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Abstract. The aim of the present study was to investigate 
the synergistic effect of LY294002 (a PI3K inhibitor) and 
ABT199 (a BCL2 inhibitor) on the cell cycle in acute myeloid 
leukemia (AML). The optimal concentration and duration of 
combined LY294002 and ABT199 were determined in human 
erythroleukemia (K562), promyelocytic leukemia (HL60) and 
myeloid leukemia (KG1a) cell lines. The mRNA and protein 
expression levels of cell cycle‑related molecules, including 
S‑phase kinase‑associated protein 2 (Skp2), p27, BCL2, 
Bax, cleaved caspase 3 (caspase‑3) and caspase 9 (caspase‑9) 
were detected via reverse transcription‑quantitative PCR and 
western blot analysis, respectively. At the molecular level, 
LY294002 and ABT199 combination treatment significantly 
downregulated Skp2, Bcl2, procaspase‑3 and procaspase‑9 
expression levels, but markedly upregulated p27, Bax, cleaved 
caspase‑3 and caspase‑9 expression levels in K562, HL‑60 and 
KG1a cells. The results of the present study demonstrated that 
LY294002 and ABT199 combination treatment may serve as a 
novel therapeutic strategy for AML.

Introduction

Acute myeloid leukemia (AML) is common in adults and 
children (1), but is typically considered a disease of the elderly 
population (2). AML is characterized by the rapid growth of 
the myeloid lineage of blood cells and the malignant transfor‑
mation of hematopoietic stem/progenitor cells (3,4). Malignant 
precursor cells accumulate in the blood and bone marrow, 
resulting in acute symptoms, including anemia, infections, 
bleeding and bruising, bone pain, bone marrow failure and 
death (5). Elderly patients with AML have a markedly less 
favorable prognosis due to increased resistance to standard 
cytotoxic agents (6‑8). In addition, patients with AML who 
respond to chemotherapy often relapse later in life (7,9,10). 
Yu et al (11) reported that relapse typically occurred within the 
first 3 years from the end of chemotherapy in young patients. 
Therefore, preventing chemoresistance in a selective manner 
and identifying a novel therapeutic strategy are important for 
improving the cure rate of AML.

The PI3K/AKT signaling pathway serves an important 
role in maintaining cell proliferation and survival, and 
dysregulation of the signaling pathway is involved in various 
malignancies, including AML (12‑16). Directly stimulating 
the mitochondrial apoptosis signaling pathway is a novel 
therapeutic strategy to target cancer cells  (17). The BCL2 
protein family regulates the mitochondrial apoptosis signaling 
pathway, and aberrant upregulation of BCL2 is related to 
carcinogenesis and drug resistance (18). BCL2 overexpres‑
sion has also been reported in AML (19). Moreover, BCL2 
overexpression can increase leukemia fitness, render intrinsic 
chemoresistance, and contribute to the survival of minimal 
residual quiescent leukemia stem cells that are responsible 
for AML relapse (20,21). Activation of the PI3K/AKT/mTOR 
signaling pathway and BCL2 upregulation are related to 
stroma‑mediated AML survival (22‑26).

LY294002, an inhibitor of PI3K, is widely used to study 
the role of the PI3K/AKT signaling pathway in transformed 
cells (27,28). In some cancer cell lines, LY294002 can induce 
apoptosis and increase sensitivity to chemotherapeutic 
drugs (29‑31). It is reported that LY294002 enhances chemo‑
sensitivity of K562 cells to Adriamycin (32). ABT199 is a 
second‑generation, specific antagonist of BCL2 (3). At nano‑
molar concentrations, ABT199 induces apoptosis in various 
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chemosensitive and chemoresistant AML stem and progenitor 
cells, and inhibits leukemic progression (3). In addition, a 
combination of ABT199 hypomethylating agents showed 
an encouraging response in patients with newly diagnosed 
AML (33). At present, the most promising drugs for targeted 
treatment of AML are inhibitors that regulate metabolism or 
signaling pathways (34). However, it is difficult for single‑target 
inhibitors to produce significant and sustained effects. The 
scientific and reasonable combination of multi‑pathway or 
multi‑target drugs is a research hotspot. Therapeutic strategies 
targeting the key molecules in the PI3K/AKT and cell apop‑
tosis signaling pathways, such as LY294002 and ABT199, may 
improve therapeutic efficacy in patients with AML.

