MicroRNA-454-5p promotes breast cancer progression by inducing epithelial-mesenchymal transition via targeting the FoxJ2/E-cadherin axis

CUI-PING WANG1*, YONG-ZHENG YU1*, HUI ZHAO1, LI-JUAN XIE2, QI-TANG WANG1, YE WANG3 and QIANG MU1

1The First Department of Breast Surgery, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong 266042; 2Department of Ophthalmology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266034; 3Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong 266042, P.R. China

Received September 6, 2020; Accepted March 3, 2021

DOI: 10.3892/or.2021.8078

Abstract. MicroRNAs are important for the regulation of multiple cellular functions and are involved in the initiation and progression of various types of cancer, including breast cancer. Although microRNA (miR)-454-3p is reported to function as an oncogene in several types of human cancer, the role of miR-454-5p in breast cancer remains unknown. The present study demonstrated that miR-454-5p was upregulated in breast cancer and was associated with a poor prognosis in patients with breast cancer. Overexpression of miR-454-5p promoted breast cancer cell viability, migration and invasion in vitro, whereas silencing of miR-454-5p inhibited breast cancer proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Mechanistically, forkhead box J2 (FoxJ2) was shown to be a target of miR-454-5p and transactivated E-cadherin expression. Moreover, silencing of miR-454-5p reversed the epithelial-mesenchymal transition phenotype through upregulation of the FoxJ2/E-cadherin axis. Collectively, the present findings suggested that miR-454-5p may serve as a novel therapeutic target and prognostic predictor for patients with breast cancer.

Introduction

Breast cancer is one of the most commonly diagnosed cancer types and the second leading cause of cancer-related mortality in women world-wide (1,2). Although early detection and systemic therapy significantly improve the outcome of patients with breast cancer, the survival rate of patients with metastatic breast cancer remains relatively low, with a 5-year survival of <25% (3,4). Therefore, it is important to understand the underlying molecular mechanism of breast carcinogenesis and progression, as well as to identify novel biomarkers and therapeutic target molecules for early diagnosis and individualized therapy.

MicroRNAs (miRNAs) are endogenous small non-coding RNAs, ~22 nucleotides in length, that are involved in gene silencing through translational repression or mRNA degradation by binding to the 3’-untranslated regions (3’-UTRs) of target genes (5). Previous studies have reported that miRNAs participate in multiple biological functions and are involved in various physiological processes, including cell proliferation, differentiation, metabolism, senescence and apoptosis (6,7). Aberrant expression of miRNAs has been shown to be involved in the development and progression of multiple human cancer types (8). In humans, miRNA (miR)-454 is located on chromosome 17q22, and it has two main mature forms: miR-454-5p and miR-454-3p. miR-454 has been identified as either an oncogene or a tumor suppressor in various types of cancer, including pancreatic cancer (9,10), colon cancer (11), melanoma (12), chondrosarcoma (13), glioma (14-16), hepatocellular carcinoma (17,18), lung cancer (19-21), laryngeal cancer (22), ovarian cancer (23), prostate cancer (24), gastric cancer (25-28), cervical cancer (29), bladder cancer (30), oral squamous cell carcinoma (31), osteosarcoma (32), renal carcinoma (33) and breast cancer (34-36). Although several studies have reported that miR-454-3p could function as an oncogene in breast cancer, the role of miR-454-5p remains unknown.

Epithelial-mesenchymal transition (EMT) is a biological process through which epithelial cells lose cell polarity and cell-cell adhesion; cells also acquire a fibroblastic morphotype
with invasive and migratory properties during tissue fibrosis, embryonic development and cancer progression (37,38). EMT contributes to cancer progression, metastasis and therapeutic resistance in all types of human cancer, which may correlate with unfavorable outcomes of patients with cancer (39). Therefore, targeting components of EMT signaling is considered as a promising strategy in cancer therapy. Previous studies have shown that miRNAs participate in EMT regulation during breast cancer progression (40,41).

The present study aimed to investigate the role of miR-454-5p in breast cancer progression both in vitro and in vivo, and explored the potential mechanism of miR-454-5p on the regulation of EMT in breast cancer.

