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Abstract. Nasopharyngeal carcinoma (NPC) is a tumor 
located in the nasopharynx with highly invasive and meta‑
static properties. Metastasis is a primary cause of mortality in 
patients with NPC. The terpenoid polyphenol pinosylvin is a 
known functional compound of the Pinus species that exhibits 
anti‑inflammatory effects; however, the effect of pinosylvin 
on human NPC cell migration and invasion is unclear. The 
present study aimed to investigate the functional role of pino‑
sylvin in NPC cells (NPC‑039, NPC‑BM and RPMI 2650). 
Gap closure and Transwell assay indicated that pinosylvin at 
increasing concentrations inhibited migration and invasion 
of NPC‑039 and NPC‑BM cells. In addition to inhibiting the 
enzyme activity of MMP‑2, pinosylvin also decreased the 
protein expression levels of MMP‑2 and MMP‑9. Pinosylvin 
decreased the expression of vimentin and N‑cadherin and 

significantly increased the expression of zonula occludens‑1 
and E‑cadherin in NPC cells. Additionally, pinosylvin 
suppressed the invasion and migration ability of NPC‑039 and 
NPC‑BM cells by mediating the p38, ERK1/2 and JNK1/2 
pathways. The present results revealed that pinosylvin inhib‑
ited migration and invasion in NPC cells.

Introduction

The terpenoid polyphenol pinosylvin (trans‑3,5‑dihydroxystil‑
bene) is a stilbene present in the heartwood of coniferous trees 
of the genus Pinus (1). Many studies have demonstrated that 
biological characteristics of pinosylvin include antibacterial 
and antifungal activity (2) and protection against oxidative 
stress in human cells (3). Pinosylvin regulates Src/ERK and 
GSK‑3/β‑catenin signaling to inhibit tumor cell growth (4). 
Pinosylvin has been shown to inhibit the expression of MMP‑2 
and MMP‑9 in human fibrosarcoma HT1080 cells (5).

Nasopharyngeal carcinoma (NPC) is a tumor located in 
the nasopharynx and is caused by epithelial cells covering 
the nasopharyngeal surface. Unlike other head and neck 
epithelial cancers, NPC is highly invasive and metastatic (6). 
NPC is particularly prevalent in Southern China, Southeast 
Asia, North Africa and the Arctic region, which is a unique 
geographical distribution  (7). Four primary causes of 
nasopharyngeal carcinoma have been identified, including 
Epstein‑Barr and human papillomavirus infection, genetic 
susceptibility and consumption of salted fish (8). NPC occurs 
adjacent to cervical lymph nodes, which increases the risk of 
metastasis in other parts of the body, thereby causing diffi‑
culties in surgical treatment (8). Currently, chemotherapy 
and radiotherapy can improve the survival rate of patients 
with advanced NPC (9). Preventing distant metastasis is key 
to treatment, and more effective systemic drugs should be 
investigated (10).
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The metastasis of NPC occurs in two stages: Translocation 
to distant tissue and colonization (11). The initial step degrades 
and penetrates the extracellular matrix of surrounding 
tissue  (12). Among the involved proteolytic enzymes, 
zinc‑dependent MMPs contribute substantially to proteo‑
lytic degradation and intercellular interaction damage (13). 
Research has indicated that MMP‑2 and MMP‑9 are key treat‑
ment targets for regulation of tumor metastasis in NPC (14), 
cervical cancer (15) and retinoblastoma (16). Lyu et al (17) 
reported that liposome‑containing thermosensitive liposomes 
can deliver MMP inhibitors, decreasing the activity of MMP‑2 
and MMP‑9 by 50 and 43%, respectively, to inhibit metastasis 
and angiogenesis. Huang et al (18) demonstrated that exosomes 
with low expression levels of microRNA‑34c‑3p affect expres‑
sion of integrin α2β1 and promote the invasion and migration 
of non‑small cell lung cancer cells.