The aim of the present study was to investigate whether 
LY294002 and ABT199 exerted a synergistic effect on AML 
cell apoptosis and the cell cycle. The result of the present study 
may provide insight for the combined application of LY294002 
and ABT199 in the treatment of AML, thus providing a novel 
therapeutic strategy for the disease.

Materials and methods

Cell lines and cell culture. Human erythroleukemia (K562) 
and promyelocytic leukemia (HL60) cell lines were purchased 
from Wuhan Punosai Life Technology Co., Ltd. The K562 
cell line was isolated and established from human leukemia 
cells, which can grow in vitro over a long period of time. 
Based on the characteristics of a short proliferation cycle, as 
well as stable growth and metabolism, the K562 cell line is a 
commonly used model cell line in biomedical research (35). 
The HL60 cell line is typically used to study how certain 
blood cells form, providing continuous human cells for the 
study of molecular events in granulocyte differentiation and 
the physiological effects of this process, drug action and 
viral components  (36). The human myeloid leukemia cell 
line (KG1a) was purchased from Shanghai Xinyu Biological 
Technology Co., Ltd. The KG1a cell line is morphologically 
similar to AML, displaying significant polymorphisms (37). 
K562, HL60 and KG1a cells were cultured in medium (IMDM 
medium for K562 cells; RPMI‑1640 medium for HL60 and 
KG1a cells) supplemented with 10% FBS (Gibco; Thermo 
Fisher Scientific, Inc.), 1% 100 IU/ml penicillin and 100 mg/l 
streptomycin (Beijing Solarbio Science and Technology Co., 
Ltd.) at 37˚C in a humidified atmosphere with 5% CO2.

Reagents. PI3K inhibitor (LY294002) and BCL2 inhibitor 
(ABT199) were purchased from Biyuntian Technology, Inc. To 
make a 10 mM stock solution, 25 mg LY294002 was dissolved 
in 8.13 ml DMSO. Similarly, to make a 10 mM stock solution, 
25 mg ABT199 was dissolved in 2.9 ml DMSO. Cell medium 
was used for the preparation of a concentration gradient 
of LY294002 and ABT199. The concentration gradient of 
LY294002 was as follows: 0.5, 0.57, 0.97, 1.5, 2.5 and 5 µM. 
The concentration gradient of ABT199 was as follows: 3, 8, 
15, 20, 30 and 50 nM. The related effects of LY294002 and 
ABT199 have been previously investigated  (38,39). Stable 
compounds are considered optimal for drug research. It has 
been hypothesized that LY294002 and ABT199 do not undergo 
degradation or other alterations in activity in the medium, and 
their chemical properties are relatively stable.

Cell counting kit‑8 (CCK‑8) assay. K562, HL60 and KG1a 
cell suspensions were prepared and seeded (100 µl/well; three 
replicate wells) into 96‑well plates. Cells were cultured for 
24 h to allow adherence. Subsequently, the cells were treated 
with LY294002 and ABT199 for 24, 36, 48 or 72 h. Then, 
10 µl CCK‑8 solution (Biyuntian Technology, Inc.) was added 
to each well and cultured for 1 h. Absorbance was measured 
at a wavelength of 450 nm using a microplate reader (Bio‑Rad 
Laboratories, Inc.).

