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Abstract. Colorectal cancer (CRC), a commonly occurring 
carcinoma, now ranks the second in terms of cancer‑associated 
deaths around the world. Among the numerous factors that 
contribute to CRC tumor progression, a class of motor proteins 
known as the kinesins has been found to play a vital role. Kinesins 
are responsible for the intracellular trafficking of functional 
proteins, organelles and biomacromolecules along microtubules. 
Dysregulation of kinesins has been revealed to influence the cell 
cycle to cause abnormal cell growth and affect cell adhesion to 
promote epithelial‑mesenchymal transition in breast, bladder, 
ovarian and prostate cancer. Studies on the function of kinesins 
in CRC have also been performed, although, to the best of our 
knowledge, little is known about the underlying mechanisms of 
kinesins in CRC progression. The present review outlines the 
roles played by different kinesins in CRC carcinogenesis, mainly 
discussing the most studied subfamilies (kinesin 3‑6, 8, 10, 11 
and 13), This review aims to illustrate the functions of kinesins 
in CRC cell growth, cancer metastasis and chemoresistance to 
provide insights regarding kinesins as potential targets for deter‑
mining CRC prognosis and selecting therapy.
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1. Introduction

Colorectal cancer (CRC) is one of the most frequently occur‑
ring carcinomas, ranking third in terms of cancer incidence 
and second terms of in cancer‑related mortality worldwide 
in 2020 (1). Globally, ~0.9 million CRC‑associated deaths 
are reported annually (2). The incidence of this disease has 
increased over the past decades in a number of developing 
countries, possibly owing to changes in lifestyle and aging 
populations. Tumorigenesis is a complicated biological 
process regulated by various factors, and requires timely and 
accurate transport of functional molecules to their targets by 
motor proteins. Kinesins, a group of motor proteins, act as 
transporters along microtubules (MTs) (3) and have vital roles 
in various physiological processes, such as protein sorting and 
chromosome dynamics. Defects in kinesin function can lead 
to dysregulated distribution of various proteins and organelles 
within cells, and have been implicated in numerous diseases, 
including left‑right asymmetry, Alzheimer's disease and 
amyotrophic lateral sclerosis (4‑6). Studies have also revealed 
a correlation between kinesins and CRC. For example, elevated 
expression of kinesins positively influences several clinical 
features, such as lymph node metastasis  (7‑11) and tumor 
status (7,9,10,12‑14), and is relevant to the overall survival rate 
of patients with CRC (7,9‑13,15). The dysregulation of kine‑
sins affects cell proliferation, tumor formation and metastasis 
in CRC (7‑18). Given the importance of kinesins, the present 
review aims to illustrate their roles in the prognosis of CRC 
and the potential underlying regulatory mechanisms involved 
in CRC carcinogenesis, to provide new targets for the clinical 
therapy of the disease.

2. Kinesins

Classification and structure. The kinesin superfamily in 
humans comprises 45 members classified into 14 families, 
Kinesin‑1 to Kinesin‑14, according to their structural differ‑
ences (19). Kinesin family members (KIFs) vary in shape, but 
share three distinct domains, the head, stalk and tail, which 
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perform different functions during cargo transportation. The 
head, which is an orbicular domain, is conserved among 
different KIF members; this domain binds to the MT and regu‑
lates movement through two binding sites: One binds the MT 
and is characterized by a Rossman fold, while the other binds 
to ATP (20). There are three elements within the ATP‑binding 
site, Switch‑I, Switch‑II and the P‑loop, which are responsible 
for the hydrolysis of ATP and contribute to the conformational 
changes of the MT‑binding domain (21). The location of the 
head correlates with the direction of kinesin movement along 
the MTs. The head domain of Kinesin‑1 to Kinesin‑12 family 
members is found in the NH2‑terminal region and moves to 
the plus ends of MTs; these are called the N‑kinesins, whereas 
Kinesin‑14A/B family members are C‑kinesins and contain 
the motor domain at the COOH‑terminus and the head for 
the minus end of the MTs. Kinesin‑13 family members are 
M‑kinesins, with the head domain situated in the center of the 
molecule structure, and these are involved in depolymerizing 
MTs (9).

