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Abstract. Tumor microenvironment (TME) can serve as the 
‘soil’ for the growth and survival of tumor cells and function 
synergically with tumor cells to mediate tumor progression 
and therapeutic resistance. Reactive oxygen species (ROS) is 
somewhat of a double‑edged sword for tumors. Accumulating 
evidence has reported that regulating ROS levels can serve an 
anti‑tumor role in the TME, including the promotion of cancer 
cell apoptosis, inhibition of angiogenesis, preventing immune 
escape, manipulating tumor metabolic reorganization and 
improving drug resistance. In the present review, the potential 
role of ROS in anti‑tumor therapy was summarized, including 
the possibility of directly or indirectly targeting the TME.
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1. Introduction

Reactive oxygen species (ROS) is a general term used to 
describe molecules with high oxidative reactivity. They 
are mainly produced by the electron transport chain during 

aerobic respiration in the mitochondria or as a byproduct of 
the activity of several metabolic enzymes, including xanthine 
oxidase, lipoxygenase and cytochrome P450 (1). In addition, 
exogenous stimuli, such as stress, ultraviolet radiation, tumor 
chemotherapy and radiotherapy (RT), can stimulate ROS 
production (2). Under physiological conditions, cells can 
scavenge intracellular ROS using antioxidants, including 
catalase, glutathione and ascorbic acid, to maintain the 
dynamic redox balance (3). Once the level of ROS exceed the 
tolerance threshold of cells, a variety of pathological disorders 
occur. Previous studies have shown that abnormal ROS 
levels are closely associated with the occurrence of tumors 
and neurodegenerative diseases (4,5). During the moderate 
redox state, ROS can induce tumorigenesis by activating the 
MAPK and ERK signaling pathway or promoting mutations 
in the genomic DNA (6). However, previous studies have 
demonstrated that ROS production is actually inhibited 
during breast and colon tumor progression, where tumor cells 
attempt to reduce or eliminate the adverse effects of ROS by 
potently activating their antioxidant systems (7,8). This leads 
to resistance to treatments, including chemotherapy, RT and 
immunotherapy (9,10). In addition, an elevation in ROS levels 
in breast cancer and human multiple myeloma has been found 
to promote tumor cell death in different signaling pathways 
and increase sensitivity to anti‑tumor therapy (11,12).

The tumor microenvironment (TME) mainly includes tumor 
cells and their surrounding immune cells, cancer‑associated 
fibroblasts (CAFs) and vascular endothelial cells (13). 
It is characterized by hypoxia, low pH, high interstitial 
pressure, overexpression of glutathione, redox imbalance 
and immunosuppression (14,15). Paget first proposed the 
hypothesis of ‘seed and soil’ in 1989, where tumor cells were 
known as ‘seeds’ and the surrounding microenvironment were 
known as ‘soil’ (16). Langley and Fidler (17) then revisited this 
theory and reviewed the close relationship between tumor and 
angiogenesis in organ metastasis. They found that angiogenesis 
can promote the metastasis of tumor organs, which provides 
a theoretical basis for antiangiogenic therapy. Recent studies 
in stomach and lung cancer have found that in the TME, 
immune and metabolic reorganization can also promote the 
occurrence, development, invasion, metastasis of tumors 
(Fig. 1) (18,19). Manipulating the TME may therefore be 
more beneficial for controlling the progression of tumors and 
reverse the drug resistance of tumors. Over the past decade, 
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an increasing number of studies have revealed that regulation 
of the levels of ROS can exert anti‑tumor effects by acting on 
the TME (20,21). These effects include promoting tumor cell 
apoptosis, inhibiting angiogenesis, inhibiting immune escape, 
regulating tumor metabolic reorganization and reversing drug 
resistance (20,22). The present review analyzes the complex 
role of ROS in anti‑tumor therapy in relation to the TME.

2. ROS and TME

ROS and tumor cells. Compared with normal cells, cancer 
cells have a higher level of oxidation (23,24). Excessive ROS 
renders tumor cells that are already under oxidative stress 
more fragile, which eventually leads to apoptosis, autophagy 
and necrosis (Fig. 2).

ROS and apoptosis. Apoptosis is also termed type I 
programmed cell death and is a form of programmed cell 
death that serves to clear damaged cells in an orderly manner, 
which are mainly divided into two types, namely exogenous 
and endogenous apoptosis (25). The former primarily involves 
the FasL/FasR, TNF‑α/TNF receptor 1 (TNF‑α/TNFR1), 
TNF ligand superfamily member 12/death receptor (DR)3, 
TNF‑related apoptosis‑inducing ligand (Apo2L)/DR4, and 
Apo2L/DR5 signaling pathways (26‑29). By contrast, the 
endogenous signaling pathway is also termed the mitochondrial 
pathway and mainly entails increasing the permeability of 
mitochondria, which elevates the concentration of intracellular 
Ca2+ and regulates the activity of the Bcl‑2 family of proteins (30). 
This effect is accompanied by the release of cytochrome c 
(Cyt c), apoptosis‑inducing factor and endonuclease G, leading 
to tumor cell apoptosis (31,32). The final node of apoptosis is 
mainly initiated by the activation of enzymes in the caspase 
family (33,34). Under normal conditions, the production and 
clearance of intracellular ROS are maintained in a dynamic 
balance. Previous studies have shown that low levels of ROS 
can promote cell proliferation, whereas excessive accumulation 
of ROS will lead to colon cancer cell apoptosis (35,36). Tumor 
cells proliferate at a high rate and are frequently in a state 
of high oxidative stress (23). Therefore, they tend to be more 
sensitive to internal and external oxidative stimuli (24). A 
potential anti‑cancer strategy is to aggravate oxidative stress 
in the cancer cells further by increasing the intracellular ROS 
levels or by inhibiting the antioxidant capacity of cells (37,38). 
It has been demonstrated that oxidation of the mitochondrial 
membrane by ROS can release Cyt c into the cytosol more 
easily to promote apoptosis (11).