Materials and methods

Cell lines and culturing. The human breast epithelial cell line MCF10A and breast cancer cell lines MCF7, T47D, BT549, MDA-MB-231 and SKBR3 were obtained from The Cell Bank of Type Culture Collection of The Chinese Academy of Sciences. MCF10A cells were cultured in DMEM/F12 (Hyclone; Cytiva) supplemented with 5% horse serum (Thermo Fisher Scientific, Inc.). MCF7 and T47D cells were cultured in DMEM/F12 (Hyclone; Cytiva) with 10% FBS. All cells were supplemented with 100 mg/ml streptomycin (Hyclone; Cytiva) and 0.1 µg/ml amphotericin B (Sigma-Aldrich; Merck KGaA), 20 ng/ml epidermal growth factor (R&D Systems, Inc.), 0.1 µg/ml cholera toxin (Sigma-Aldrich; Merck KGaA) and 0.5 µg/ml hydrocortisone (Sigma-Aldrich; Merck KGaA). BT549, MDA-MB-231 and SKBR3 cells were maintained in RPMI-1640 (Hyclone; Cytiva) supplemented with 10% FBS (Thermo Fisher Scientific, Inc.). MCF7 and T47D cells were cultured in DMEM (Hyclone; Cytiva) with 10% FBS. All cells were supplemented with 100 mg/ml streptomycin (Hyclone; Cytiva) and 100 IU/ml penicillin (Hyclone; Cytiva) and cultured in an atmosphere containing 5% CO₂ at 37°C.

Transfections. miR-454-5p mimics (5’-GAAGUAAGGGGCAAGAUAGGGGC-3’) and negative control (5’-UUCUCCGAAUGGUGCUAGUUCU3’) oligonucleotides were purchased from Guangzhou Ribobio Co., Ltd. Transient transfection was conducted using Lipofectamine™ 3000 (Thermo Fisher Scientific, Inc.) according to the manufacturer’s instructions. Cells were seeded in a 6-well plate at a density of 2x10⁵ cells/well and then transfected with 200 pmol oligonucleotides at 37°C for 24 h. Experiments were performed 48 h after transfection.

The miR-454-5p antisense strand (5’-GCCCUACUCCUGCCCUUUAUCUC-3’) or inhibitor control (5’-UCUGACUCAUAGGUGUUGAGUA-3’) anti-Control) was cloned into the pEZX-AM04 lentiviral vector (GeneCopoeia, Inc.) and short hairpin RNA (sh-Control) was cloned into the pEZ-X-AM04 lentiviral vector (GeneCopoeia, Inc.) and short hairpin RNA (sh-Control) was cloned into the pEZ-X-AM04 lentiviral vector (GeneCopoeia, Inc.). sh-Control) was cloned into the pEZ-X-AM04 lentiviral vector (GeneCopoeia, Inc.). 293T cells were transfected with 10 µg lentiviral vectors and 10 µg packaging vectors when the density of cells reached 80-90%. After transfection for 48 h at 37°C, supernatants containing virus particles were harvested and purified. The lentiviral particles were used to infect targeted cells at 60% confluency with a multiplicity of infection of 30 and stable cells were selected with 800 mg/ml puromycin. The FoxJ2 knockdown efficiencies were confirmed by reverse transcription-quantitative PCR (RT-qPCR) and western blotting (Fig. S1).

Western blotting. Total protein was isolated from cells using RIPA lysis buffer containing PMSF (both from Cell Signaling Technology, Inc.). Protein concentrations were determined using a BCA Protein Assay kit (Thermo Fisher Scientific, Inc.). Antibodies against N-cadherin (cat. no. sc-393933), E-cadherin (cat. no. sc-71008), Vimentin (cat. no. sc-80975), FoxJ2 (cat. no. sc-514265) (all from Santa Cruz Biotechnology, Inc.) and GAPDH (cat. no. 5174; Cell Signaling Technology, Inc.) were used at a dilution of 1:1,000.

Luciferase reporter assay. For FoxJ2 3’-UTR activity analysis, the 3’-UTR of FoxJ2 mRNA and the corresponding sequence with mutations (FoxJ2-1: 5’-GCTGGCAAGAATGGATAGGGGA-3’ to 5’-GCTGGCAAGAATGGATAGAAAC-3’; FoxJ2-2: 5’-GAAAGGATGGCGAAGATACGACGGC-3’ to 5’-GAAAGGATGGCGAAGATACGACGGC-3’) were cloned into a psiCHECK2 luciferase reporter plasmid (Promega Corporation). MDA-MB-231 cells were seeded into a 24-well plate at 1x10⁴ cells/well and co-transfected with psiCHECK2-FoxJ2 (500 ng) and miR-454-5p mimics (50 pmol) or negative control using Lipofectamine 3000 for 48 h at 37°C. For E-cadherin promoter activity analysis, the E-cadherin promoter was cloned into a pGL3-basic luciferase reporter plasmid (Promega Corporation) and was transfected into MDA-MB-231 cells stably expressing anti-miR-454-5p or shFoxJ2, as well as into the control cells using Lipofectamine 3000 for 48 h at 37°C. Luciferase activity was analyzed after transfection for 48 h and the cell lysates were measured for luciferase activity using Dual-Luciferase Reporter Assay System (Promega Corporation) according to the manufacturer’s instructions. The firefly luciferase activity was normalized to Renilla luciferase activity.