In contrast to the conserved head domain, the amino 
acid sequences in the stalk and tail domains are highly vari‑
able (22). Most often, KIFs dimerize with each other to form 
homo‑ or heterodimers through the stalk domain, and the 
dimerization status is determined by the length of this domain. 
KIFs can also function as monomers. KIFs bind with cargo for 
its selective transport through the highly variable tail domain 
and may be accompanied by light chain and/or associated 
proteins (Fig. 1).

Two mechanisms have been suggested to describe the 
movements of kinesins: The ‘hand‑over‑hand’ and ‘inchworm’ 
models (23). In the ‘hand‑over‑hand’ model, the front head 
alternates with the rear one on the MTs to forge ahead, and 
every step consumes two molecules of ATP. In the ‘inchworm’ 
model, by contrast, the relative positions of the two heads 
are maintained, enabling movements of 8 nm for the anterior 
head (Fig. 2).

Biological activity of kinesins and relevance to diseases. KIFs 
are responsible for the transport of cellular organelles, func‑
tional proteins packed in vesicles and macromolecules such 
as chromosomes to the required destinations; thus, they are 
vital for protein sorting and appropriate positioning of various 
biological molecules (24). Owing to these functions, KIFs are 
involved in numerous diseases. Kinesin‑1 has been reported 
to interact with key molecules such as adenomatous polyposis 
coli protein participating in the Wnt signaling pathway (25) 
and GluN2B, which regulates N‑methyl‑D‑aspartate receptor 
activity (26). Thus, dysregulated Kinesin‑1 potentially causes 
neurological diseases (27). Selective knockout of KIF5B in 
pancreatic β cells and adipocytes affects insulin and adipo‑
kine secretion, which leads to metabolic disorders (28,29). 
For organelle transport, KIF5B is found to regulate mito‑
chondrial localization and activity  (30), and contributes to 
pathological hypertrophic responses in cardiomyocytes (31). 

Moreover, during the cell cycle, kinesins are responsible for 
the formation of the spindle apparatus and the alignment and 
detachment of chromosomes (32). Modulations in KIF activity 
could influence the cell cycle and alter the apoptosis level of 
cells. The dysregulation of kinesins has also been reported to 
affect cell multiplication and migration, with effects on the 

carcinogenesis of various cancer types, including breast and 
lung cancer (33,34).

3. Kinesins in CRC

CRC occurs when epithelial cells in the colon and rectum gain 
the ability for abnormal growth. To date, the expression of 10 
KIFs has been reported to be increased in CRC tissue and 
has been associated with patient prognosis and CRC metas‑
tasis (Table I). KIFs interact with intracellular molecules to 
influence the activity of CRC cells, with effects on prolifera‑
tion, migration, invasion and the immune reaction (Fig. 3).

Kinesin‑3. The Kinesin‑3 family is distinguished from conven‑
tional kinesins by a peculiar neck region containing a β‑sheet 
and a helix (35), and by the incorporation of a forkhead‑associ‑
ated domain in the tail region. Kinesin‑3 motors are essential for 
organelle transport and cytokinesis, which suggest potential roles 
of kinesin‑3 family members in modulating the cell cycle (36).

KIF14, a member of the Kinesin‑3 family, serves as a 
mitotic kinesin and is encoded by a gene situated on chro‑
mosome 1q32.1  (37). In CRC, Wang  et  al  (17) found that 
elevated KIF14 levels contributed to cell proliferation. Flow 
cytometry results showed that high KIF14 expression could 
cause G0/G1 arrest, indicating a role in the modulation of the 
cell cycle. Additional experiments confirmed that high KIF14 
expression increased the phosphorylation of protein kinase 
B (also known as Akt), thereby advancing the cell cycle to 
promote tumorigenesis. This study also demonstrated that 
microRNA such as miR‑200c might directly bind to the 1402‑ 
to 1409‑bp locus of KIF14; thus, miR‑200c could negatively 
regulate KIF14 function to inhibit overgrowth of cells at the 
post‑transcriptional level.