Dose‑effect relationship of single and combination treatment of 
drugs on cells. The cell activity value was calculated according 
to the optical density value obtained via the CCK‑8 assay. Based 
on the cell activity value, the IC50 value was determined using 
an online calculator (www.aatbio.com/tools/ic50‑calculator). 
The smaller the IC50 value, the more suitable the treatment 
was for selection. A synergistic effect was observed when 
the inhibitory rate of the combination treatment was greater 
than the sum of the inhibitory rates of the two single drugs, 
which had reference significance. In the present study, Jin's 
Formula was used to evaluate the synergistic effect (40). The 
formula is as follows: Q=Eab/(Ea + Eb‑Ea x Eb), where Ea is 
the inhibition rate of LY294002 treatment, Eb is the inhibition 
rate of ABT19 treatment and Eab is the inhibition rate of 
LY294002 and ABT199 treatment. Q<0.85 indicates that the 
combined effect of the two agents is antagonistic, 0.85≤Q<1.15 
indicates that the combined effect of the two agents is additive 
and Q≥1.15 indicates that the combined effect of the two 
agents is synergistic. Based on Jin's Formula, the Q‑value in 
the three cell lines was ≥1.15, which indicated a synergistic 
effect of LY294002 and ABT199.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from K562, HL60 and KG1a cells using 
TRIzol® according to the manufacturer's protocol. RNA 
concentration and purity were determined using a nucleic acid 
concentration analyzer. Total RNA was reverse‑transcribed 
into cDNA using the SuperScript III reverse transcription kit 
(Invitrogen; Thermo Fisher Scientific, Inc.). Subsequently, 
qPCR was performed using an ABI 7300 Real‑time PCR 
system (Applied Biosystems; Thermo Fisher Scientific, Inc.) 
with SYBR® Green PCR Master Mix (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). The sequences of reverse and 
forward primers for all of the genes analyzed were as follows: 
Skp2 (forward: ATG​CCC​CAA​TCT​TGT​CCA​TCT, reverse: 
CAC​CGA​CTG​AGT​GAT​AGG​TGT); P27 (forward: AGG​AGG​
AGA​TAG​AAG​CGC​AGA, reverse: GTG​CGG​ACT​TGG​TAC​
AGG​T); Bcl‑2 (forward: AGA​TGG​GAA​CAC​TGG​TGG​AG, 
reverse: CTT​CCC​CAA​AAG​AAA​TGC​AA); Bax (forward: 
AGG​GTT​TCA​TCC​AGG​ATC​GAG​CA, reverse: CAG​CTT​
CTT​GGT​GGA​CGC​ATC); Caspase‑3 (forward: ACA​TCT​
CCC​GGC​GGC​GGG​CCG​CGG​A, reverse: CTT​CTA​CAA​
CCG​CCT​CAC​AAT​AGC​A); Caspase‑9 (forward: AGT​TGG​
CTA​CTC​GCC​ATG​GAC​GAA​G, reverse: TTT​GCT​GCT​TGC​
CTG​TTA​GTT​CGC​A); β‑actin (forward: GAC​AGG​ATG​CAG​
AAG​GAG​ATT​ACT, reverse: TGA​TCC​ACA​TCT​GCT​GGA​
AGG​T). The following thermocycling conditions were used for 
qPCR: 5 min at 95˚C; followed by 40 cycles of 10 sec at 95˚C, 
20 sec at 58˚C, 20 sec at 72˚C and 15 sec at 95˚C; 60 sec 
at 60˚C; and final extension for 15 sec at 95˚C. All reactions 
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were performed in triplicate. mRNA expression levels were 
quantified using the 2‑ΔΔCq method (41) and normalized to the 
internal reference gene β‑actin.

