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Abstract. Toxicarioside G (TCG), a natural product isolated 
from Calotropis gigantea, has been found to exhibit potent 
anticancer effects. The present study aimed to investigate 
the effect of TCG on the SW480 colorectal cancer cell line 
and the role of autophagy and Yes1 associated transcriptional 
regulator (YAP) in the TCG‑mediated inhibition of cell prolif‑
eration and viability. Cell proliferation was detected using 
MTT, BrdU, colony formation and LDH release assays, while 
apoptosis was analyzed using flow cytometry and western 
blot analyses. Immunofluorescence and western blot analysis 
was used to determine TCG‑induced autophagy and YAP 
activation. Pharmacological inhibition and siRNA was used to 
investigate the role of autophagy and YAP in TCG‑mediated 
cell growth inhibition. The results revealed that TCG inhibited 
SW480 cell proliferation and viability, independent of apop‑
tosis, and also induced autophagy. It was further demonstrated 
that TCG blocks autophagic flux, resulting in autophagy 
arrest in the SW480 cell line. The inhibition of autophagy 
restored the TCG‑mediated inhibition of cell proliferation and 
viability, suggesting that TCG may induce lethal autophagy 
arrest in the SW480 cell line. Furthermore, TCG induced YAP 

activation in the SW480 cell line. Inhibition of YAP activity 
enhanced the TCG‑mediated inhibition of cell proliferation 
and viability, suggesting that YAP may play a protective role 
in the TCG‑induced effects. In conclusion, the findings of the 
present study indicated that TCG may induce lethal autophagy 
arrest and activate YAP, which serves a protective role in the 
SW480 cell line. These results suggested that the combined 
targeting of TCG and YAP may represent a promising strategy 
for TCG‑mediated anticancer therapy.

Introduction

Toxicarioside G (TCG) is a cardenolide isolated from 
Calotropis gigantean. Apart from their traditional use in the 
treatment of congestive heart failure and arrhythmia, carde‑
nolides have recently been proven to exert potent anticancer 
activities (1‑5). Previous studies have demonstrated that other 
cardenolides isolated from Calotropis gigantean exhibited 
significant cytotoxicity against numerous types of human 
cancer cells, such as hepatoma carcinoma, gastric cancer and 
lung cancer (6‑8). Consistent with these observations, TCG has 
been found to exert significant anticancer effects in various 
cancer cell types, such as hepatoma carcinoma, gastric cancer 
and cervical cancer cell lines (6). However, to the best of our 
knowledge, the underlying mechanisms by which TCG inhibits 
tumor growth remains poorly understood.

Autophagy is a conserved catabolic process whereby 
aggregated proteins or damaged organelles are sequestered by 
double‑membrane autophagosomes and degraded in autolyso‑
somes, which maintains cellular homeostasis under physiological 
conditions (9,10). Induction of autophagy has been observed in 
various types of cancer cells challenged with intra‑ and extra‑
cellular stresses; however, the role of autophagy in regulating 
the fate of cancer cells remains controversial (11‑13). On the one 
hand, inhibition of autophagy was discovered to promote cell 
death or chemosensitivity, suggesting that autophagy is required 
for cancer progression (14,15). On the other hand, activation of 
autophagy has been found to inhibit cell proliferation or cell 
death, indicating that autophagy may play a tumor‑suppressive 
role (16,17). Therefore, understanding the role of autophagy 
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and the related mechanisms in cancer cells is important for 
enhancing the effectiveness of cancer treatment.