Kinesin‑4. Kinesin‑4 motors participate in the transportation 
of organelles and in chromosome dynamics, and are vital to 
the regulation of cycle phase transitions during mitosis (38). 
In vertebrates, the Kinesin‑4 family has five members (KIF4, 
KIF7, KIF21, KIF27 and NcKIF21A) and KIF4A plays a 
significant role in the cell cycle (32,38).

KIF4A forms part of the chromosome condensation and 
separation machinery (38), and the disordered function of KIF4A 
affects cell division and chromosome integrity. Hou et al (9) 
described the marked upregulation of KIF4A and its asso‑
ciation with the poor survival rate of patients with CRC. Using 
Transwell assays, high expression of KIF4A increased the 
migration of CRC cells and their invasion abilities. Given the 
role of KIF4A in mitosis, cell cycle analysis was performed. The 
study showed an accumulation of cells in the G0/G1 phase when 
KIF4A expression was decreased. Subsequent assays confirmed 
that KIF4A could accelerate the multiplication of cancer cells 
by negatively modulating the promoter of the p21 gene (39). 
p21 is downstream of p53 and serves as a tumor suppressor 
regulating G0/G1 arrest. Matsumoto et al (8) showed that KIF4A 
also affected the lymph node metastasis of CRC cells. However, 
KIF4A was not involved in tumor status, venous invasion or 
liver metastasis, and did not influence the overall survival rate.

Kinesin‑5. Homotetrameric kinesin‑5 motors have vital roles 
in the cell cycle via regulation of spindle formation (40). Thus, 
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Kinesin‑5 family members are essential for cell growth and 
multiplication (41).

Cancer stem cells (CSCs) are involved in the initiation of 
carcinoma cell growth and tumorigenesis (42). Imai et al (43) 

detected a significantly upregulated level of KIF11 in gastric 
cancer (GC) and showed that KIF11 was correlated with the 
activity of CSCs in GC. A subsequent study used spheroid 
colony formation assays to measure how KIF11 expression 
affected the stemness of CRC cells (16). In CRC cells, the 
KIF11 defect markedly decreased the number and dimension 
of spheres, indicating an important role of KIF11. However, 
phenotypic studies indicated that there were no correlations 
between KIF11 and clinicopathological characteristics.

Kinesin‑6. Categorized as an N‑type kinesin, Kinesin‑6 family 
members have a conventional structure and are involved 
in cytokinesis and spindle arrangement  (44). This family 
comprises three proteins, KIF20A, KIF20B and KIF23, two 
of which have been reported to correlate with CRC progres‑
sion (12,15).

KIF20A is localized in the Golgi apparatus and 
is responsible for the converse conveyance of Golgi 
membranes. Upregulation of KIF20A has been observed 
in some malignant carcinomas  (45). With regard to CRC, 
Xiong et al (15) demonstrated that KIF20A was upregulated 

in CRC cells and promoted tumor growth in  vivo. From 
data extracted by the Gene Expression Omnibus database 
(http://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome 
Atlas (TCGA; https://www.cancer.gov/about‑nci/organiza‑
tion/ccg/research/structural‑genomics/tcga), it was found that 
elevated expression of KIF20A was associated with the poor 
survival rate of patients with CRC. Furthermore, deficient 
KIF20A expression could increase the apoptosis of cancer cells 
after treatment with fluorouracil and oxaliplatin. By contrast, 
the overexpression of KIF20A via transfection was associated 
with the downregulation of apoptosis‑related proteins, which 
provided evidence that KIF20A affected the chemoresistance 
of CRC cells. Notably, this study also showed that increased 
KIF20A expression contributed to the increased phosphoryla‑
tion of JAK2 and STAT3. Interference with the JAK2/STAT3 
pathway markedly prohibited CRC cell proliferation and 
reversed the decrease in apoptosis of CRC cells stimulated by 
the dysregulation of KIF20A. Thus, KIF20A was proposed to 
promote CRC carcinogenesis by activating the JAK2/STAT3 
signaling pathway.