Western blot analysis. Total protein was extracted from 
K562, HL60 and KG1a cells and mixed with pyrolysis liquid. 
Maximum power ultrasonic was used for cell crushing in the 
ice bath (3x10 sec). Protein concentrations were determined 
using the BCA protein quantitative method. Equivalent 
amounts of protein (25 µg) were separated via 12% SDS‑PAGE 
and electro‑transferred onto a PVDF membrane in 1X protein 
transfer membrane solution in ice water for 1.5 h. Following 
blocking in PBS supplemented with 5% skimmed dry milk 
at room temperature for 1 h, the membranes were incubated 
at 4˚C overnight with primary antibodies of Skp2 (monoclonal 
antibody, 1:500, bs‑1096R, BIOSS), P27 (polyclonal antibody, 
1:200, DF6090, Affinity Biosciences), Bcl2 (polyclonal anti‑
body, 1:500, bs‑0032R, BIOSS), Bax (polyclonal antibody, 
1:500, bs‑0127R, BIOSS), cleaved casepase‑3 (polyclonal anti‑
body, 1:500, bs‑0081R, BIOSS), cleaved casepase‑9 (polyclonal 
antibody, 1:500, bs‑0049R, BIOSS), Procasepase‑3 (mono‑
clonal antibody, 1:500, sc‑7272, Santa Cruz Biotechnology) 
and Procasepase‑9 (monoclonal antibody, 1:500, sc‑70506, 
Santa Cruz Biotechnology). Subsequently, the membranes 
were incubated with HRP‑conjugated secondary antibodies 
(1:5,000, ZB‑2305, ZSGB‑BIO) at room temperature for 1 h. 
Protein bands were visualized using enhanced ECL chemilu‑
minescence reagents followed by exposure to X‑ray film. The 
protocol was repeated three times by using ImageJ software.

Statistical analysis. Statistical analyses were performed using 
SPSS statistical software (SPSS, Inc.). Data are presented as 
the mean ± SD. ANOVA and Dunnett's post hoc test was used 
for comparison analysis between the two groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Determination of optimal concentration and duration of 
LY294002 and ABT199 combination treatment. To identify 
the optimal concentration and duration of LY294002 and 
ABT199 combination treatment, the IC50 values of different 
concentrations of LY294002, ABT199 or LY294002 and 
ABT199 combination treatment at 24, 36, 48 and 72 h in K562, 
HL60 and KG1a cells were calculated. A synergistic effect 
was observed when the inhibitory rate of the combination 

treatment was greater than the sum of the inhibitory rates of 
the two single drugs.

In K562 cells (Table  I), the IC50 value of LY294002 
(1.433  µM) was the lowest following treatment for 48  h. 
At 48 h, the IC50 value of ABT199 was 22.498 nM. Therefore, 
the combination of LY294002 <1.433  µM and ABT199 
<22.498 nM at 48 h was used as the screening criteria. The 
combination of 0.97 µM LY294002 and 18.222 nM ABT199 
at 48 h was considered to be the optimal concentration and 
duration of drug combination action in K562 cells (Table II).

In HL60 cells (Table  I), the IC50 value of ABT199 
(262.94 nM) was the lowest after treatment for 48 h. At 48 h, 
the IC50 value of LY294002 was 3.893  µM. Therefore, 
the combination of LY294002 <3.893  µM and ABT199 
<262.94 nM at 48 h was used as the screening criteria. The 
combination of 0.57 µM LY294002 and 22.476 nM ABT199 
at 48 h was considered the optimal concentration and duration 
of drug combination action in HL60 cells (Table III).

In KG1a cells (Table  I), the IC50 value of LY294002 
(2.794 µM) was the lowest after treatment for 24 h. At 24 h, 
the IC50 value of ABT199 (36.294 nM) was also the lowest. 
Therefore, the combination of LY294002 <2.794  µM and 
ABT199 <36.294 nM at 24 h was used as the screening criteria. 
The combination of 0.97 µM LY294002 and 23.141 nM ABT199 
at 24 h was considered to be the optimal concentration and 
duration of drug combination action in KG1a cells (Table IV).