The Hippo signaling pathway is an evolutionarily 
conserved pathway that controls organ size and tissue homeo‑
stasis (18,19). In recent years, the Hippo signaling pathway 
has emerged as a key regulator in cancer development and 
progression  (20). The kinase cascade of Mst1/2 and large 
tumor suppressor kinase 1/2  (LATS1/2) represents a core 
component of the mammalian Hippo signaling pathway (21). 
When the Hippo pathway is activated by upstream signals, 
Mst1/2 phosphorylates and activates LATS1/2, which 
subsequently phosphorylates Yes1 associated transcriptional 
regulator (YAP). This phosphorylation event retains YAP in 
the cytoplasm, which prevents YAP from being translocated 
into the nucleus to interact with the TEA domain transcrip‑
tion factor 1 family of transcription factors and activate its 
downstream genes, such as cellular communication network 
factor 2 (CTGF) and cellular communication network factor 1 
(CCN1) (22,23). As a key downstream effector of the Hippo 
signaling pathway, YAP has been discovered to play important 
roles in cell proliferation and the survival of cancer cells. YAP 
amplification has been frequently observed in a large number 
of human cancer types, including in lung, liver, colon and 
gastric cancers (19,24). In addition, the abnormal activation 
of YAP was found to be associated with the progression of 
numerous types of cancer, such as lun, colorectal and lover 
cancer suggesting that YAP may play an important role in 
tumorigenesis (24‑26).

The aim of the present study was to investigate the effect 
of TCG on the SW480 colorectal cancer cell and determine 
whether autophagy and Yes1 associated transcriptional regu‑
lator (YAP) were associated with TCG‑mediated inhibition of 
cell proliferation and viability.

Materials and methods

Cell culture and reagents. The human colorectal cancer cell 
lines, SW480 and HT‑29, were purchased from the American 
Type Culture Collection. The cells were cultured in RPMI‑1640 
medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented 
with 10% FBS (Gibco; Thermo Fisher Scientific, Inc.) and 1% 
penicillin/streptomycin (Sigma‑Aldrich; Merck KGaA), and 
maintained at 37˚C in a humidified incubator with 5% CO2. 
The cells were treated with TCG (purity, ≥95%), which was 
kindly gifted by Professor HaoFu Dai (Chinese Academy of 
Tropical Agricultural Sciences, Haikou, China).

The PI3K inh ibitor,  3‑methyladenine (3‑MA; 
cat.  no.  189490) and chloroquine (CQ; cat.  no.  C6628) 
were purchased from Sigma‑Aldrich (Merck KGaA). 
Verteporfin (VP; cat. no. HY‑B0146) was purchased from 
MedChemExpress. The cells were treated with 10 mM 3‑MA, 
5 µM CQ, or 10 µM VP at 37˚C for 24 h.

Cytotoxicity assay. Cell cytotoxicity was measured using 
a MTT assay. Briefly, SW480 or HT‑29 cells were seeded 
(1x106/well) into 96‑well plates and treated with indicated 
concentrations of TCG or DMSO (or 10 mM 3‑MA, 5 µM CQ 
and 10 µM VP) for 24 h at 37˚C. Following incubation, 10 µl 
MTT was added to each well and the samples were incubated 
for a further 4 h at 37˚C. Then, 200 µl DMSO was added 

to each well to dissolve purple formazan. The absorbance 
was measured at 570 nm using an ELISA reader (Bio‑Rad 
Laboratories, Inc.).

Bromodeoxyuridine (BrdU) incorporation assay. The SW480 
cells were seeded (1x106/well) into 96‑well plates and treated 
with indicated concentrations of TCG or DMSO (or 10 mM 
3‑MA and 10 µM VP) for 24 h. Following incubation, cell 
proliferation was determined using a BrdU Cell Proliferation 
ELISA kit (cat.  no.  ab126556; Abcam) according to the 
manufacturer's protocol.

Colony formation assay. The SW480 cells were seeded 
(1x103/well) into 24‑well plates and treated with indicated 
concentrations of TCG or DMSO (or 3‑MA according to 
each experiment requires). Following 7 days of incubation, 
the colonies were stained with Giemsa for 15 min at 37˚C, 
then washed three times with PBS. The visible colonies were 
visualized using a Molecular Imager Gel Do XR+ system 
(Bio‑Rad Laboratories, Inc.) and counted using ImageJ 1.47 
software (National Institutes of Health).