Bcl‑2 is a key regulator of apoptosis and as such, ROS levels 
can influence the functionality of Bcl‑2. In a previous study 
with lung cancer, it was found that excessive ROS production 
in H460 lung cancer cells inhibit the expression of Bcl‑2, whilst 
increasing the expression Bcl‑2 served the effect of inhibiting 
the increase of ROS (39). In addition, ROS can also regulate 
a number of exogenous signaling pathways. As the product of 
the FasL/FasR pathway by the NADPH oxidase system, ROS 
can activate protein tyrosine kinase, which further promotes 
Fas‑mediated apoptosis (40). A functional relationship 
between ROS and several signaling pathways has also been 
found. Zhu et al (41) found that overproduction of ROS in 
gastric cancer cells can effectively increase the expression 

of JNK, which then participate in apoptosis mediated by 
the MAPK pathway. In another study with breast cancer, 
Zang et al (42) found that ROS can activate the NF‑κB and 
STAT3 signaling pathways to mediate tumor cell apoptosis. 
Many chemotherapeutic drugs function by increasing the 
production of ROS, which leads to irreversible apoptosis. 
Sulindac is a nonsteroidal anti‑inflammatory drug. In the 
treatment of lung cancer, it has been shown to increase ROS 
production and subsequent mitochondrial membrane damage, 
which promoted tumor cell apoptosis (43). Doxorubicin can 
also increase the production of ROS and activate the tumor 
suppressor p53, resulting in tumor cell death (44). In addition, 
photodynamic therapy, RT and emerging sonodynamic 
therapy, chemodynamic therapy, enzyme dynamic therapy and 
ROS‑based nanomedicine therapy have all been documented 
to serve anti‑tumor roles by increasing the levels of cellular 
ROS (22,45,46).

ROS and autophagy. Autophagy is termed type II 
programmed cell death and is a process in which cells remove 
intracellular damage, senescent organelles and structural and 
biological macromolecules, such as proteins and lipids, by 
lysosome‑mediated degradation (47). Autophagy is highly 
conserved and is regulated by the autophagy‑related (ATG) 
family of proteins (47). It is now considered to be not only a 
mechanism of cell survival, but also an inhibitory mechanism 
that can induce the death of transformed cancer cells (47). 
ROS is a classical autophagy inducer and a key component 
for the interaction between apoptosis and autophagy (48). In 
general, autophagy induced by moderate levels of ROS can 
reduce the damage caused by oxidative stress and protect 
cells (49). By contrast, high levels of ROS can activate 
autophagic cell death and have destructive effects on cells (49). 
Wu et al (50) previously showed that H2O2 pretreatment trig‑
gered autophagy in hepatocellular carcinoma (HCC) cells, 
where high concentration of H2O2 could stimulate autophagic 
apoptosis in HCC cell lines. Another study has also shown that 
excessive ROS may induce autophagic cell death in human 
oral cancer CAL 27 cells by promoting Unc51‑like kinase 1 
protein ubiquitination and upregulating the expression of the 
autophagy‑related protein Beclin‑1 (51). In addition, ROS 
can also alter the activity of signaling pathways that regulate 
autophagy. Activation of mTOR kinase, an enzyme in the 
autophagic pathway, is inhibited by the AKT and MAPK 
signaling pathways (52). AKT induces protective autophagy 
whilst sustaining the degradation of p53 and the expression of 
NF‑κB in HCC cells (53). Therefore, pathways that negatively 
regulate mTOR, including the protein kinase 5'AMP‑activated 
protein kinase and p53, which are sensitive to oxidative stress, 
can promote autophagy (53,54).

ROS and necroptosis. Cell necrosis is currently considered 
to be a type III programmed cell death (55). It is initiated by 
TNFR1 and transmits cell death signals through receptor‑inter‑
acting serine‑threonine kinase 1 (RIP1). RIP3 and mixed 
lineage kinase domain‑like pseudokinase (MLKL) (55). It has 
been previously reported that ROS can promote the autophos‑
phorylation of Serine 161 on RIP1 (56,57). Phosphorylated 
RIP1 can then recruit RIP3 to form the programmed necrosis 
complex, which activate programmed necrosis to increase 
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the intracellular ROS content further, completing the positive 
feedback loop (58). A previous study with melanoma have 
found that increasing ROS can regulate RIP1 to promote 
melanoma cell necrosis, where the JNK signaling pathway 
was involved (59). Yang et al (60) demonstrated that RIP3 
can phosphorylate the pyruvate dehydrogenase complex to 
promote cell oxygen consumption and ROS production in 
murine fibroblast L929 cells, which enhanced the formation 
of necrotic bodies following stimulation by TNF. Additionally, 
p53 has also been implicated in ROS‑induced programmed 
necrosis. Tu et al (61) showed that etoposide can induce the 
necrosis of fibroblasts in a BAX/BAK double‑knockout 
mouse embryonic model. This was found to be the result of 
a synergistic interaction between DNA damage‑induced ROS 
and p53‑induced elevation of cathepsin Q (61). In a study of 
mouse embryonic fibroblasts, during oxidative stress, p53 has 
been reported to accumulate in the mitochondrial matrix and 
interact with the cyclophilin D regulator located in the intima 
of the mitochondrial permeability transition pore (62). This 
resulted in mitochondrial damage, ROS production and finally 
programmed cell necrosis (62).