RT‑qPCR. To further investigate the effects of LY294002 and 
ABT199 combination treatment on K562, HL60 and KG1a cells 
at the molecular level, six cell cycle‑related molecular markers 
[S‑phase kinase associated protein 2 (Skp2), p27, Bcl2, Bax, 
cleaved caspase‑3 and caspase‑9] were evaluated. The primer 
sequences are shown in Table V. In K562 cells (Fig. 1), Skp2 
and Bcl2 expression levels were significantly downregulated 
after LY294002 and ABT199 combination treatment. p27, Bax, 
cleaved caspase‑3 and caspase‑9 expression levels were markedly 
upregulated by single and combination treatment with LY294002 
and ABT199. In both HL60 (Fig. 2) and KG1a (Fig. 3) cells, Skp2 
and Bcl2 expression levels were significantly downregulated in 
the single ABT199 treatment group and the combined treatment 
group. p27, Bax, cleaved caspase‑3 and caspase‑9 expression 
levels were significantly upregulated in the single LY294002, 
single ABT199 and combined treatment groups.

Western blotting. To assess the protein expression levels of 
Skp2, P27, Bcl2, Bax, procaspase‑3, procaspase‑9, cleaved 

Table I. IC50 value of different contention of single LY294002 and ABT199 at different time points in K562, HL60 and KG1a 
cells.

	 K562 cells	 HL60 cells	 KG1a cells
	--------------------------------------------------------------------	------------------------------------------------------------------	-------------------------------------------------------------------  
IC50 value	 LY294002 (µM)	 ABT199 (nM)	 LY294002 (µM)	 ABT199 (nM)	 LY294002 (µM)	 ABT199 (nM)

24 h	 1.637	 23.666	 3.373	 1100.611	 2.794	 36.294
36 h	 1.612	 24.445	 3.472	 957.016	 2.942	 313.530
48 h	 1.433	 22.498	 3.893	 262.94	 2.853	 389.674
72 h	 1.547	 22.128	 4.577	 464.444	 6.758	 378.516
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caspase‑3 and caspase‑9 following LY294002 and ABT199 
combination treatment, western blotting was performed in 
K562 (Fig. 4), HL60 (Fig. 5) and KG1a (Fig. 6) cells. The 
results demonstrated that Skp2 and Bcl2 protein expression 
levels were significantly decreased in the single LY294002, 
single ABT199 and combined treatment groups in all three 
cell lines. The protein expression levels of p27 and Bax, 
the ratio of cleaved procaspase‑3/procaspase‑3 and cleaved 
procaspase‑9/procaspase‑9 were remarkably increased in the 
single LY294002, single ABT199 and combined treatment 
groups, and significantly higher compared with single drug 
treatment.

Discussion

LY294002 blocked the proliferation of primary AML blasts 
by inhibiting AKT‑induced survival signaling pathways and 
induced cell death (42‑44). In addition, LY294002 induced 
AML cell apoptosis  (42). Treatment with LY294002 led 
to a dose‑dependent decrease in the phosphorylation of 
AKT, mTOR, eukaryotic translation initiation factor 4E 
binding protein 1, ribosomal protein S6 kinase B1 and 
ribosomal protein S6, which was associated with reduced 
cell viability due to increased apoptosis (45). Zhou et al (32) 
and Manda‑Handzlik et al  (  36) reported that LY294002 
in combination with conventional chemotherapeutic 
drugs increased the sensitivity of AML cells to apoptosis. 
ABT199 can impair mitochondrial respiration and energy 