Chromatin immunoprecipitation (ChIP) assay. Stably transfected MDA-MB-231 cells were cross-linked with 1% formaldehyde for 15 min at room temperature. After quenching
with 125 mM glycine, the cells were collected, washed and sonicated in RIPA buffer. The cross-linked lysate was sonicated (power, 20 W; duration, 30 sec/cycle for 40 cycles; temperature, 5-6°C) to obtain 500-1,500 bp fragments, which were immunoprecipitated with IgG or anti-FoxJ2 antibody (cat. no. sc-514265; Santa Cruz Biotechnology, Inc.) at 4°C for 3 h. This was followed by incubation with 50 μl protein A/G beads overnight at 4°C. qPCR was used to identify and quantify the precipitated DNA. Primers for ChIP assays are presented in Table I.

Colony formation assay. Breast cancer cells were seeded into six-well plates at 500 cells/well. Transient transfection with miR-454-5p mimics was conducted using Lipofectamine® 3000, aforesmentioned, or MDA-MB-231 cells stably expressing anti-miR-454-5p or shFoxJ2 were used, as well as their control cells. Cells were cultured for 20 days at 37°C, and colonies were washed with PBS, fixed with 4% paraformaldehyde for 15 min at room temperature, and stained with hematoxylin. The colonies with >50 cells were counted under a light microscope at x100 magnification.

Cell morphology. MDA-MB-231 cells stably expressing anti-miR-454-5p or shFoxJ2, as well as their control cells, were seeded in 6-well plates at a density of 5x10⁴ cells/well and cultured at 37°C for 24 h. Cell morphology was examined under a light microscope at x100 magnification.

Cell viability assay. The Cell Counting Kit-8 (CCK-8; Dojindo Molecular Technologies, Inc.) was used to determine cell viability, according to the manufacturer's protocols. Cells were seeded into a 96-well plate at 5x10³ cells/well. After transfection for 24 h, CCK-8 reagent (10 μl) was added to the medium and incubated at 37°C for 2 h. The absorbance of each sample was measured using a microplate reader (Thermo Fisher Scientific, Inc.) at 450 nm.

Immunofluorescence. Cells were plated at a density of 2x10⁴ on glass coverslips, washed with ice-cold PBS and fixed in 4% formaldehyde solution for 15 min at room temperature. The coverslips were blocked with 2% BSA (Cell Signaling Technology, Inc.) in PBS for 30 min at room temperature and incubated with a primary antibody against E-cadherin (1:500; cat. no. sc-71008; Santa Cruz Biotechnology, Inc.) overnight at 4°C. Subsequently, cells were incubated with Alexa Fluor® 488-conjugated anti-mouse secondary antibody (1:300; cat. no. 4408; Cell Signaling Technology, Inc.) for 1 h and then stained with DAPI for 10 min, both at room temperature. The coverslips were washed with PBS and observed under a fluorescence microscope at x400 magnification.

Cell cycle analysis. Cells were seeded into a 6-well plate at a density of 5x10⁴ cells/well. After culture at 37°C for 24 h, cells were collected and fixed with 70% ethanol for 24 h at -20°C, followed by incubation with 10 μg/ml PI and 50 μg/ml RNase (BD Biosciences) on ice for 15 min. Cells were then assayed by flow cytometry using a BD FACSCalibur flow cytometer (BD Biosciences).

Transwell assays. Cell invasion and migration were assessed using BD Transwell chambers pre-coated with or without Matrigel, respectively (BD Biosciences). Cells were seeded (2x10⁴ cells/well) into the upper Transwell chamber containing RPMI-1640 medium without serum; RPMI-1640 medium with 10% FBS was added to the bottom chamber. After incubation for 16 h at 37°C, the invaded or migrated cells on the lower surface were fixed in 4% formaldehyde solution for 15 min at room temperature, and subsequently stained with crystal violet for 15 min at room temperature. Images of the invaded or migrated cells were captured under a light microscope at x100 magnification.