Epithelial‑mesenchymal transition (EMT) is a key process 
involved in tumor metastasis and recurrence (19,20). Research 
has indicated that the expression of mesenchymal markers, such 
as vimentin and N‑cadherin, increases during EMT, whereas 
epithelial marker E‑cadherin, a powerful tumor cell invasion 
inhibitor, is downregulated (21,22). The MAPK pathway is 
an important intracellular signal transduction pathway that 
serves a key role in regulating tumor metastasis, as well as 
regulating cell proliferation, differentiation, apoptosis and 
angiogenesis (23). The ERK subfamily (typical ERK 1/2/5 and 
atypical ERK 3/4/7/8) of proteins is known for its contributions 
to EMT (23,24). PI3K/AKT and MAPK pathways contribute 
to TGF‑β2‑induced upregulation of Jagged‑1, which mimics 
TGF‑β2‑induced EMT in retinal pigment epithelium cells (25). 
TGF‑β, in addition to its role in cell differentiation, migration 
and adhesion, also induces EMT via both Smad and MAPK 
pathways  (26). A previous study indicated that pinosylvin 
exerts antimetastatic effects on human oral cancer cells (27). 
However, the antimigratory effect of pinosylvin on NPC cells 
remains unknown. Therefore, the present study investigated 
the effect of pinosylvin on NPC cell metastasis and regulation 
of its signaling.

Materials and methods

Chemicals. Pinosylvin (≥97% purity) was purchased from 
ChemFaces. DMSO was used to prepare 100 mM storage solu‑
tion of pinosylvin, which was stored at ‑20˚C. The maximum 
concentration of DMSO used for treatment in medium was 
<0.2%. MTT, ERK1/2, p38 and JNK1/2 specific inhibi‑
tors (U0126, SB203580 and SP600125) were obtained from 
Sigma‑Aldrich (Merck KGaA).

Cell culture. Nasal cavity cancer cells (RPMI 2650) were 
obtained from Japanese Collection of Research Bioresources 
Cell Bank (Osaka, Japan). Human nasopharyngeal cancer 
cell lines (NPC‑039 and NPC‑BM) were provided by 
Dr Jen‑Tsun Lin, Department of Hematology and Oncology, 
Changhua Christian Hospital (Changhua, Taiwan). RPMI‑2650 
cells were cultured in Eagle's Minimum Essential Medium 
(Gibco; Thermo Fisher Scientific, Inc.); NPC cell lines were 
cultured in RPMI‑1640 medium (Gibco; Thermo Fisher 
Scientific, Inc.). All culture media were supplemented with 
10% fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.), 

1 mM glutamine, 1% penicillin/streptomycin (10,000 U/ml 
penicillin and 10 mg/ml streptomycin), 1.5 g/l sodium bicar‑
bonate and 1 mM sodium pyruvate. All cell cultures were 
maintained at 37˚C in a humidified atmosphere of 5% CO2.

In vitro cytotoxicity assay (MTT assay). Cytotoxicity was 
assessed via MTT (0.1%,) assay. All cells were cultured in 
96‑well plates (1x104/well) at  37˚C in 5% CO2 overnight. 
Subsequently, supernatant was removed and cultures 
were treated with different concentrations of pinosylvin 
(0, 20, 40 and 80 µM) at 37˚C for 24 h. Following treatment, 
the medium containing pinosylvin was removed and MTT 
reagent (1 mg/ml) was added to each well at 37˚C in 5% CO2. 
After  4  h, the supernatant containing MTT reagent was 
removed and DMSO was added to dissolve the formed blue 
formazan crystals. Absorbance was measured at 595 nm using 
spectrophotometry. A total of three independent experimental 
replicates was performed.