production in human leukemia stem cells  (20). Clinical 
trials have demonstrated that ABT199 is a promising drug 
for the treatment of hematopoietic malignancy and chronic 
lymphocytic leukemia  (46‑48). Roche et al  (27) reported 
that ABT199 showed promising single‑agent activity 
in samples derived from patients with AML. Several 
clinical trials of hypomethylator‑based combinations 
(ABT199 + decitabine/azacytidine) have doubled the response 
rate, improving the survival of patients with AML (33). In 
addition, ABT199 and ONC212 combination treatment was 
highly synergistic in the AML xenograft model  (49). At 
the molecular level, LY294002 and ABT199 combination 
treatment significantly decreased Skp2 and Bcl2 expression 
levels, but markedly increased p27, Bax, cleaved caspase‑3 
and caspase‑9 expression levels in K562, HL‑60 and 
KG1a cells. Skp2 is involved in leukemia cell proliferation 
and is associated with chronic myeloid leukemia  (50,51). 
Kojima  et  al  (43) and Park  et  al  (44) reported that Skp2 
expression was increased in leukemia and AML. The p27 

Table II. IC50 value of different contention of LY294002 and 
ABT199 combination at different time points in K562 cells.

IC50 value	 ABT199 (nM)
	--------------------------------------------------------------------------------
LY294002 (µM)	 24 h	 36 h	 48 h	 72 h

0.5	 23.285	 25.654	 25.230	 69.294
0.57	 23.162	 26.747	 40.195	 127.106
0.97	 25.122	 25.184	 18.222	 32.125
1.5	 25.339	 25.339	 23.048	 21.069
2.5	 25.347	 25.704	 28.156	 18.440
5	 24.202	 25.731	 77.801	 23.194

Table III. IC50 value of different contention of LY294002 and 
ABT199 combination at different time points in HL60 cells.

IC50 value	 ABT199 (nM)
	--------------------------------------------------------------------------------
LY294002 (µM)	 24 h	 36 h	 48 h	 72 h

0.5	 42.234	 183.449	 24.275	 37.273
0.57	 21.314	 183.569	 22.476	 160.804
0.97	 56.324	 196.308	 26.998	 81.574
1.5	 18.712	 35.984	 28.015	 60.768
2.5	 19.210	 43.297	 28.457	 39.534
5	 23.052	 28.282	 63.810	 19.902

Table IV. IC50 value of different concentrations of LY294002 
and ABT199 combination at different time points in KG1a 
cells.

IC50 value	 ABT199 (nM)
	--------------------------------------------------------------------------------
LY294002 (µM)	 24 h	 36 h	 48 h	 72 h

0.5	 39.457	 228.364	 106.779	 130.807
0.57	 24.414	 167.608	 208.388	 24.812
0.97	 23.141	 52.986	 198.294	 16.557
1.5	 32.621	 26.569	 104.024	 41.357
2.5	 23.782	 21.719	 75.506	 15.062
5	 25.547	 17.115	 39.875	 16.435

Table V. Primer sequences used in RT‑qPCR.

Target
name	 Primer	 Sequences

β‑actin	 F	 GACAGGATGCAGAAGGAGATTACT
	 R	 TGATCCACATCTGCTGGAAGGT
Skp2	 F	 ATGCCCCAATCTTGTCCATCT
	 R	 CACCGACTGAGTGATAGGTGT
P27	 F	 AGGAGGAGATAGAAGCGCAGA
	 R	 GTGCGGACTTGGTACAGGT
Bcl‑2	 F	 AGATGGGAACACTGGTGGAG
	 R	 CTTCCCCAAAAGAAATGCAA
Bax	 F	 AGGGTTTCATCCAGGATCGAGCA
	 R	 CAGCTTCTTGGTGGACGCATC
Caspase‑3	 F	 ACATCTCCCGGCGGCGGGCCGCGGA
	 R	 CTTCTACAACCGCCTCACAATAGCA
Caspase‑9	 F	 AGTTGGCTACTCGCCATGGACGAAG
	 R	 TTTGCTGCTTGCCTGTTAGTTCGCA