Bioinformatics analysis. TargetScan Human release 7.2. (http://www.targetscan.org) was used for prediction of miR-454-5p targets. The top three genes containing two potential miR-454-5p target sites were selected for further study. LASAGNA-Search 2.0 (https://www.bitnos.com/info/lasagna-search) was used to predict FoxJ2 binding sites on the E-cadherin promoter region.

Validation of gene expression and outcome by TCGA database. The expression levels of miR-454-5p were analyzed in breast cancer tissues (n=749) and normal breast tissues (n=76) obtained from The Cancer Genome Atlas (TCGA) database by using UALCAN (http://ualcan.path.uab.edu/index.html). The relationship between miR-454-5p and FoxJ2 was determined by ENCORI (http://starbase.sysu.edu.cn). The prognostic value of miR-454-5p expression was examined by using the online database, KM-Plotter (www.kmplot.com/mirpower). Patients were divided into two groups by ‘auto select best cutoff’ feature and assessed using a Kaplan-Meier survival plot.

Xenografts. Female BALB/c-nude mice (n=12; age, 5 weeks; weight, 22 g) were purchased from Vital River Lab Animal Technology Company. The mice were maintained in a specific pathogen-free environment with a 10/14-h light/dark cycle in 40-60% humidity at 27°C and had ad libitum access to food and water. The experimental procedures were approved by

Table I. Primer sequences used in quantitative PCR.

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer sequence (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoxJ2 F</td>
<td>ATGGCTGCTGACACAGAGAGTAG</td>
</tr>
<tr>
<td>E-cadherin F</td>
<td>CGAGAGCTAGCAGTTCCAGG</td>
</tr>
<tr>
<td>GAPDH F</td>
<td>ATGCCCCCTCTTATGACTCTCA</td>
</tr>
<tr>
<td>E-cadherin R1 F</td>
<td>CTCAGCAGCAGTATAGGCTCA</td>
</tr>
<tr>
<td>E-cadherin R2 F</td>
<td>GAGTCTCTTGACCGGGCA</td>
</tr>
<tr>
<td>E-cadherin R3 F</td>
<td>CACTCCAGCTGGTTGGAAGA</td>
</tr>
</tbody>
</table>

F: forward; FoxJ2, forkhead box J2; R, reverse; R1/R2/R3, region 1/2/3.
the Animal Experimentation Ethics Committee of Qingdao Central Hospital (Qingdao, China). A total of 1×10^6 stably transfected MDA-MB-231 cells were injected subcutaneously into the right mammary fat pad. Tumor volume was calculated using the following equation: $(\text{Length} \times \text{width}^2)/2$. The mice were sacrificed on day 35 after tumor implantation, and the tumors were excised and weighed. The tumor burden did not exceed the recommended dimensions (tumor diameter$_{\text{max}} \leq 16.5 \text{ mm}$; volume$_{\text{max}} \leq 1,200 \text{ mm}^3$). The animals were anesthetized (60 mg/kg ketamine and 5.0 mg/kg xylazine) and then sacrificed by cervical dislocation.

Statistical analysis. Statistical analyses were performed using SPSS 20.0 (IBM Corp.). Data are presented as the mean \pm SD from at least three independent experiments. The unpaired Student’s t-test was used to compare differences between two groups, and one-way ANOVA followed by Tukey’s multiple comparison post hoc test was used when comparing >2 groups. $P<0.05$ was considered to indicate a statistically significant difference.

Results
miR-454-5p is upregulated in breast cancer and is associated with poor prognosis. To determine the role of miR-454-5p in breast cancer, the expression levels of miR-454-5p were analyzed in breast cancer tissues ($n=749$) and normal breast tissues ($n=76$) obtained from The Cancer Genome Atlas (TCGA) database by using UALCAN. Increased miR-454-5p expression levels were observed in breast cancer compared with normal tissues (Fig. 1A), and miR-454-5p expression was significantly upregulated in triple-negative and Her2$^+$ breast...
Furthermore, high miR-454-5p expression was associated with a poor prognosis in patients with breast cancer as determined using the KM-Plotter database (Fig. 1C). Subsequently, the expression levels of miR-454-5p were examined in five breast cancer cell lines (MCF7, T47D, BT549, MDA-MB-231 and SKBR3) and a normal breast epithelial cell line MCF10A. The expression levels of miR-454-5p were significantly higher in BT549, MDA-MB-231 and SKBR3 breast cancer cell lines compared with MCF10A cells (Fig. 1D). Taken together, these results indicated that miR-454-5p may serve an important role in breast cancer progression.