Gap closure assay. Gap closure assay was used to measure 
migration of NPC‑039 and NPC‑BM cells over a certain 
distance. NPC‑039 and NPC‑BM cells (3x104) were grown 
onto each side of a culture insert (Ibidi GmbH) at 37˚C over‑
night. After reaching 90% confluence, culture inserts were 
removed and gap closure assay was performed. Cultures were 
treated with pinosylvin (0, 20, 40 and 80 µM) in serum‑free 
RPMI‑1640 (Gibco; Thermo Fisher Scientific, Inc.) at 37˚C 
for 24 h. The cell migration distance was observed and photo‑
graphed after 0, 3 and 6 h. Migration was measured using 
ImageJ 1.47 version software (National Institutes of Health) 
and expressed as a percentage using the following formula: 
(Initial gap width of the experimental group‑remaining width 
of the experimental group)/(initial gap width of the control 
group‑remaining width of the untreated control group) x100. 
Images were captured under a light microscope (Lecia GmbH). 
The entire procedure was repeated three times and the values 
are indicated as mean ± SD. 

Cell migration and invasion assay. NPC‑039 and NPC‑BM cell 
migration and invasion assays were performed as described by 
Yang et al (28). Briefly, NPC cells (3x104) were placed on the 
upper well of a Transwell insert (Greiner Bio‑One International 
GmbH) with serum‑free medium (RPMI‑1640) and 10% 
FBS‑containing medium (RPMI‑1640 medium) (600 µl) was 
added to the lower chamber for 24 h at 37˚C. For the invasion 
assay, Matrigel (25 mg/50 ml; 60 µl; BD Biosciences) was 
coated on the upper Transwell at 37˚C, overnight. Migrated 
or invaded cells were fixed with 99% methanol at room 
temperature for 15 min and stained with Giemsa (1X) at room 
temperature for 2 h. Images were captured and number of 
cells was counted under an optical light microscope (Lecia 
Germany) at 100x magnification using ImageJ 1.47 version 
cell count software (National Institutes of Health). A total 
three fields of view was randomly selected for each concentra‑
tion. Data are presented as the mean ± SD (n=3).

Gelatin zymography. Enzyme activity of MMP‑2 was analyzed 
via gelatin zymography. Briefly, after plating NPC‑039 and 
NPC‑BM cells (5x104 cells/well) in 24‑well plates at 37˚C 
for 16  h, cells were treated with different concentrations 
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(0, 20, 40 and 80 µM) of pinosylvin at 37˚C for 24 h. Culture 
medium was collected and subjected to 8% SDS‑PAGE with 
0.1% gelatin as described previously (29).

Western blot analysis. Following treatment with different 
concentrations of pinosylvin, cells were lysed with 1X RIPA 
buffer (EMD Millipore) containing protease and phosphatase 
inhibitor cocktails and subjected to BCA (Thermo Fisher 
Scientific, Inc.) protein concentration assay. All samples 
were separated using 10.0 or 12.5% SDS‑PAGE and proteins 
were transferred onto a PVDF membrane (EMD Millipore). 
Membranes were blocked with 5% non‑fat milk in TBST 
(0.05% Tween‑20) at room temperature for 1 h. Detection 
was performed with a primary antibody overnight at  4˚C 
followed by a horseradish peroxidase (HRP)‑conjugated 
secondary antibody (Anti‑rabbit IgG, #7074, 1:3,000; 
Anti‑mouse IgG, #7076, 1:3,000, Cell Signaling Technology, 
Inc.) at room temperature for 1 h. The following antibodies 
(all 1:1,000; all Cell Signaling Technology, Inc. unless other‑
wise indicated) were used: Anti‑ERK1/2 (cat. no. #4695; 42, 
44 kDa), anti‑JNK1/2 (cat. no. #9252; 46, 54 kDa), anti‑p38 
(cat.  no.  #8690; 40  kDa), anti‑phosphorylated (phospho‑)
ERK1/2 (cat. no. #4370; 42, 44 kDa), anti‑phospho‑JNK1/2 
(cat. no. #4668; 46, 54 kDa), anti‑phospho‑p38 (cat. no. #4511; 
43 kDa), anti‑MMP‑2 (cat. no. #87809; 64  kDa), anti‑N‑cadherin 
(cat. no. #13116; 140 kDa), anti‑E‑cadherin (cat. no. #3195; 
135  kDa), anti‑zonula occludens (ZO)‑1 (cat.  no.  #8193; 
220 kDa), anti‑vimentin (cat. no. #5741; 57 kDa), anti‑MMP‑9 
(cat. no. #AB19016; 92 kDa; EMD Millipore) and anti‑b‑actin 
(1:5,000; cat. no. NB600‑501; 42 kDa; Novus Biologicals). 
Immunoblotting was observed using HRP chemiluminescent 
substrates (EMD Millipore). Images were captured using 
ImageQuant LAS 4000 mini (GE Healthcare) and relative 
density was quantitated by ImageJ  1.47 version software 
(National Institutes of Health).