ROS and angiogenesis. Serving as the ‘soil’ for the growth 
of cancer cells, the TME must provide sufficient nutrition 
for them. Neovascularization is the main method used for 

the transport of nutrients during tumor occurrence and 
metastasis (63). It has been shown that ROS can regulate 
tumor angiogenesis and promote angiogenesis by targeting 
transcription factors or tumor suppressors, such as activating 
protein 1, hypoxia inducible factor‑1α (HIF‑1α), NF‑κB, 
and p53 (64). However, in recent years, it has been found 
that the increase of ROS production in the TME can reduce 
neovascularization and inhibit tumor progression (65). 
Inducing apoptosis in vascular endothelial cells is generally 
considered to be the core strategy for inhibiting angiogenesis 
and treating related diseases, including cancer, neovascular 
age‑related macular degeneration and diabetic retinopathy (66). 
ROS is a promoter of vascular and endothelial cell death 
in colon and breast tumors (67,68). Owing to the atypical 
metabolic environment, vascular endothelial cells in the TME 
generally exhibit higher levels of ROS compared with those in 
normal vascular endothelial cells and are more vulnerable to 
cytotoxicity caused by a further increment in ROS levels (69). 
Therefore, increasing the ROS levels further is more likely 
to aggravate cell death (69). Topalovski et al (70) found that 
fibulin‑5 can promote ROS production in vascular endothelial 
cells by acting on the fibronectin receptor β1 to exert its 
anti‑angiogenic effects in pancreatic cancer cells. In addition, 
N‑benzyl‑2‑nitro‑1‑imidazole‑acetamide, a therapeutic agent 
for Chagas disease, has been found to exert anti‑tumor effects 

Figure 1. Complexity of the interaction between ROS and the TME. The up and down arrows represent cell responses to ROS treatment. ROS can promote 
tumor cell death, promote tumor metabolic reprogramming, induce tumor angiogenesis and activate CAFs and autophagy. ROS can also reduce lymphocyte 
infiltration, reduce the antigen presenting ability of DCs and maintain the immunosuppressive function of Treg cells and MDSCs to promote the formation of 
the immunosuppressive microenvironment. CAF, cancer‑associated fibroblast; DC, dendritic cell; MDSC, myelogenic suppressor cell; ROS, reactive oxygen 
species; TAM, tumor‑associated macrophage; TIL, tumor‑infiltrating lymphocyte; TME, tumor microenvironment; Treg, T regulatory cells.
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in Ehrlich tumor cells by increasing ROS levels and inhibiting 
angiogenesis (71). Synthesis of redox regulators using silver 
nanoframe technology has been shown to induce excessive 
ROS generation and enhance cytotoxicity in the vascular 
endothelium (72). This prevented formation of the tubular 
network in the endothelial cells and poly‑ADP ribose 
modification of VEGF, thereby inhibiting angiogenesis (72). 
Furthermore, Cao et al (73) found that decylubiquinone can 
increase ROS to inhibit the formation of the tubular structure 
through the ROS/p53/brain‑specific angiogenesis inhibitor 
1 signaling pathway in the chicken embryo chorioallantoic 
membrane model.

ROS and CAFs. CAFs are particularly abundant in the matrix 
and can be derived from a variety of sources (74). They serve 
an important role in tumor growth, metastasis and drug 
resistance (74,75), by secreting a variety of cytokines and 
growth factors. The specific mechanisms involved in these 
effects include the maintenance of cancer stem cell (CSC) 
stemness, promotion of epithelial‑mesenchymal transformation 
(EMT), remodeling of the vascular system and regulation of 
tumor immunity (76‑79). In previous years, it was found that 
the autophagy of CAFs can also serve an important role in the 
occurrence and development of tumors (80,81). Activation of 

CAFs is largely dependent on the stimulation of TME by local 
hypoxia, oxidative stress, growth factors released by adjacent 
tumor cells and infiltrating immune cells (82). A previous study 
with ovarian cancer has shown that ROS produced by tumors 
can induce the expression of chloride intracellular channel 4, 
chemokine (C‑C motif) ligand 2, TGF‑β1, NF‑κB and STAT3 
in CAFs to induce their activation (83). In addition, ROS can 
also induce myofibroblast differentiation by upregulating 
the expression of chemokine (C‑X‑C motif) ligand‑12 whilst 
downregulating that of caveolin 1 (CAV1) (84‑86). ROS can 
also play an important role in the regulation of CAF autophagy. 
Tumor cells have been observed to induce oxidative stress in 
adjacent CAFs (87). In breast cancer, an increase in the levels 
of ROS can activate the expression of HIF‑1α and NF‑κB in 
CAFs to subsequently induce CAF autophagy, which may 
lead to a decrease in ROS‑dependent CAV1 expression (88). 
The downregulation of CAV1 promotes mitochondrial 
dysfunction and oxidative stress further in CAFs, thereby 
forming a positive feedback loop (88,89). In addition, ROS can 
also regulate the metabolism of CAFs. In tumor cells, even 
under aerobic conditions, glycolysis is highly active, which is 
characterized by increased glucose uptake and increased lactic 
acid secretion (90). This is known as the ‘Warburg effect’ (90). 
CAFs will also produce a similar phenomenon of aerobic 

Figure 2. Mechanism of cancer cell death induced by ROS. Elevated ROS can reduce Bcl‑2 activity, promote the release of cytochrome c and activate death‑related 
ligands TRAIL/FasL, thereby promoting caspase‑mediated apoptosis. High levels of ROS can also promote the formation of the RIPK‑1/RIPK‑3 complex and 
eventually lead to necrosis. Moreover, ROS can inhibit the activity of mTOR, promote the activation of AMPK and subsequently induce autophagy. p53 is 
involved in ROS‑mediated cancer cell death. ATG14, autophagy related 14; 5'AMPK, AMP‑activated protein kinase; FasL, Fas ligand; MLKL, mixed lineage 
kinase domain‑like pseudokinase; RIPK, receptor interacting serine/threonine kinase; ROS, reactive oxygen species; TRAIL, TNF‑related apoptosis‑inducing 
ligand; Vps34, vacuolar protein sorting 34.
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glycolysis under the influence of tumor cells, which is called 
the ‘reverse Warburg effect’ (86). During this phenomenon, 
oxidative phosphorylation of tumor cells produces a large 
quantity of ROS, which specifically triggers oxidative stress in 
CAFs and disrupts the oxidative phosphorylation system (86). 
This results in the additive accumulation of ROS and induces 
a chain reaction of oxidative stress (86). The mode of glucose 
metabolism in CAFs changes from oxidative phosphorylation 
to glycolysis, which produces high‑energy raw materials, such 
as lactic acid and ketone, which supply tumors to promote cell 
division and support Kreb's cycle (86). Additionally, an acidic 
microenvironment with high lactate content is also created 
during this event, which inhibits the growth of normal cells 
whilst promoting tumor cell proliferation and metastasis (86). 
Inhibition of CAV1 by ROS is known to be one of the driving 
factors for changing in the metabolic pattern of CAFs (91). 
Martinez‑Outschoorn et al (92) previously found that when the 
MCF7 breast cancer cells were co‑cultured with fibroblasts, 
tumor cell apoptosis occurred after the removal of H2O2. This 
effect was proposed to be caused by the lack of lactic acid 
produced by CAFs in tumor cells (92).