F, forward; R, reverse.
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gene is located within a high incidence translocation region 
of leukemic chromosomes  (52). p27 expression levels can 
serve as a prognostic reference to predict the outcomes 
of patients with pediatric acute lymphoblastic leukemia, 
particularly for disease recurrence (52). High p27 expression 
has a favorable prognostic impact in patients with AML (53). 
Bax is frequently associated with therapy resistance and is an 
attractive target for the development of anti‑AML agents (3). 
It is reported that the apoptotic network of inactivation of 
BAX mediated resistance to BCL2 inhibition in AML (47). 
In human acute promyelocytic leukemia, cleaved caspase‑3 
induces apoptosis and decreases cell proliferation  (54). 
During normal hematopoiesis, caspase‑9 is not required for 

cell apoptosis (55). In AML, a mutation in caspase‑9 has been 
identified (56). Furthermore, it has been demonstrated that 
caspase‑9 serves a non‑redundant role in the pathogenesis of 
T‑therapy‑related AML (57).

The present study indicated that LY294002 and ABT199 
served a synergistic role in inhibiting the cell cycle, which 
suggested LY294002 and ABT199 combination treatment 
may serve as a novel therapeutic strategy for AML. However, 
the present study had a number of limitations. Future studies 
should use an animal model of AML to further investigate 
the effect of LY294002 and ABT199 combination treatment 
on cell apoptosis and the cell cycle in AML. Moreover, the 
functional study of BCR‑ABL, sphingosine kinase (SphK)1 

Figure 1. Skp2, p27, Bcl2, Bax, cleaved caspase‑3 and cleaved caspase‑9 mRNA expression levels in different drug treatment groups in K562 cells. *P<0.05, 
**P<0.01 and ***P<0.001. Skp2, S‑phase kinase associated protein 2; NC, normal controls; L, LY294002; A, ABT199; L+A, LY294002+ ABT199.

Figure 2. Skp2, p27, Bcl2, Bax, cleaved caspase‑3 and cleaved caspase‑9 mRNA expression levels in different drug treatment groups in HL60 cells. *P<0.05, 
**P<0.01 and ***P<0.001. Skp2, S‑phase kinase associated protein 2; NC, normal controls; L, LY294002; A, ABT199; L+A, LY294002+ ABT199.
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Figure 3. Skp2, p27, Bcl2, Bax, cleaved caspase‑3 and cleaved caspase‑9 mRNA expression levels in different drug treatment groups in KG1a cells. *P<0.05, 
**P<0.01 and ***P<0.001. Skp2, S‑phase kinase associated protein 2; NC, normal controls; L, LY294002; A, ABT199; L+A, LY294002+ ABT199.

Figure 4. Skp2, p27, Bcl2 and Bax protein expression levels, and the ratio of cleaved procaspase‑3/procaspase‑3 and cleaved procaspase‑9/procaspase‑9 
in different drug treatment groups in K562 cells. ***P<0.001; ****P<0.0001. Skp2, S‑phase kinase associated protein 2; NC, normal controls; L, LY294002; 
A, ABT199; L+A, LY294002+ ABT199.
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Figure 5. Skp2, p27, Bcl2 and Bax protein expression levels, and the ratio of cleaved procaspase‑3/procaspase‑3 and cleaved procaspase‑9/procaspase‑9 
in different drug treatment groups in HL60 cells. **P<0.01 and ***P<0.001; ****P<0.0001. Skp2, S‑phase kinase associated protein 2; NC, normal controls; 
L, LY294002; A, ABT199; L+A, LY294002+ ABT199.

Figure 6. Skp2, p27, Bcl2 and Bax protein expression levels, and the ratio of cleaved procaspase‑3/procaspase‑3 and cleaved procaspase‑9/procaspase‑9 
in different drug treatment groups in KG1a cells. **P<0.01 and ***P<0.001; ****P<0.0001. Skp2, S‑phase kinase associated protein 2; NC, normal controls; 
L, LY294002; A, ABT199; L+A, LY294002+ ABT199.
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and SphK2 in all cell lines should be conducted in future 
studies.
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