Proteome profiler human protease array. The Proteome 
Profiler Human Protease Array kit (cat. no. ARY021B; R&D 
Systems, Inc.) was used according to the manufacturer's 
instructions. Array buffer 6 was added into each well of the 
4‑well Multi‑dish and incubated at room temperature for 1 h. 
Then, 15 µl reconstituted protease detection antibody cocktail 
was added at room temperature for 1 h. Sample mixtures were 
incubated with membrane overnight at 4˚C. Each membrane 

was washed with wash buffer for 10 min. Streptavidin‑HRP 
was added into each well and incubated for 30 min at room 
temperature. Immunoblotting was observed using HRP 
chemiluminescent substrate (EMD Millipore). Images were 
captured using ImageQuant LAS 4000 mini (GE Healthcare) 
and relative density was quantitated by ImageJ 1.47 version 
software (National Institutes of Health).

Statistical analysis. The experimental data are expressed as 
the mean ± SD (n≥3). Comparisons between >2 groups were 
analyzed by one‑way ANOVA followed by post hoc Tukey's 
test. Paired student's t‑test was used to analyze differences 
between two groups. All statistical analyses were performed 
using GraphPad Prism Software Version  5.0 (GraphPad 
Software, Inc.). P<0.05 was considered to indicate a statisti‑
cally significant difference.

Results

Pinosylvin does not induce cytotoxicity in three cell lines. 
The cytotoxic effects of various concentrations of pinosylvin 
(0, 20, 40 and 80 µM) on cell lines were assessed using MTT 
assay for 24 h (Fig. 1A‑C). Pinosylvin did not exert significant 
cytotoxic effects on the viability of NPC‑039, NPC‑BM and 
RPMI‑2650 cell lines. All subsequent experiments examined 
antimetastatic properties of pinosylvin at non‑cytotoxic 
concentrations.

Pinosylvin inhibits migration and invasion in NPC cell lines. 
Gap closure assay was performed to assess the effect of 
pinosylvin on the mobility of NPC cells treated with 0‑80 µM 
pinosylvin for 0, 3 and 6 h (Fig. 2). Compared with the control 
group, the migrated distance of the cell monolayers was signifi‑
cantly decreased at high concentrations (80 µM) of pinosylvin. 
In addition, the effect of pinosylvin on the migration and 
invasion ability in NPC cells was assessed by Transwell assay 
(Fig. 3A‑D); pinosylvin significantly decreased the migration 
and invasion abilities of two NPC cell lines.