Lactate dehydrogenase (LDH) release assay. The SW480 
cells were seeded (1x106/well) into 96‑well plates and treated 
with indicated concentrations of TCG or DMSO (or 10 mM 
3‑MA and 10 µM VP) for 24 h. Following incubation, the cyto‑
toxicity was measured using a LDH release kit (cat. no. C0016; 
Beyotime Institute of Biotechnology) according to the manu‑
facturer's protocol.

Flow cytometry. Briefly, the SW480 cells were seeded 
(3x105/well) into 6‑well plates and treated with TCG (0, 
0.2 and 0.4 µM) for 24 h. Following incubation, the cells 
were harvested and washed with PBS, then resuspended in 
PI/AnnexinV solution (Nanjing KeyGen Biotech Co., Ltd.). 
Apoptosis was subsequently analyzed using a FACSCalibur 
flow cytometer (BD Biosciences) and FlowJo v7.6.1 software 
(FlowJo LLC).

Western blot analysis. Total protein was extracted from the 
SW480 cells treated with 0, 0.2 and 0.4 µM TCG (or control, 
0.4 µM TCG, 10 mM 3‑MA, 0.4 µM TCG+10 mM 3‑MA; or 
control, 0.4 µM TCG, 5 µM CQ, 0.4 µM TCG+5 µM CQ) using 
RIPA lysis buffer (Thermo Fisher Scientific, Inc.) and quanti‑
fied using a BCA protein assay kit (Thermo Fisher Scientific, 
Inc.). The proteins were separated using 10% SDS‑PAGE and 
transferred onto PVDF membranes. After blocking with 5% 
BSA (Sigma‑Aldrich; Merck KGaA) for 30 min at 37˚C, the 
membranes were incubated at 4˚C overnight with the following 
primary antibodies: Anti‑poly (ADP‑ribose) polymerase 1 
(PARP; cat. no. ab191217; 1:1,000; Abcam), anti‑caspase‑3 
(cat. no. ab32351; 1:1,000; Abcam), anti‑LC3B (cat. no. L7543; 
1:2,000; Sigma‑Aldrich; Merck KGaA), anti‑Beclin1 
(cat. no. ab210498; 1:1,000; Abcam), anti‑autophagy related 5 
(ATG5; cat.  no.  ab108327; 1:1,000; Abcam), anti‑P62 
(cat.  no.  ab109012; 1:1,000; Abcam), anti‑phosphorylated 
(p)‑YAP (cat.  no.  ab76252; 1:1,000; Abcam), anti‑YAP 
(cat. no. ab52771; 1:1,000; Abcam), anti‑LATS1 (cat. no. 3477; 
1:1,000; Cell Signaling Technology, Inc.) and anti‑β‑actin 
(cat. no. ab8226; 1:2,000; Abcam). Following incubation with 
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the primary antibodies, the membranes were incubated with 
secondary antibodies (anti‑rabbit IgG; cat. no. ab6721; 1:2,000; 
Abcam) at room temperature for 2 h. The protein bands were 
visualized using an enhanced chemiluminescence reagent 
(cat.  no.  WBKLS0100; MilliporeSigma) and the protein 
ratios were calculated following densitometric analysis using 
ImageJ v1.47 software (National Institutes of Health).