Lin et al  (12) found that silencing KIF20B decreased 
the migration and invasion abilities of cancer cells, and had 
effects on the expression of the epithelial‑mesenchymal 
transition (EMT)‑associated transcription factors Snail and 
Twist. Subsequent experiments showed that the decrease 

Figure 1. Outline for the kinesin dimer structure, showing its domains and the neck.

Figure 2. Kinesin proteins convey cargo along microtubules via mechanical force powered by ATP hydrolysis and walk in an (A)  ‘inchworm’ or 
(B) ‘hand‑over‑hand’ manner. The arc‑shaped arrows represent the direction that the heads of the kinesins move in.
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in glioma‑associated oncogene 1 (Gli1) expression was 
associated with impaired KIF20B expression, while the over‑
expression of Gli1 could relieve the loss of migration ability 
of CRC cells resulting from the silencing of KIF20B. Gli1 
can activate EMT, thereby promoting cancer metastasis (46). 
Thus, KIF20B was speculated to stimulate Gli1‑mediated 
EMT. The latter experiments performed by Lin et al (12) also 
revealed the significance of KIF20B in the formation of cell 
pseudopod protrusions and actin cytoskeleton dynamics. An 
evaluation of clinical data found that KIF20B was associated 
with tumor status and metastasis, and its high expression was 
correlated with the poor overall survival rate of patients with 
CRC.

Kinesin‑8. Kinesin‑8 is indispensable for appropriate allo‑
cation of chromosomes in several animal species  (47,48). 
Members of the Kinesin‑8 family can modify spindle activity 
and participate in the segregation of chromosomes (49).

A member of the Kinesin‑8 family, KIF18A, serves as an 
MT depolymerase and plays an important role in chromosome 
agglutination (50). Nagahara et al (10) showed that increased 
KIF18A expression notably increased the proliferation, migra‑
tion and invasion abilities of CRC cells. Zhu et al (51) confirmed 
that overexpression of KIF18A could accelerate tumor growth 
in chronic colitis. By contrast, silencing the gene encoding 
KIF18A increased the apoptosis of tumor cells, which was 
further confirmed by the observation of the elevated expression 
of caspase‑3 (51). Immunohistochemical assays showed that 
the phosphorylation level of Akt was significantly decreased 
in kif18a‑/‑ dysplasia compared with that in the wild‑type (51). 
These data indicated that KIF18A promotes CRC progression 
and influences apoptosis by regulating Akt signaling.

Kinesin‑10. The Kinesin‑10 subfamily in humans has a single 
member termed KIF22, which is also known as Kinesin‑like 4 
(KNSL4)/Kinesin‑like DNA binding protein. KIF22 is a 
chromokinesin that participates in regulating chromosome 
dynamics during mitosis (52). KIF22 has two nuclear local‑
ization sequences  (53) and possesses a helix‑hairpin‑helix 
DNA‑binding motif feature, which contributes to its activity as 
a transcription factor and the regulation of gene expression (54). 
The expression of KIF22 has been reported to be upregulated 
in CRC, and is correlated with tumor stages, rather than with 
lymph node metastasis or tumor differentiation (14). In addi‑
tion, interference with KIF22 expression by short hairpin 
RNA inhibited cell proliferation in vitro and xenograft tumor 
growth in in vivo models (14). Since it has been reported that 
KIF22 modulates the expression of CDC25C, a gene involved 
in the regulation of CDK1 activity and control of mitosis (55), 
it is quite possible that KIF22 promotes CRC cell proliferation 
by regulating CDC25C/CDK1 activity.

Kinesin‑11. Characterized by the presence of a divergent cata‑
lytic core, Kinesin‑11 proteins are distinct from other kinesins 
and play a role in signal transduction pathways (56).