Overexpression of miR-454-5p promotes breast cancer cell proliferation, migration and invasion. As miR-454-5p was upregulated in BT549, MDA-MB-231 and SKBR3 compared to MCF10A cells, aforementioned, which suggested that miR-454-5p may serve an important role in these cell lines, MDA-MB-231 and BT549 were choose to further study. To evaluate the potential role of miR-454-5p in breast cancer progression, miR-454-5p mimics or negative controls were transfected into MDA-MB-231 and BT549 cells. The expression of miR-454-5p was effectively elevated in MDA-MB-231 and BT549 cells after transfection with miR-454-5p mimics compared with miR-NC-transfected cells, as determined by RT-qPCR (Fig. 2A). CCK-8 and colony formation assays were conducted to evaluate the effects of miR-454-5p on breast cancer proliferation. It was found that the overexpression of miR-454-5p significantly enhanced cell viability and the number of colonies in MDA-MB-231 and BT549 cells compared with the miR-NC group (Fig. 2B and C, respectively). Furthermore,
the proportion of cells at the S phase was significantly increased in miR-454-5p-overexpressing MDA-MB-231 and BT549 cells compared with that of control cells (Fig. 2D). Transwell analyses were performed to assess the effects of miR-454-5p on breast cancer cell migration and invasion (Fig. 2E and F, respectively). The number of migrated and invaded cells was significantly increased in miR-454-5p-overexpressing MDA-MB-231 and BT549 cells compared with those in control cells. These results suggested that miR-454-5p may function as an oncogene in breast cancer progression.
FoxJ2 is a target of miR-454-5p. TargetScan was used to predict target genes of miR-454-5p, and the top three genes containing two potential target sites in their 3'-UTRs were ATXN7L3B, RIPPLE3 and FoxJ2 (Fig. 3A). Of the three genes, only FoxJ2 has been reported to be involved in cancer progression (43-46); therefore, it was selected for further study. The luciferase reporter assay was used to determine whether miR-454-5p could directly bind to the 3'-UTR of FoxJ2. The two putative miR-454-5p target sites in the 3'-UTR of FoxJ2 were cloned into the psiCHEK2 reporter plasmid and subsequently transfected into MDA-MB-231 cells along with miR-454-5p mimics or negative control. The luciferase activity of the FoxJ2 3'-UTR reporter construct was significantly decreased in the miR-454-5p-transfected MDA-MB-231 cells compared with luciferase activity in the miR-NC cells (Fig. 3B). This effect was abolished in the mutated FoxJ2 3'-UTR group in which both target sites for miR-454-5p were inactivated (FoxJ-1 + 2) by site-directed mutagenesis (Fig. 3C). The expression levels of FoxJ2 were notably decreased in MDA-MB-231 and BT549 cells transfected with miR-454-5p mimics compared with the expression levels in control cells, as demonstrated by RT-qPCR (Fig. 3D) and western blotting (Fig. 3E).

To further investigate the relationship between miR-454-5p and FoxJ2, the expression levels of miR-454-5p and FoxJ2 from TCGA database was analyzed by ENCORI. As presented in Fig. 3F, the expression of miR-454-5p exhibited a negative...
co-expression trend with FoxJ2. Thus, these results support the bioinformatics prediction that FoxJ2 was a direct target of miR-454-5p.

Silencing of miR-454-5p inhibits breast cancer proliferation, migration and invasion by upregulating FoxJ2 expression. To further confirm the regulation of the miR-454-5p/FoxJ2 axis in breast cancer progression, stably transfected MDA-MB-231 cell lines overexpressing the anti-miR-454-5p inhibitor with or without shFoxJ2 co-transfection, as well as anti-Control cells, were generated. The expression of miR-454-5p was significantly downregulated in miR-454-5p-silenced MDA-MB-231 cells compared with that of control cells, as determined via RT-qPCR (Fig. 4A). The expression of FoxJ2 was upregulated in miR-454-5p-silenced MDA-MB-231 cells, whereas it was notably downregulated in miR-454-5p and FoxJ2-silenced MDA-MB-231 cells compared with that of control cells, as determined using western blotting (Fig. 4B). It was also found that knockdown of FoxJ2 significantly reversed the inhibitory effects of miR-454-5p silencing on the proliferation, migration and invasion of MDA-MB-231 cells as determined via CCK-8 (Fig. 4C), colony formation (Fig. 4D), cell cycle (Fig. 4E) and Transwell assays (Fig. 4F), respectively.