Reverse transcription‑quantitative PCR (RT‑qPCR). Total RNA 
was extracted from the SW480 cells using TRIzol® (Invitrogen; 
Thermo Fisher Scientific, Inc.). Total RNA was reverse tran‑
scribed into cDNA using reverse transcriptase and random 
hexamers from a RevertAid First Strand cDNA Synthesis kit 
(Thermo Fisher Scientific, Inc.). The following temperature 
protocol was used: Priming at 25˚C for 5 min, RT at 42˚C for 
60 min, then inactivation at 70˚C for 5 min. qPCR was subse‑
quently performed by mixing cDNA, gene‑specific primers and 
IQ SYRB Green Supermix (Agilent Technologies, Inc.) and 
detected using a Mx3005P Real‑Time PCR system (Agilent 
Technologies, Inc.) according to the manufacturer's protocol. 
The following primers were used for the qPCR: CTGF forward, 
5'‑AAA​AGT​GCA​TCC​GTA​CTC​CCA‑3' and reverse, 5'‑CCG​
TCG​GTA​CAT​ACT​CCA​CAG‑3'; CCN1 forward, 5'‑AGC​CTC​
GCA​TCC​TAT​ACA​ACC‑3' and reverse, 5'‑TTC​TTT​CAC​
AAG​GCG​GCA​CTC‑3'; and GAPDH forward, 5'‑GAG​CGA​
GAT​CCC​TCC​AAA​AT‑3' and reverse, 5'‑GGC​TGT​TGT​CAT​
ACT​TCT​CAT​GG‑3'. The following thermocycling conditions 
were used for qPCR: Initial denaturation at 95˚C for 2 min, 
followed by 40 cycles of denaturation at 94˚C for 15 sec, and 
annealing/extension at 60˚C for 1 min. Expression levels were 
quantified using the 2‑∆∆Cq method and fold changes were 
obtained by normalization to GAPDH expression (27).

Immunofluorescence assay. The SW480 cells treated with 
0.4 µM TCG or control (or 5 µM CQ) were fixed with 4% 
paraformaldehyde at room temperature for 30 min, washed 
with PBS, then incubated with 0.1% Triton X‑100 for permea‑
bilization. Non‑specific binding was performed by blocking 
with 5%  BSA (Sigma‑Aldrich; Merck KGaA) for 30  min 
at 37˚C and the cells were then incubated with anti‑LC3B 
(1:200; cat.  no.  L7543; Sigma‑Aldrich; Merck  KGaA), 
anti‑lysosomal associated membrane protein  2 (LAMP2; 
1:200; cat.  no.  sc‑20004; Santa Cruz Biotechnology, Inc.) 
and anti‑YAP (1:200; cat.  no.  ab52771; Abcam) primary 
antibodies overnight at  4˚C. Following incubation with 
the primary antibody, the cells were incubated with an 
Alexa Fluor 488‑conjugated goat anti‑rabbit IgG (1:1,000; 
cat. no. ab150077; Abcam) or an Alexa Fluor 594‑conjugated 
donkey anti‑mouse IgG (1:1,000; cat. no. ab150108; Abcam) 
secondary antibody at room temperature for 1 h. Nuclei were 
stained with 10 ug/ml DAPI for 5 min at 37˚C. The stained 
cells were visualized using a confocal laser scanning micro‑
scope (FV1000; Olympus Corporation).

Cell transfection. Small interfering (si) RNA targeting Atg5 
and YAP, and scramble siRNA were synthesized by Shanghai 
GenePharma Co., Ltd. The sequences of the siRNAs are as 
follows: Atg5 siRNA, 5'‑GCA​ACU​CUG​GAU​GGG​AUU​
GTT‑3'; YAP siRNA, 5'‑CGA​GAU​GAG​AGC​ACA​GAC​
AdTdT‑3'; negative control (NC) of Atg5 (siScramble#1; 

5'‑GGA​AAG​AGC​UGC​AUA​UUA​ATT‑3'); and NC of YAP, 
(siScramble#2; 5'‑UAA​GGC​UAU​GAA​GAG​AUA​C‑3'). The 
SW480 cells were transfected with the siRNAs (50 nmol/l) 
at 37˚C for 48 h using Lipofectamine® 3000 reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocol. At 72 h post‑transfection, the cells were harvested 
and used for subsequent experiments.