KIF26B, encoded by a gene situated on the chromosome 
region lq44 (57), is located downstream of the zinc finger 
protein Stall1. Wang et al (13) identified a marked upregula‑
tion of KIF26B in CRC cells and reported that the expression 
of KIF26B was associated with tumor size, tumor status and 
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histological differentiation. Survival analyses showed that a 
high expression level of KIF26B led to low overall survival 
rate and was a biomarker for a poor prognosis in patients 
with CRC. Further, defects in KIF26B expression induced a 
decrease in the expression of cyclin D1 and attenuated CRC 
cell proliferation.

Kinesin‑13. Members of the Kinesin‑13 family function as MT 
depolymerases, participating in the formation and separation of 
cilia, as well as the regulation of axon development and rehabili‑
tation (58,59). The proteins of this family are M‑type kinesins 
and include KIF2A, KIF2B, KIF2C/MCAK and KIF24 (35).

KIF2A functions as a MT depolymerase. In CRC, 
Fan et al (7) analyzed the expression of KIF2A in various tissue 
samples and observed its significant upregulation in cancer 
tissues compared with that in normal tissues. Furthermore, 
KIF2A was correlated with TNM stage and tumor status. 
Specifically, higher expression of KIF2A correlated with 
later TNM stages and higher levels of lymph node metas‑
tasis. However, no correlations were found between KIF2A 
expression and preoperative carcinoembryonic antigen level, 
histological type, tumor location or differentiation. Survival 
analyses also demonstrated the potential value of KIF2A in 
predicting a poor prognosis in patients with CRC.

MCAK, encoded by a gene on the chromosomal region 
1p34.1 (60), catalyzes the disassembly of MTs from both ends 
by modulation of mitotic kinases  (61). Ishikawa et al  (11) 

found that the overexpression of MCAK mRNA expression 
could predict lymph node metastasis and could be used as 
an independent predictor of a poor prognosis in patients with 
CRC. Furthermore, Ritter et al (18) showed that Aurora B, a 
vital kinase involved in modulating mitosis, could induce the 

serine‑192‑mediated phosphorylation of MCAK to influence its 
catalytic ability and affect tumor metastasis. Interfering with 
MCAK phosphorylation led to interference with the transition 
from prometaphase to metaphase and induced abnormalities 
in chromosome dynamics. Bioinformatics analysis of a variety 
of single‑nucleotide polymorphisms showed that an E403K 
mutation could also affect MCAK activity and is crucial for 
CRC progression (62).

NY‑CO‑58, which is identical to MCAK and KNSL6 (63), 
is classified as a tumor antigen and interacts with IgG anti‑
bodies in patients with CRC (64). Gnjatic et al (65) observed 
significant upregulation of NY‑CO‑58/MCAK expression 
in CRC samples. Notably, NY‑CO‑58/MCAK also seemed 
to influence tumor growth, based on the detection of Ki‑67 
expression, and could stimulate spontaneous T‑cell responses 
consisting mainly of CD4+ T cell‑mediated immune reactions. 
Cytoplasmatic staining indicated that CD4+ T cells stimulated 
by NY‑CO‑58/MCAK secreted Th1‑type cytokines to evoke an 
immune response, under the regulation of T regulatory cells.

4. Summary and perspectives

As the main MT‑dependent cellular transporters, kinesins 
have been studied for decades and have been shown to be 
involved in a number of diseases. Studies have shown that 
dysregulated kinesin expression and function could contribute 
to the tumorigenesis and metastasis of several cancer types, 
including breast, lung and colon cancer. In CRC, expres‑
sion levels of KIF14, KIF18A, KIF20A, KIF4A, KIF20B 
and MCAK have been reported to be associated with tumor 
progression and prognosis via the regulation of cell survival, 
the cell cycle, EMT and MT dynamics (Figs. 4 and 5). KIF11, 