ROS and the immune microenvironment. In recent years, 
tumor immunotherapy, including immune checkpoint 
inhibitors (93), chimeric antigen receptor‑T cell therapy 
and tumor vaccines (94), has emerged as another promising 
anti‑cancer therapeutic strategy after surgery, chemotherapy 
and RT. Although clear therapeutic effects have been achieved, 
in current clinical practice immunotherapy can only offer 
lasting survival benefits to 20‑30% of the patients, since most 
patients will face the problems of insensitivity or resistance 
to immunotherapy (95). For example, ipilimumab, a cytotoxic 
T‑cell lymphocyte antigen‑4 inhibitor, has a positive response 
rate of only 15% in patients with advanced melanoma (96). 
Similarly, the positive response rate of drugs that target 
programmed cell death 1/programmed cell death ligand 1 
(PD‑1/PD‑L1) signaling rarely exceeds 40% (97). Previous 
studies have found that limited T lymphocyte infiltration or 
low immunogenicity of the TME is the main reason for the 
failure of treatment (98,99). The interaction between tumor 
cells and immune cells is a core feature of the TME (100,101). 
Owing to the high plasticity of immune cells, tumor cells 
promote the maturation, differentiation and recruitment of 
immunosuppressive cells by secreting IL‑10, TGF‑β, and 
VEGF to construct an immunosuppressive TME (102,103). In 
turn, the immunosuppressive cells can promote tumor growth, 
metastasis and escape from immune surveillance (103). ROS 
was found to be an effector of cytotoxicity induced by numerous 
anti‑cancer drugs, which is a byproduct of cellular oxidative 
metabolism (104). As signal mediators, ROS serves a key role in 
the immune monitoring of regulatory (Tregs) and effector T cells, 
which relies on classical receptors, such as toll‑like receptors, 
and perception of the metabolic environment (104,105). The 
concentration of ROS in tumor tissues is typically higher 
compared with that recorded in surrounding normal tissues (23). 
In the TME with persistently high ROS levels, both immune 
and tumor cells are affected. The increase of ROS is one of 
the main causes of immunosuppression in the TME (106). 
However, some studies have shown that increasing ROS levels 
can induce immunogenic death (ICD) in tumor cells (107,108), 

which exhibits a synergistic effect with immunotherapy (107). 
A growing body of evidence suggests that targeting the redox 
levels of immune cells can result in a variety of phenotypes and 
functions, which can overcome immunosuppression in the TME 
to ultimately inhibit tumor growth (21,22). In this section, the 
function and effect of ROS on the different tumor‑infiltrating 
immune cell types were explored, with focus on the effect of 
ROS in tumor immunotherapy (Fig. 1).

ROS and lymphocytes. T cells (also known as T lymphocytes) 
consist of a heterogeneous group of lymphocytes in the 
tumor matrix, which includes cytotoxic T lymphocytes, 
helper T lymphocytes and Tregs (109). They mediate 
immune surveillance and the killing of cancer cells (109). 
ROS participate in the regulation of T cells in the TME. 
Murphy and Siegel (110) previously reported that following 
reduction in mitochondrial ROS produced by complex Ⅲ, 
T cells could no longer be continuously activated even after 
stimulation by CD3 or CD28. Activation of T cells requires 
stimulation of the T‑cell receptor (TCR) through the induction 
of the MAPK signal transduction pathway and transcription 
factors such as nuclear factor of activated T cells (NFAT), 
NF‑κB and activator protein‑1 (111). Studies (112,113) have 
shown that mitochondrial ROS can be transferred to T cell 
immune synapses. After stimulation by antigens, H2O2 in the 
mitochondria can enhance the MAPK signaling pathway, 
leading to T cell activation and proliferation (112). However, a 
number studies have also shown that high levels of ROS in the 
TME can inhibit the activation, proliferation and anti‑tumor 
function of T cells (114‑117). H2O2‑mediated activation of TCR 
can promote the production of mitochondrial superoxides, 
which can enhance the expression of FasL in T cells and 
contribute to T cell activation‑induced cell death (114,115). 
Recent studies have shown that chronic oxidative stress can 
cause T cell weakness or failure (116,117).