Pinosylvin changes migration of NPC cell line and inhibits 
MMP‑2 activity. According to the results of Proteome 
Profiler Human Protease Array (Fig. S1), to lack of observed 
differences. MMPs regulate cancer cell migration and inva‑
sion (13). In order to determine whether MMP‑2 and MMP‑9 

Figure 1. Pinosylvin does not inhibit cell proliferation in three cell lines. (A) NPC-039, (B) NPC‑BM and (C) RPMI 2650 cells were treated with pinosylvin 
(0, 20, 40 and 80 µM) for 24 h. Cytotoxicity was measured using an MTT assay. Data are presented as the mean ± SD (n=3). NPC, nasopharyngeal carcinoma. 
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are regulated by pinosylvin in two NPC cell lines, zymography 
and western blotting were performed to analyze enzyme activity 
and protein concentration. Pinosylvin at the highest concentra‑
tion significantly decreased enzymatic activity of MMP‑2 in 
two NPC cell lines (Fig. 4A‑D). Following 24 h treatment, a 
high pinosylvin concentration (80 µM) decreased expression 
levels of MMP‑2 and MMP‑9 to 54 and 66 in NPC‑039 and 
52 and 41% in NPC‑BM cells, respectively (Fig. 4E‑H).

Pinosylvin affects EMT‑associated protein expression in 
NPC cell lines. When wound healing occurs, organ fibrosis 
and the initiation of metastasis in cancer progression prompt 
EMT (30). Analysis of expression levels of EMT‑specific 
proteins (Fig.  5A‑D) demonstrated that pinosylvin at a 

high concentration significantly decreased expression of 
vimentin and N‑cadherin to 58.5 and 62.5 in NPC‑039 
and 55.0 and 58.5% in NPC‑BM, respectively, and signifi‑
cantly increased expression of ZO‑1 and E‑cadherin to 80.0 
and 101.5 in NPC‑039 and 90.0 and 123.0% in NPC‑BM, 
respectively.

Pinosylvin decreases invasion and migration ability of 
NPC cell lines via MAPK pathways. Western blotting was 
performed to detect changes in the molecular mechanisms 
of MAPK pathways in response to treatment with pinosylvin 
(Fig. 6A‑D). As the concentration of pinosylvin increased, 
phosphorylation of ERK1/2 and p38 decreased significantly. 
According to ImageJ analysis of blots, treatment with 80 µM 

Figure 2. Effect of pinosylvin on gap closure. Cell motility was determined by gap closure assay from 0 and 6 h in (A) NPC‑039 and (B) NPC‑BM. Migration of 
(C) NPC‑039 and (D) NPC‑BM cells was quantified. Data are presented as the mean ± SD (n=3). *P<0.05 vs. control. Scale bar, 100 µm. NPC, nasopharyngeal 
carcinoma. 
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pinosylvin decreased the phosphorylation of ERK1/2 and p38 
to 63 and 51 in NPC‑039 cells and 59 and 46% in NPC‑BM 
cells, respectively, at 24 h compared with untreated controls. 
By contrast, phosphorylation of JNK1/2 was significantly 
increased in the two NPC cell lines. In order to confirm 
the molecular mechanism underlying pinosylvin‑induced 
inhibition of NPC cell migration, cells were pre‑treated with 
specific inhibitors of ERK1/2, p38 and JNK1/2; following 
pre‑treatment with specific inhibitors, pinosylvin‑inhibited 
cell migration and invasion ability were significantly 
improved (Fig. 7A‑D). Taken together, these findings indi‑
cate that pinosylvin exerted anti‑metastatic effects via p38, 
ERK1/2 and JNK1/2 signaling pathways in human NPC cells.

Discussion

In an analysis of metastasis patterns of 629 patients with 
NPC, Huang et al (31) found that 95% of distant metastases 
occurred <3 years after completion of radiotherapy. Hence, 
determining effective methods of suppressing distant metas‑
tasis is important in the treatment of NPC. Plant polyphenols 
are important plant secondary metabolites with biological 
functions (such as countering infection by pathogens or 
mitigating environmental stresses), as well as antioxidant, 
anticancer and anti‑inf lammatory properties  (1,3,5,7). 
Studying compounds with such biochemical activity is 
beneficial for drug development in the pharmaceutical 
industry (32). Pinosylvin and resveratrol are terpenoid poly‑
phenols with similar structures (2). Research has indicated 
that pinosylvin inhibits growth of human colorectal cancer 
cells (4), suppresses MMP‑2 and MMP‑9 activity in HT1080 