Figure 3. Roles of KIFs in the regulation of CRC tumorigenesis. KIFs participate in diverse biological processes as microtubule‑dependent transporters. 
Aurora B phosphorylates MCAK to regulate its catalytic ability and thus affects CRC cell growth by modulating the cell cycle, whereas miR‑200C binds to 
KIF14 to inhibit its promotion of cell proliferation. Moreover, KIFs participate in various signaling pathways, some of which are relevant to the cycle phase 
transition in mitosis. Deficiency of KIFs increases apoptosis and affects the activity of CSCs. KIFs also are involved in evoking the T cell‑mediated immune 
response, as well as accelerating EMT and the formation of EMT‑related pseudopod protrusions. The one‑way arrows represent a facilitation effect. The 
bidirectional arrows represent a link between two events. The stop signs represent a blocking effect. The box that contains a ‘p’ represents a phosphorylation 
effect. KIFs, kinesin family members; CRC, colorectal cancer; EMT, epithelial‑mesenchymal transition; miR, microRNA; CSC, cancer stem cell.
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KIF22, KIF26B and KIF2A also contribute to the development 
of CRC carcinogenesis; however, the underlying mechanisms 
remain to be identified.

Recent studies have revealed that kinesins regulate 
CRC cell survival via Akt and JAK2‑STAT3 signaling 
pathways (Fig. 4). Akt serves as a key regulator of signal trans‑
duction in several classic pathways. In the PI3K‑Akt pathway, 
PI3K modulates the phosphorylation of Akt via the induction of 
PIP3, stimulating a cascade able to activate downstream signal 
molecules such as NF‑κB and p53 to control cell survival (66). 
Additional studies have shown that KIF14 and KIF18A 

regulate CRC cell proliferation and apoptosis by increased 
Akt signaling (Fig. 4A). With respect to the JAK2‑STAT3 
pathway, the activation of the expression of downstream genes 
such as p53, Bcl‑2 and Cyclin D1 is involved in regulating cell 
growth and apoptosis (67). Xiong et al (15) found that KIF20A 
modulates the activity of JAK2 and STAT3 to affect CRC 
tumorigenesis and chemoresistance (Fig. 4B). These studies 
have provided insight into the KIF‑associated signaling 
pathways that modulate tumor cell proliferation and survival, 
but further studies are still needed to verify the mechanisms 
involved.

Figure 4. KIFs regulate CRC carcinogenesis via (A) Akt and (B) JAK2‑STAT3 signaling pathways. The straight arrows represent a direction facilitation effect. The 
curved arrows represent a transformation from reactants to products. The dotted arrows represent an indirect facilitation effect. The circle that contains a ‘p’ repre‑
sents a phosphate group. The combination of a horizontal line and a vertical line represents a repression effect. KIFs, kinesin family members; miR, microRNA.

Figure 5. KIFs function to affect the CRC cell cycle, EMT and the MT dynamic. (A) KIF20B modulates Gli1‑mediated EMT to affect CRC carcinogenesis 
(The red arrow shows the potential role of KIF20B in Gli1/Snail induction). (B) KIF4A negatively regulates the promoter of p21 to influence the cell cycle. 
(C) The phosphorylation of S192 in MCAK induced by Aurora B plays an essential role in the catalytic ability of MCAK to influence the MT dynamic [referred 
to by Zong et al (78) and Ritter et al (18)]. The arc‑shaped arrows represent a transformation between two different cell phenotypes. The solid arrows in (A) and 
(B) represent a direct facilitation effect. The solid arrow in (C) represents a transformation. The dotted arrow represents an indirect facilitation effect. The 
combination of a horizontal line and a vertical line represents a repression effect. The broad arrow in (C) represents the contribution of the phosphorylation of 
MCAK to MT dynamics. KIFs, kinesin family members; CRC, colorectal cancer; EMT, epithelial‑mesenchymal transition.
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Dysregulation of cell cycle‑related factors can trigger 
disorders in the cell cycle and cause impairments in cell 
proliferation  (68). p21 is a well‑known cyclin‑dependent 
kinases inhibitor (CDKI) that regulates the activities of the 
CDKs, including cyclin D/CDK4 or CDK6, cyclin E/CDK2, 
cyclin  A/CDK1  (Cdc2) or CDK2, and cyclin  B/CDK1, to 
modulate the cell cycle, serving as a tumor suppressor (69). 
Hou et al (9) found that the nuclear localization of KIF4A 
results in its direct binding on the p21 promoter and negative 
regulation of the expression of p21. Overexpression of KIF4A 
in CRC has been reported to downregulate p21 expression, 
which further enhances cell proliferation by promoting cell 
cycle progression, suggesting that KIF4A‑targeted therapy 
could be effective in inhibiting CRC tumor growth (Fig. 5B).