PD‑1 is an immunosuppressive receptor that is mainly 
expressed in activated T cells and can exert negative 
immunoregulatory effects after activation by the PD‑L1 
ligand on the surfaces of antigen‑presenting cells (118). 
Kumar et al (119) and Chamoto et al (120) previously found 
that ROS and mitochondrial activation serve an important 
role in T cell immunity induced by PD‑1 blockade. PD‑1 
blocking treatment can increase the ROS content in T 
cells (119). Using a ‘bilateral tumor model’, it was found that 
boosting mitochondrial activity of T cells by the addition of 
bezafibrate, a pan‑peroxisome proliferator‑activated receptor 
agonist, can partially improve the efficacy of PD‑1 blockade 
in a lung cancer model with systemic immunosuppressive 
properties (119). These findings suggest that regulation of 
mitochondria‑derived ROS in T cells may have an impact on 
PD‑1 blocking therapy. Another study (121) found that use of 
the phenothiazine calmodulin inhibitor trifluoperazine could 
increase the levels of ROS and stimulate the expression of 
PD‑L1 in colorectal cancer cells, tumor‑infiltrating CD4+ and 
CD8+ T cells. However, other studies have shown that enhanced 
ROS levels in neck squamous carcinoma cells can also reduce 
the expression of PD‑L1 (122,123). Therefore, ROS can exert 
different biological effects in a manner that is dependent on its 
quantity, where different levels of ROS can mediate different 
immune cell responses.
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Treg cells belong to a typical class of immunosuppressive 
cells. In particular, the CD4+ subset of forkhead box P3 
(FOXP3) Tregs can play an important role in mediating 
tumor immune tolerance (124). It has been shown that the 
levels of ROS in the microenvironment are associated with 
immune tolerance mediated by Treg cells (125). By contrast, 
ROS can promote the differentiation of Treg cells (126). It 
was found that bile acid can promote the differentiation of 
Treg cells by increasing the levels of mitochondrial ROS, 
which subsequently increased the acetylation of H3K27 in 
the Foxp3 promoter (126). Kunisada et al (127) demonstrated 
that metformin blocked the differentiation of immature 
CD4+ T cells into Treg cells by inhibiting mitochondrial 
ROS, which subsequently downregulated the expression of 
FOXP3 and reduced the number of tumor‑infiltrating Treg 
cells. Conversely, ROS can also maintain the function of 
Treg cells. Yu et al (128) found that ROS induced by TCR 
signaling specifically inhibited the protein degradation of 
deubiquitin‑like enzyme SUMO‑specific peptidase 3 (SENP3), 
which preserved the immunosuppressive activity of Treg cells. 
Interfering with the levels of ROS can specifically inhibit 
the expression of SENP3, resulting in the weakening of Treg 
cell function and consequently improve the tumor immune 
response. Maj et al (129) revealed the relationship between 
ROS and immunosuppression by Treg cells in the TME of 
ovarian cancer. The results of this previous study showed that 
ROS in the TME may cause the apoptosis of Treg cells, where 
the apoptotic cells can subsequently release large quantities 
of adenosine triphosphate (ATP) (129). Although ATP is 
beneficial to body function under normal circumstances, early 
apoptotic Treg cells can rapidly convert ATP to adenosine by 
CD39 and CD73 (129). These adenosines are specific to T cells 
and can bind to their cell surface adenosine A2A receptors to 
inhibit T cell activation (129). In conclusion, ROS can serve an 
important role in the function of T cells, whereby high levels 
of ROS in T cells may confer anti‑tumor effects, whereas ROS 
in Treg cells appear to be associated with immunosuppression.

ROS and natural killer (NK) cells. NK cells are a type of 
effector lymphocytes that play an important role in the 
anti‑tumor process and are profoundly influenced by hypoxia 
and oxidative stress in the TME (130). Zheng et al (131) 
previously found that hypoxia in the TME led to an increase 
in the levels of ROS, which could continuously activate 
the mTOR/dynamin‑related protein 1 pathway in NK 
cells, resulting in excessive mitochondrial fission. After 
mitochondrial fragmentation, the production of ROS was 
accelerated and a positive feedback loop was established (131). 
This process ultimately leaded to apoptosis and mitochondrial 
autophagy, which decreased the activity and tumor killing 
ability of NK cells (131). Therefore, the aberrant increase 
in ROS levels in the TME may be one of the mechanisms 
underlying the failure of NKs. Supporting this, reducing ROS 
levels in the TME or improving the tolerance of NK cells to 
ROS have been reported to prevent this failure (132‑134).

ROS and antigen‑presenting cells (APC)
ROS and dendritic cells (DCs). DCs are professional 
antigen‑presenting cells that play an important role in both 
innate and adaptive immunity. Immature DCs have strong 

migratory ability, whilst mature DCs can effectively activate 
initial T cells to initiate, regulate and maintain the immune 
response (135). The relationship between ROS and DCs is 
complex, which involve both metabolic and transcriptional 
changes (136). Previous studies have found that an increase 
in the environmental redox potential can hinder cross 
presentation (137,138). Excessive ROS can lead to the chronic 
activation of the endoplasmic reticulum stress response and 
oxidative damage to intracellular lipids, which inhibit the 
ability of DCs to present local antigens to T cells (137,138). 
These effects aforementioned can impede the development of 
an effective anti‑tumor immune response. However, low levels 
of ROS can act as a key signaling component to promote the 
maturation of antigen‑presenting cells through the activation 
of signaling pathways, including NF‑κB, mTOR and ERK, in 
addition to the activation of intracellular Ca2+ channels (139). 
It has been demonstrated that ROS can promote cytoplasmic 
antigen transmission in DCs by lysosome escape and antigen 
protection, resulting in effective antigen cross presentation and 
strong CD8+ T cell responses (140,141).

ROS and macrophages. Macrophages are mainly derived from 
myeloprogenitor cells in the bone marrow and serve the innate 
immune system (142). Tumor‑associated macrophages (TAMs) 
have been frequently observed to infiltrate the tumor tissue, 
which serve an ‘accomplice’ role in tumor development and 
metastasis (142). They can be divided into the M1 and M2 subtypes, 
which are thought to inhibit and promote cancer progression, 
respectively (142). Reprogramming or repolarization of TAMs 
to an anti‑tumor phenotype may be an effective method for 
enhancing the efficacy of immunotherapy (143). Previous 
studies have shown that continuously increasing the levels 
of ROS in the TME can contribute to the differentiation of 
TAMs into the M2 subtype (144,145). TAMs that were isolated 
from melanoma after high ROS treatment appeared to show 
a more aggressive phenotype, which may be associated with 
the secretion of ROS‑dependent TNF‑α in mouse melanoma 
B16F1 and B16F10 cell lines (146). Griess et al (147) found 
that ROS elimination can selectively inhibit the polarization 
and tumor‑promoting function of M2 macrophages through 
the STAT3 signaling pathway. In addition, it was found that 
M2 TAMs can express PD‑1, but ROS clearance can polarize 
the TAM balance towards the M1 phenotype and reduced 
the expression of PD‑L1 (148). However, the effects of ROS 
on TAM differentiation and regulation of the PD‑1 immune 
checkpoint pathway are worthy of further study.