cells (5) and suppresses migration and invasion in SCC‑9, 
SAS and HSC‑3 cell lines (27). In the present study, pino‑
sylvin did not decrease the viability of the two NPC cell 
lines or a nasal cavity cancer cell line (RPMI 2650), however, 
high concentrations of pinosylvin inhibited the migration 
and invasion of NPC‑039 and NPC‑BM cells. Furthermore, 
the present results indicated that pinosylvin inhibited NPC 
cell metastatic effects by downregulating MMP‑2/MMP‑9 
expression levels and modifying the regulation of EMT 
markers.

MMPs serve important roles in mediating cancer cell 
growth, differentiation, apoptosis, migration, invasion and 
angiogenesis (33). Di Carlo et al (34) performed zymography 
analysis and demonstrated that the ratio of MMP‑9/MMP‑2 
in patients with cancer was increased compared with that in 
patients with benign disease and healthy individuals. High 
expression of MMP‑2 and MMP‑9 is significantly correlated 
with local and distant metastatic tumor recurrence and poor 
prognosis in head and neck squamous cell carcinoma (35‑37). 
In the present study, gelatin zymography and western blot‑
ting were performed to analyze the effects of pinosylvin on 
MMPs in two NPC cell lines; pinosylvin significantly inhib‑
ited expression of MMP‑2 and MMP‑9 as well as MMP2 
activity. Tissue inhibitors of metalloproteinase (TIMPs) 
control proteolytic activity and are a specific endogenous 
inhibitor of MMPs (38). Western blotting here showed that 
pinosylvin did not increase TIMP‑1 or ‑2 protein levels in 
the two NPC cell lines (data not shown). This indicated 
that pinosylvin decreased MMP‑2 protein expression levels 
and activity, via regulated the activation of zymogen at the 
post‑transcriptional level. 

Figure 3. Pinosylvin inhibits migration and invasion in NPC cells. Transwell assay was performed to assess cell (A and B) migration and (C and D) invasion 
ability, which demonstrated a dose‑dependent effect of pinosylvin on NPC cell migration and invasion ability. Data are presented as the mean ± SD (n=3). 
*P<0.05 vs. control. Scale bar, 100 µm. NPC, nasopharyngeal carcinoma. 
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EMT is a key step in tumor cell migration and invasion 
in various types of human cancer (39‑41). Upregulation of 
N‑cadherin induces EMT (40); another regulator of EMT is 
E‑cadherin, which inhibits the occurrence of EMT and serves 
as a tumor suppressor (41). Vimentin is the primary cytoskel‑
etal component of mesenchymal cells (42). ZO‑1 and ZO‑2 
are required for tight junction formation and function (43,44); 
mutations in ZO‑1 and claudin‑1 induce EMT (45). In the 
present study, pinosylvin‑treated NPC‑BM and NPC‑039 cells 
exhibited significantly induced E‑cadherin and ZO‑1 expres‑
sion, but decreased expression of N‑cadherin and vimentin. 
These findings suggest that pinosylvin inhibited EMT at the 
initiation step of tumor metastasis.