To investigate the biological effect of the miR-454-5p/FoxJ2 axis on breast cancer progression in vivo, MDA-MB-231-control, MDA-MB-231-anti-454 and MDA-MB-231-anti-454 + shFoxJ2 cells were injected into the mammary fat pads of female BALB/c-nude mice. As presented in Fig. 4G-I, tumor volumes and weights were significantly decreased in mice injected with MDA-MB-231-anti-miR-454 cells compared with those in mice injected with MDA-MB-231-control cells. Moreover, it was identified that knockdown of FoxJ2 could abolish the inhibitory effects of miR-454-5p silencing on tumor growth. Collectively, these results indicated that silencing of miR-454-5p may inhibit breast cancer progression through the upregulation of FoxJ2 expression.

Silencing of miR-454-5p reverses EMT through the transcriptional upregulation of E-cadherin. Accumulating evidence has suggested that EMT could promote progression in breast cancer (41). Therefore, it was investigated whether miR-454-5p regulated EMT to affect breast cancer progression. It was identified that miR-454-5p-silenced MDA-MB-231 cells had a cobblestone-like morphology, whereas anti-miR-454-5p + shFoxJ2 MDA-MB-231 cells and anti-Control cells maintained their spindle-like fibroblast morphology (Fig. 5A). In addition, it was demonstrated that the expression of epithelial marker E-cadherin was increased in miR-454-5p-silenced MDA-MB-231 cells, whereas the expression levels of mesenchymal markers Vimentin and N-cadherin were decreased in miR-454-5p-silenced MDA-MB-231 cells compared with the expression levels in control cells, as determined by western blotting (Fig. 5B). Moreover, knockdown of FoxJ2 could reverse this effect caused by miR-454-5p silencing (Fig. 5B). In total, three putative FoxJ2 binding sites on the E-cadherin promoter region were identified using LASAGNA-Search (47). ChIP analysis results demonstrated that FoxJ2 bound to region 1 and region 2 from the E-cadherin promoter region (Fig. 5C). Luciferase assay results indicated that knockdown of FoxJ2 significantly abolished miR-454-5p depletion-induced E-cadherin promoter activity (Fig. 5D). E-cadherin mRNA expression levels were increased in miR-454-5p-silenced MDA-MB-231 cells, whereas this effect was abolished by FoxJ2 knockdown as shown by RT-qPCR (Fig. 5E) and immunofluorescence (Fig. 5F). E-cadherin mRNA was determined to be a positive co-expression trend with FoxJ2 mRNA by ENCORI (Fig. 5G). Together, these results indicated that miR-454-5p may regulate EMT through the transcriptional upregulation of E-cadherin by FoxJ2.

Discussion

The results from present study demonstrated that miR-454-5p was upregulated in breast cancer compared with normal breast epithelial tissue and cell lines. Furthermore, the results suggested that miR-454-5p may promote breast cancer progression both in vitro and in vivo. FoxJ2 was identified as a direct target of miR-454-5p, and FoxJ2 may transactivate the expression of E-cadherin. Moreover, silencing of miR-454-5p reversed EMT through the transactivation of E-cadherin by FoxJ2. The present results suggested that miR-454-5p may be a potential target for breast cancer therapy.

Accumulating evidence has revealed that the dysregulation of miRNAs is involved in carcinogenesis and cancer progression in all types of human cancer, including breast cancer (41,48). Abnormal expression of miR-454 has been observed in a variety of human cancer types, suggesting that miR-454 may serve an important role in cancer development and progression (9-36). miR-454-3p has been demonstrated to function as an oncogene, and high expression of miR-454-3p may be associated with unfavorable outcome in triple-negative breast cancer (36,49). Moreover, miR-454-3p has been shown to promote breast cancer metastasis through the suppression of Wnt/β-catenin signaling antagonists (35). Consistent with these previous reports, the present study demonstrated that miR-454-5p was upregulated in breast cancer and that miR-454-5p may promote breast cancer progression both in vitro and in vivo, suggesting that miR-454-5p may function as an oncogene in breast cancer.