ROS and B cells. B cells are derived from bone marrow and 
are specialized antigen‑presenting cells that can also mediate 
the humoral immune response by producing antibodies (149). 
A number of previous studies found a positive correlation 
between B lymphocyte infiltration and patient response to 
immunotherapy in various types of tumors, such as sarcoma, 
melanoma and renal cell carcinoma, which highlights the 
important role of B cells in anti‑tumor immunity (150‑152). 
A study has also found that increasing ROS levels in the 
microenvironment can promote the expression of HIF‑1α, 
nuclear factor erythroid 2‑related factor 2 (NRF2) and C‑X‑C 
chemokine receptor type 4, which in turn regulate the multiple 
stages of B cell development (153). Feng et al (154) previously 
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found that B‑cell receptor (BCR)‑induced B cell activation 
also required ROS (154), similar to T cells. Mechanistically, 
ROS mediates the activation and proliferation of B cells by 
activating the NF‑κB and PI3K signaling pathways (154). 
After treatment with N‑acetylcysteine for 3 h, the proliferation 
of B cells was significantly inhibited (154). ROS has also 
been found to determine cell fate after B‑cell activation. 
B cells treated with high levels of ROS can undergo class 
switch recombination, whereas low levels of ROS can induce 
differentiation into plasma cells (155). In addition, ROS can 
regulate apoptosis and autophagy in B cells (156,157). The 
p66SHC protein not only antagonized BCR survival signals 
and promoted apoptosis, but also prevented B cell survival 
through selective autophagy/mitochondrial autophagy, by 
increasing ROS production (156,157). In conclusion, ROS 
can be considered to be involved in multiple stages of B cell 
development, including activation, differentiation and death.

ROS and myeloid‑derived suppressor cells (MDSCs). 
MDSCs are heterogeneous cell groups that consist of myeloid 
progenitor cells and immature bone marrow cells (IMCs). 
They form an important part of the TME and possess potent 
immunosuppressive activity (158). ROS serve an important 
role in maintaining the undifferentiated state of MDSCs (159). 
In mice transplanted with colon cancer and sarcoma, scav‑
enging of H2O2 induced the differentiation of immature 
myelocytes into macrophages (160). Of note, in the absence 
of NADPH oxidase (NOX) activity, MDSCs differentiated 
into macrophages and DCs (160). Therefore, endogenous 
oxidative stress may be a mechanism of MDSC inhibition to 
suppress its differentiation in tumors. MDSCs can act on other 
immune cells through ROS. It has been previously found that 
ROS produced by MDSCs can permanently inactivate T cells 
and destroy their ability to initiate the immune response (161). 
Inhibition of ROS in MDSCs can reverse immunosuppression 
and exert anti‑tumor effects (161). In addition, not only the 
T cell response is a target of ROS‑mediated MDSC inhibi‑
tion. MDSCs can also inhibit the response of NK cells to 
adenovirus vectors and vaccinia virus infection by releasing 
ROS (162,163). Recent studies have shown that MDSCs can 
also negatively regulate B cell‑mediated immune response 
through ROS (164,165). Lelis et al (166) found that MDSCs 
can inhibit B cell proliferation and antibody production by 
cell contact through argininase, nitric oxide and ROS. In 
addition to playing a role in MDSC‑mediated immunosup‑
pression, ROS has also been found to be intrinsically involved 
with the activation of transcription factors, including NRF2 
and HIF‑1α (167). This process induces the transcriptional 
and metabolic reprogramming of MDSCs, which affects 
their differentiation and maintenance (167). Therefore, in the 
TME, ROS act as inducers of oxidative stress and a medium 
of immune regulation, which is an important process in the 
formation of cancer cells (159).

ROS and ICD. Tumors maintain the microenvironment of 
immune suppression by displaying low immunogenicity and 
secreting immunosuppressive cytokines, including IL‑10, 
TGF‑β, and VEGF (168). ICD can be triggered by various 
treatments, such as chemotherapy, RT and photodynamic 
therapy (169). Various cell death‑related molecules, such 

as damage‑associated molecular patterns, are released to 
enhance the immunogenicity of tumor cells and the initial 
immune response, which is an innovative measure in 
immunotherapy (169). At present, the prevailing notion is that 
there is a positive association between ROS production and 
ICD induction in anti‑tumor therapy (170). Excessive levels of 
ROS are frequently used for the oxidative killing of tumors 
and induction of ICD. These processes can provide potential 
antigen stimulation to the immune system. A nano‑study 
based on sonodynamic therapy found that enhanced 
continuous ultrasonic‑triggered inertial cavitation increased 
ROS production and induced strong ICD (107). This was 
characterized by increased antigen exposure and presentation, 
enhanced maturation of DCs and increased infiltration of 
active‑effector CD8+ T cells (107). Li et al (171) previously 
explored the potential use of a fluorine‑assembled nanocluster 
to reverse immunosuppression and reawaken the immune 
system. Following the production of sufficient ROS levels 
by fluorine assembly@ photodynamic immunotherapy for 
tumor (PMPt) to break ROS‑sensitive connectors under laser 
irradiation, cisplatin‑coupled PMPt is released to penetrate 
the tumor and kill Treg cells and MDSCs (171). Additionally, 
ROS can strongly induce ICD by increasing infiltration by 
DCs and T cells to turn a cold tumor into a hot tumor and 
stimulate an effective anti‑tumor immune response (171). 
However, a number of studies have shown that the increase of 
ROS in the TME can markedly reduce ICD and the number 
of tumor‑infiltrating T lymphocytes (172,173). In a previous 
study using a breast cancer model, Deng et al (172) found that 
the elimination of ROS from the TME using nano‑scavengers 
could alleviate immunosuppressive ICD induced by oleandrin 
anticancer drug and prolong the survival time of T cells in 
breast cancer. Elimination of ROS also lead to an increase in 
anti‑tumor immunity and T lymphocyte infiltration, resulting 
in a potent anti‑tumor effect (172). It is hypothesized that these 
contradictory results may be related to the different levels of 
ROS. Therefore, further studies are warranted to confirm these 
findings aforementioned.