Compared with other intracellular signal transduction path‑
ways (23), the MAPK pathway serves a more important role in 
cell proliferation, differentiation, apoptosis, angiogenesis and 
tumor metastasis (23,24). A study indicated that TBL‑12, a sea 
cucumber extract, inhibits migration and invasion of human 
PCa cells by inhibiting MMP‑2 and MMP‑9 via decreased 

phosphorylation of p38 (46). Additionally, 18β‑glycyrrhetinic 
acid inhibits migration and invasion of gastric cancer cells via 
the reactive oxygen species/protein kinase C‑α/ERK signaling 
pathway (47). Therefore, the present study investigated whether 
the MAPK pathway is altered by pinosylvin treatment. Western 
blot analysis revealed that pinosylvin suppressed ERK1/2 and 
p38 protein phosphorylation but induced JNK protein phos‑
phorylation in both NPC cell lines. This result is consistent with 
previously reported inhibition of Huh7 cell proliferation and 
metastasis by cucurbitacin E via suppression of MAPKs (48). 
A previous study showed that pinosylvin inhibits the growth 
of human colorectal cancer cells via suppression of Src/ERK 
and GSK‑3/β‑catenin signaling (4). In our previous research, 
pinosylvin inhibited migration and invasion of oral cancer 
cells by suppressing the expression and activity of MMP‑2 
and ERK1/2 signaling (27). The present results suggest that 
pinosylvin was involved in MMP‑2/MMP‑9 regulation in NPC 
cells and that the MAPK pathway may serve a key role.

Figure 4. Effects of pinosylvin on activity of MMP enzymes and protein expression in NPC cells. Determination of MMP‑2 enzyme activity using gelatin 
zymography in (A and B) NPC‑039 and (C and D) NPC‑BM cells. Western blotting was used to measure the expression of MMP‑2 and MMP‑9 protein after 
24 h pinosylvin treatment in (E and F) NPC‑039 and (G and H) NPC‑BM cell lines. ImageJ software was used for quantitative analysis of protein. Data are 
presented as the mean ± SD (n=3). *P<0.05 vs. control. NPC, nasopharyngeal carcinoma. 
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Figure 5. Pinosylvin affects mesenchymal marker protein expression in NPC cell lines. Western blotting was used to measure the expression of mesenchymal 
marker proteins following 24 h pinosylvin treatment in (A and B) NPC‑039 and (C and D) NPC‑BM cell lines. ImageJ software was used for quantitative 
analysis of protein. Data are presented as the mean ± SD (n=3). *P<0.05 vs. control. NPC, nasopharyngeal carcinoma; ZO‑1, zonula occludens‑1. 

Figure 6. Pinosylvin affects MAPK pathways in NPC cell lines. Western blotting was used to measure expression levels changes in phospho‑p38, ‑ERK1/2 and 
‑JNK1/2 following 24 h pinosylvin treatment in (A and B) NPC‑039 and (C and D) NPC‑BM cell lines. Data are presented as the mean ± SD (n=3). *P<0.05 vs. 
control. NPC, nasopharyngeal carcinoma; phospho‑, phosphorylated. 
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Identifying effective methods for treating distant metas‑
tases resulting from NPC is crucial. In summary, the present 
results demonstrated that pinosylvin decreased activity 
of MMP‑2 and expression of MMP‑2/MMP‑9 in both 
NPC‑BM and NPC‑039 cell lines. Pinosylvin significantly 
inhibited both cell migration and invasion. The expres‑
sion levels of epithelial markers increased, while those of 
mesenchymal markers decreased following treatment with 
pinosylvin. Following pre‑treatment with specific inhibi‑
tors of ERK1/2, p38 and JNK1/2, pinosylvin‑inhibited cell 
migration and invasion significantly improved. However, 
the lack of activator experiments is a potential limitation to 
the present study. A recent study suggested that pinosylvin 
is mostly metabolized in vivo and may provide a material 
basis for studying the pharmacological action of pinosylvin, 
thus providing information for the clinical treatment of 
chronic gastritis and gastric ulcers using Radix Linderae 
Reflexae  (49). The short half‑life and limited systemic 
exposure of pinosylvin prompt caution in its therapeutic 
application (50). However, the lack of in vivo experiments 
is a potential limitation to the present study. The present 
results suggested that pinosylvin may be useful in the 

development of drugs for treating NPC and preventing 
migration and invasion of NPC cells.
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