Epithelial cells undergo EMT to gain migrative and inva‑
sive capacity, favoring the metastasis of cancer cells from the 
primary tumor site to other tissues or organs (Fig. 5A). Tumor 
metastasis is associated with the aggravation of cancer and a 
poor prognosis for patients. Lin et al (12) found that KIF20B 
in pseudopod protrusions promoted cell invasion and metas‑
tasis by regulating actin cytoskeleton dynamics, and that 
knockdown of KIF20B downregulated Gli1 expression and 
decreased the expression levels of EMT marker proteins. Thus, 
targeting KIF20B could be a promising treatment approach in 
cancer therapy (12).

MTs, as components of the cytoskeleton, play crucial roles in 
cellular transport and spindle dynamics. Furthermore, MCAK 
acts as a MT depolymerase to regulate the assembly of the 
mitotic apparatus and disassembly of the sister‑chromosome 
to affect the cell cycle via MT dynamics (70). Overexpression 
of MCAK has been correlated with several cancer types (71). 
Ritter et al (18) showed that in CRC, serine 192 was the key 
site regulating MCAK catalytic ability induced by Aurora B 
(Fig. 5C). Thus, the regulation of phosphorylation at serine 192 
might be a novel way to modulate the activity of MCAK for 
cancer therapy.

In addition to regulating cell survival, the cell cycle, 
EMT and MT dynamics, kinesins are also involved in regu‑
lating CRC chemoresistance. Fluorouracil and oxaliplatin 
are anticancer agents that have been used in clinical trials 
to treat CRC (72,73). Xiong et al (15) found that the over‑
expression of KIF20A could attenuate the increase in the 
BAX/BCL‑2 ratio induced by fluorouracil and oxaliplatin 
to protect cancer cells against apoptosis. After knocking 
down KIF20A, CRC cells underwent increased apoptosis. 
The contribution of KIF20A to chemoresistance in CRC 
indicates that kinesins might play a vital role in the clinical 
therapy of CRC.

Given that a considerable number of kinesins have been 
found to promote tumorigenesis and growth in CRC, targeting 
this family of motor proteins seems a promising approach for 
cancer treatment. Several inhibitors against KIFs have already 
been tested for their efficacy in the treatment of cancer: 
Ispinesib, AZD4877, ARRY‑520, SB‑743921, ARQ 621, 
LY2523355, MK‑0731, EMD534085 and 4SC‑205 targeting 
Eg5; GSK923295 targeting CENPE (KIF10); peptide targeting 
MPP1 (KIF20B); AZ82 and SR31527 targeting KIFC1; and 
lidocaine and tetracaine targeting KIF5C (74,75). In CRC, 
studies have reported novel agents targeting KIF11 (also 
known as Eg5, a kinesin spindle protein), which can repress 

tumor progression. Zhang et al (76) identified SRI35566 as 
a new inhibitor that could interact directly with Eg5. More 
importantly, SRI35566 could prevent drug resistance, which 
is common among agents targeting monastrol‑binding 
sites. K858 was shown by Nakai et al (77) to interfere with 
centrosome separation and cause cell cycle arrest, effectively 
eliminating cancer cells without damaging MT activity. 
Considering the crucial roles of KIFs in CRC, more studies are 
needed to explore the mechanisms by which kinesins influence 
tumor progression, to provide insight into using kinesins as 
biomarkers for prediction of CRC progression, and to identify 
therapeutic targets for efficient treatment of CRC in the future.
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