ROS and tumor metabolic recombination. Glucose deficiency 
is a characteristic of the TME (174). For the maintenance of 
survival and rapid proliferation, tumor cells will undergo a series 
of metabolic reprogramming to improve their adaptability 
to nutritional deficiency, particularly to glucose (174). 
Metabolic reprogramming of tumor cells frequently leads 
to the excessive production of ROS and oxidative stress, 
but tumor cells can maintain ROS homeostasis and prevent 
ROS‑mediated cell death by enhancing their antioxidant 
system (175). Low concentrations of ROS can promote tumor 
metabolism by altering the activity of key enzymes, including 
pyruvate kinase M2, GAPDH and α‑ketoglutarate, inducing 
metabolism‑related genomic changes and activating a number 
of signaling pathways (Fig. 3) (176). It has been found that 
overlapping with the m‑AAA protease 1 homolog can promote 
the production of ROS, improve the stability of HIF‑1α, and 
increase the expression of glucose transporters and glycolytic 
enzymes, including hexokinase 2 and lactate dehydrogenase 
(LDH) A, under hypoxic conditions (177). These effects 
lead to an increase in the glycolytic ability of colorectal 
cancer cells (177). To investigate the role of the non‑classical 
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glutamine pathway in the development of pancreatic 
cancer, Wang et al (178) found an imbalance in ROS in the 
occurrence and development of the disease. ROS inhibited 
arginine methylation enzyme coactivator associated arginine 
methyltransferase 1, which in turn inhibited the activity 
of malate dehydrogenase malate dehydrogenase 1. These 
observations suggest that ROS activated the non‑classical 
glutamine metabolism to promote the growth of pancreatic 
cancer cells. ROS can also promote tumor metabolic 
reprogramming by activating NRF2, which increases 
the expression of NADPH‑generating enzymes, such as 
glucose‑6‑phosphate dehydrogenase, isocitrate dehydrogenase 
1 and malic enzyme 1 (ME1), and supports lung cancer 
growth by increasing NADPH and purine biosynthesis (179). 
In addition, ROS can also mediate the metabolic interaction 
between tumor cells and their microenvironment. As 
aforementioned, tumor cells can produce a large quantity 
of ROS through metabolism (86). This triggers the ‘reverse 
Warburg effect’ in CAFs to produce lactic acid, ketone and 
other high‑energy raw materials to improve the metabolic 
plasticity of tumor (86). ROS can also reduce the expression of 
CAV1 and promote the transformation of myofibroblasts (87). 
In pancreatic, breast, lung and prostate cancer, it has been 

demonstrated that downregulation of CAV1 expression is 
associated with the overexpression of key metabolic enzymes, 
including pyruvate kinase isozymes M2 and LDH (180‑182). 
In addition, the transport of lactic acid and ketone bodies, 
which are glycolytic products, can also be detected at the 
same time of CAV‑1 downregulation (180‑182). ROS can 
also mediate the interaction between tumor metabolism and 
the immune microenvironment. In a previous study with 
ovarian cancer (183), it was found that tumors can mediate 
effector T cell dysfunction by inhibiting the expression of the 
histone‑lysine N‑transmethylase 2 enhancer of zeste homolog 2 
by glucose restriction. T cells isolated from malignant ascites in 
patients with ovarian cancer were found to activate the inositol 
requiring kinase 1α‑X‑box binding protein‑1 endoplasmic 
reticulum stress response, which reduced glucose uptake and 
inhibited mitochondrial activity (184). This finding suggests 
that oxidative stress and glucose deprivation in the TME may 
contribute to lymphocyte dysfunction in human tumors. 

3. ROS and tumor drug resistance

The prognosis of cancer has markedly improved due to 
the advent of targeted therapy and immunotherapy (185). 