Fox protein family members share a highly conserved common forkhead DNA-binding domain and are widespread from yeast to humans (50). These transcription factors are crucial players in multiple cellular processes, including differentiation, proliferation, metabolism, migration and apoptosis, and are often dysregulated in cancer development and progression (50). FoxJ2 belongs to the human Fox gene family and serves an important role in embryogenesis and carcinogenesis (51). FoxJ2 has also been reported to function as a tumor suppressor in multiple types of cancer, including colorectal cancer (52), hepatocellular carcinoma (53), non-small lung cancer (43), extrahepatic cholangiocarcinoma (44), glioma (45) and breast cancer (46). In line with the aforementioned results, the present findings demonstrated that FoxJ2 was a target of miR-454-5p and that miR-454-5p may promote breast cancer progression through the downregulation of FoxJ2 expression.

EMT, a main driver of tumor metastasis, is defined as a process by which epithelial cells lose their cell polarity and
Figure 5. Silencing of miR-454-5p reverses EMT through the upregulation of the FoxJ2/E-cadherin axis in breast cancer. (A) Bright-field images of MDA-MB-231 cells stably expressing anti-miR-454-5p with or without shFOXJ2 co-transfection, and anti-Control cells. (B) Expression levels of E-cadherin, N-cadherin and Vimentin in cells stably expressing anti-miR-454-5p with or without shFOXJ2 co-transfection, and anti-Control cells were examined by western blotting. (C) Chromatin immunoprecipitation analysis of miR-454-5p-silenced MDA-MB-231 cells or anti-Control cells to determine the binding of FoxJ2 to three E-cadherin promoter regions. (D) Luciferase analysis of E-cadherin promoter activity in MDA-MB-231 cells stably expressing anti-miR-454-5p with or without shFOXJ2 co-transfection, and anti-Control cells. (E) mRNA expression level of E-cadherin in MDA-MB-231 cells stably expressing anti-miR-454-5p with or without shFOXJ2 co-transfection, and anti-Control cells was examined by reverse transcription-quantitative PCR. (F) Expression of E-cadherin in cells stably expressing anti-miR-454-5p with or without shFOXJ2 co-transfection, and anti-Control cells was examined using immunofluorescence. (G) Relationship between E-cadherin and FoxJ2 expression levels analyzed by ENCORI. *P<0.05. FoxJ2, forkhead box J2; miR, microRNA; sh, short hairpin RNA.
cell-cell adhesions, resulting in changes to cell morphology and enhanced cell migratory and invasive abilities (37). Vimentin, N-cadherin and E-cadherin are generally considered as EMT markers. During the EMT process, the expression of E-cadherin (an epithelial marker) is decreased, whereas the expression levels of Vimentin and N-cadherin (mesenchymal markers) are increased. Several studies have reported that FoxJ2 can inhibit cancer migration, invasion and the EMT phenotype (43-44,52,53). Consistent with these findings, the present study identified a decrease in Vimentin and N-cadherin expression levels, and an increase in E-cadherin expression in miR-454-5p-silenced cells, whereas knockdown of FoxJ2 reversed these effects, suggesting that miR-454-5p may induce an EMT phenotype in breast cancer. Furthermore, it was revealed that FoxJ2 could bind to the E-cadherin promoter region and transactivated E-cadherin expression. Thus, the present results suggested that miR-454-5p promoted breast cancer progression through the induction of an EMT phenotype by downregulating the FoxJ2/E-cadherin axis.

In conclusion, the present study demonstrated that miR-454-5p was upregulated in breast cancer. It was suggested that miR-454-5p may promote breast cancer progression through the induction of EMT by targeting the FoxJ2/E-cadherin axis. Therefore, miR-454-5p may serve as a novel therapeutic target and prognostic predictor for patients with breast cancer.

Acknowledgements
Not applicable.

Funding
Not applicable.

Availability of data and materials
The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Authors’ contributions
CPW and YZY contributed to writing the manuscript collection and analysis of data. HZ, LIX, YW, and QTW collected and interpreted data. QM contributed to study conception and design as well as revising and approving the final version of the manuscript. CPW and QM confirm the authenticity of all the raw data. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The experimental procedures were approved by the Animal Experimentation Ethics Committee of Qingdao Central Hospital (Qingdao, China; approval no. KY202014301).

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References

