper ATF‑like transcription 
factor 2 (BATF2) could bind to p53 and enhanced its protein 
stability, thereby inhibiting the phosphorylation of ERK in GC, 
and m6A modification mediated by METTL3 could repress 
BATF2 mRNA expression, which provides potential prognostic 
and therapeutic targets for GC treatment. Conversely, the ERK 
signaling pathway has been demonstrated to have a positive 
effect on m6A deposition (108). Sun et al (108) demonstrated 

that ERK could phosphorylate METTL3 at S43/S50/S525 and 
WTAP at S306/S341, thus stabilizing the m6A methyltrans‑
ferase complex in ESC and malignant tumor cells.

Other signaling pathways in cancer. In addition to the afore‑
mentioned representative signaling pathways, researchers 
have reported that m6A modification also serves a crucial 
role in other classic signaling pathways. Ghazi et al  (110) 
investigated the effects of fusaric acid on p53 expression and 
its epigenetic regulation via promoter methylation and m6A 
modification in HCC cells. The results revealed that fusaric 
acid epigenetically decreased p53 expression by altering its 
m6A modification (110). Similarly, Ding et al (111) reported 
that lipopolysaccharides stimulation promotes GNAS complex 
locus (GNAS) expression by increasing the m6A methylation 
levels of GNAS mRNA, thus inducing HCC cell prolifera‑
tion and invasion by interacting with the STAT3 signaling 
pathway in HCC. In addition, Zhang et al (112) demonstrated 
that β‑estradiol can accelerate FTO nuclear localization and 
increase the proliferation of endometrial cancer cells by modu‑
lating the mTOR signaling pathway; however, the mechanism 
by which estrogen receptor‑α mediates FTO nuclear accumu‑
lation is unclear (113).

7. Therapeutic implications of m6A in cancer

At present, m6A modification is mechanistically linked to the 
progression and prognosis of several types of cancer. Given the 

Figure 3. m6A functions as an inhibitor in human cancer by regulating signaling pathways. m6A inhibits cancer progression by regulating signaling pathways 
in gastric cancer, hepatocellular carcinoma, acute myeloid leukemia, endometrial cancer, lung cancer and pancreatic cancer. m6A, N6‑methyladenosine.
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complicated process of m6A catalysis in cancer, m6a and its 
regulatory proteins may be novel therapeutic targets for cancer 
diagnosis and prognosis. For example, METTL3 has been 
considered as an oncogenic factor in numerous human types of 
cancer. According to recent studies, METTL3 may be an inde‑
pendent prognostic factor for patients with GC (114), CRC (115) 
and HCC (73). Similarly, evidence also supports the proliferative 
roles of FTO in cancer (81). FB23‑2, a promising FTO inhibitor, 
has been demonstrated to negatively regulate proliferation and 
progression of human AML cell lines by inhibiting FTO (57). 
Furthermore, R‑2HG, another small‑molecule inhibitor of FTO, 
exhibits anticancer activity in AML (18). Additionally, clinical 
data have demonstrated that the expression levels of ALKBH1 
are negatively associated with tumor size and TNM stage, and 
that the expression levels of FTO are associated with improved 
overall survival in patients with GC (116). Despite extensive 
efforts being devoted to study m6A in cancer, a number of issues 
associated with the function and mechanism of m6A remain 
unknown. Considering that novel m6A readers and writers 
are constantly emerging, m6A‑mediated biological functions 
require further exploration. Additionally, multifarious modifica‑
tion targets and sites suggest that the specific mechanisms of 
m6A is not unitary even in the same type of malignant tumor. 
This should be clarified. The rapid development of detection 
methods and several novel inhibitors of m6A‑related factors will 
provide practical assistance for researchers.

8. Conclusion

Increasing studies suggest that m6A is deeply involved in the 
regulation of gene expression. m6A can determine the fate during 
development and differentiation, and aberrant m6A modifi‑
cations can affect classic signaling pathways, including the 
PI3K/AKT (91,101,105,112), Wnt (91,92) and mTOR (101,113) 
signaling pathways, in cancer. The dual role of m6A regula‑
tion in cancer is unclear, and may be due to differences in 
cell types and states. At present, m6A is gaining attention in 
cancer research, and may provide promising targets for cancer 
therapies. Future research may focus more on the specific 
mechanism of m6A methyltransferases and demethylases, or 
the specificity and sensitivity of readers. The regulatory role 
of m6A modification in cancer is described as a ‘double‑edged 
sword’ implying that clinical applications require further 
investigation (117). Furthermore, the development of methods 
for the detection and analysis of m6A is required to improve the 
understanding of the underlying mechanisms.
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