Figure 3. Regulation of ROS in tumor cell metabolism. Specifically, metabolic alterations in cancer cells cause the accumulation of ROS, which in turn acts on 
metabolic enzymes to promote the metabolic programming of cancer cells. The accumulation of ROS can also activate CAFs and promote autophagy, which 
can further increase the accumulation of ROS and provide raw materials for tumor metabolism. In addition, ROS are also involved in the inhibition of T cell 
function by tumor metabolism. CAFs, carcinoma associated fibroblasts; Cav‑1, caveolin‑1; CXCL12, chemokine (C‑X‑C motif) ligand 12; ER, endoplasmic 
reticulum; HIF‑1, hypoxia inducible factor 1; Mito‑ETC, mitochondrial electron transport chain; NOXS, NADPH oxidases; ROS, reactive oxygen species.
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However, drug resistance remains to be a challenge for the 
treatment of cancer. The mechanisms of drug resistance 
include: i) Heterogeneity of tumor cells; ii) the TME, including 
hypoxia, abnormal angiogenesis, EMT, tumor metabolic 
recombination and the immunosuppressive microenvironment; 
iii) tumor stem cells; iv) mutation of the drug target gene 
or signaling compensation; v) detoxification mechanism; 
vi) pharmacological changes, such as drug inactivation, 
decreased drug absorption, enhanced drug metabolic 
activity and increased expression of drug efflux transporter; 
vii) reduction in the sensitivity of apoptosis; and 8) increase 
in the ability to repair DNA damage (185). Previous studies 
have confirmed that a high concentration of ROS is one of the 
characteristics of drug‑resistance in cancer cells (186,187). 
ROS can promote drug resistance in tumors through a variety 
of mechanisms. As such, ROS can promote the formation 
of an immunosuppressive microenvironment and mediate 
resistance to immunotherapy by promoting the phenotypes of 
MDSCs, DCs and TAMs (106). ROS can also promote EMT, 
where cells undergoing EMT typically exhibit characteristics 
of cancer stem cells, with high rates of self‑renewal and 
resistance to drugs and radiation (188). In addition, ROS can 
regulate the expression of multidrug resistance genes, such as 
the transmembrane drug efflux protein P‑glycoprotein (P‑gp), 
and ATP‑dependent substrate transport on both mRNA 
and protein levels (186). Therefore, blocking ROS has been 
proposed to overcome resistance to chemotherapy. However, 
ROS has also been found to promote the sensitivity of tumor 
cells to drug treatment (11,12). The levels of ROS in tumors are 
generally higher than those observed in normal cells obtained 
from the same tissue source (24). Therefore, once the levels of 
ROS exceed the threshold through continuous accumulation, 
the cells will undergo apoptosis (35). RT and a number of 
chemotherapeutic drugs, including cisplatin, 5‑fluorouracil 
and oxaliplatin can kill tumor cells by promoting the excessive 
accumulation of ROS. However, tumor cells can initiate the 
mechanism for the inhibition of the excessive accumulation of 
ROS, to develop drug resistance (189). Wang et al (190) found 
that inhibition of solute carrier family 7 member 11 using 
vorinostat, an inhibitor of histone deacetylase, can lead to an 
increase in ROS in drug‑resistant melanoma cells to lethal 
levels, which lead to apoptosis only in drug‑resistant cells. 
CSCs consist of a subpopulation of tumor cells that is resistant 
to chemotherapy and are characterized by high invasiveness 
and metastasis (191). Choi et al (192) previously demonstrated 
that CSCs can maintain low ROS levels by coupling forkhead 
box M1‑dependent peroxiredoxin 3 expression and fatty acid 
oxidation‑mediated NADPH regeneration, both of which are 
essential for maintaining the biological characteristics of CSCs. 
The accumulation of ROS in vivo and in vitro can render CSCs 
sensitive to RT and chemotherapy (193,194). In addition, the 
production of ROS, especially mitochondrial‑derived ROS, is 
essential for the induction of apoptosis, autophagy and ICD 
of tumor cells. Therefore, ROS‑based nanotechnology can 
increase the sensitivity of tumor cells to RT, chemotherapy, 
targeted therapy and immunotherapy (195‑198). The 
relationship between ROS and drug‑resistant tumors is highly 
complex, where various studies yielded conflicting findings. 
For example, P‑gp was found to be overexpressed in MCF‑7 
cells after treatment with a low concentration of H2O2 

(1 M) (199). However, a high concentration of H2O2 (10 M) 
downregulated the expression of P‑gp in human myelogenous 
leukemia K562/DOX cells (200). These studies were 
conducted in different cell lines, such that some conclusions 
remained contradictory. Therefore, the relationship between 
ROS and multidrug resistance warrants further comprehensive 
investigation (Fig. 4).

4. Conclusions

If a malignant tumor is known as a ‘seed’, the TME can be 
termed as the ‘soil’ that allows the ‘seed’ to grow. The TME 
serves a key role in several steps of tumor development, 
including local drug resistance, immune escape and distant 
metastasis (15,18,19). The combination of immune checkpoint 
inhibitors or cell therapy with microenvironment‑targeted 
therapy is expected to improve the prognosis of patients with 
cancer in the future (201). Tumor cells are characterized by 
indefinite proliferative potential, which is frequently accom‑
panied with local tissue hypoxia, abnormal angiogenesis and 
metabolic reprogramming (202). In addition, persistent endo‑
plasmic reticulum stress appears to be a new feature of tumors, 
which allows tumor cells to adapt to carcinogenic and environ‑
mental challenges to coordinate different immunomodulatory 
mechanisms and promote tumor progression (203,204). ROS 
production caused by hypoxia, metabolic reprogramming 
and endoplasmic reticulum stress altogether serve an impor‑
tant role in the cross‑dialogue between the tumor and the 
surrounding microenvironment. ROS plays a dual role in 
intracellular signal transduction and cell fate regulation in 
this process (Fig. 4), the levels of which in cancer cells are 
largely dependent on the antioxidant defense system (186). 
Therefore, increasing the levels ROS to accurately break the 
redox balance is the key prerequisite for the effective treatment 
of cancer. However, ROS can also promote tumor cell prolif‑
eration, vascular proliferation, CAF differentiation, immune 
escape and drug resistance. It has been suggested that there 
are different pools of ROS in cancer cells with differing func‑
tions (205). ROS derived from NADPH oxidase can promote 
the proliferation of small intestinal crypt cells, whereas ROS 
induced by p53‑induced glycolysis and apoptosis regulator 
(TIGAR) deletion can exert the opposite effect (206). NADPH 
oxidase produces extracellular superoxides, while TIGAR 
protects against intracellular ROS damage by supporting the 
pentose phosphate pathway (206). The beneficial or harmful 
effects of ROS in cells are not necessarily mutually exclusive. 

Figure 4. Different levels of ROS exert varied biological effects on tumors. 
Low levels of ROS may play a more tumor‑promoting role, whereas lethal 
levels of ROS have the opposite effect on promoting the death of tumor cells 
and increasing their sensitivity to treatment. ROS, reactive oxygen species; 
TME, tumor microenvironment.
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Further studies on the different tumor cell types, ROS levels 
and even the level‑effect relationship between ROS and tumor 
cells are required. Collectively, these findings indicate that the 
combination of ROS‑based redox regulators with standard RT 
and chemotherapy or even immunotherapy may be of great 
significance in tumor therapy.
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