The pEGFP‑LC3 plasmid was kindly gifted by Dr Lu Zhang 
(Sichuan University, Chengdu, China). The SW480 cells were 
transfected with the pEGFP‑LC3 plasmid (2.5 µg) at 37˚C using 
Lipofectamine® 3000 (Invitrogen; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's protocol. After 36 h 
at 37˚C, the cells were treated with DMSO or TCG (0.4 µM) 
for another 36 h at 37˚C. Formation of EGFP‑LC3 puncta was 
visualized using fluorescence microscopy (FV1000; Olympus 
Corporation).

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism v6.0 software (GraphPad Software, Inc.). 
Statistical differences between groups were determined 
using a one‑way ANOVA followed by Tukey's post hoc test 
or an unpaired Student's t‑test. The data are presented as the 
mean ± SD. P<0.05 was considered to indicate a statistically 
significant difference.

Results

TCG inhibits SW480 cell cytotoxicity and proliferation, 
independent of apoptosis. To determine whether TCG exhibits 
anticancer effects against colorectal cancer cells, cell viability 
was determined using a MTT assay. As shown in Fig. 1A, TCG 
treatment decreased the cytotoxicity of the colorectal cancer 
cells in a dose‑dependent manner compared with that in the 
control group. Consistent with this finding, the results of the 
colony formation and BrdU incorporation assays revealed that 
TCG treatment inhibited SW480 cell proliferation compared 
with that in the control group (Fig. 1B and C). Furthermore, 
the LDH release assay showed that TCG treatment increased 
SW480 cell death compared with that in the control group 
(Fig. 1D). Taken together, these results indicated that TCG 
may inhibit SW480 cell proliferation and viability in vitro.

To further evaluate whether apoptosis was associated with 
the anticancer effect of TCG, the apoptotic ratio was analyzed 
using flow cytometry. As shown in Fig. 1E, TCG treatment 
for 24 h did not significantly increase the levels of apoptosis 
in SW480 cells compared with that in the control group. 
Consistent with this observation, the expression levels of 
cleaved PARP and cleaved caspase‑3 were not altered between 
TCG‑treated and control cells (Fig.  1F). These findings 
indicated that TCG may not induce apoptosis in the SW480 
cell line. Taken together, these data suggested that TCG may 
inhibit SW480 cell viability and proliferation, independent of 
apoptosis.

TCG induces autophagy in the SW480 cell line. Accumulating 
evidence has indicated that autophagy is involved in drug‑medi‑
ated anticancer therapy (10,28,29); therefore, the present study 
investigated whether TCG induced autophagy in the SW480 
cell line. First, LC3‑II accumulation, a hallmark of autophagy, 
and the levels of Beclin 1 and Atg5, two autophagy‑related 



ZHOU et al: YAP ACTIVATION ATTENUATES TOXICARIOSIDE G'S CYTOTOXICITY4

proteins, were analyzed. As shown in Fig. 2A, TCG treatment 
markedly increased LC3‑II expression in the SW480 cell lines. 
In addition, the expression levels of Beclin1 and Atg5 were 
found to be increased in the TCG‑treated cells. To confirm 
this observation, a GFP‑tagged LC3B plasmid was used, and 
a marked increase in GFP‑tagged LC3B puncta was observed 
in TCG‑treated cells compared with that in the control cells 
(Fig. 2B). Next, the distribution of endogenous LC3 puncta, 
another classical marker of autophagy, was examined. The 
results revealed that TCG treatment significantly increased 
the number of endogenous LC3 puncta in the SW480 cell 
lines (Fig. 2C and D). Furthermore, treatment with 3‑MA (an 
autophagy inhibitor) markedly decreased LC3‑II expression in 
the TCG‑treated cells (Fig. 2E). Taken together, these findings 
indicated that TCG may induce autophagy in SW480 cells.

TCG induces lethal autophagy arrest in the SW480 cell 
lines. In addition to autophagy initiation, LC3‑II accu‑
mulation may result from impaired autophagic flux  (30). 
Therefore, the present study investigated whether TCG 
induced complete autophagic f lux in the SW480 cell 
line. The protein expression levels of LC3‑II and P62 (an 
autophagy‑specific substrate) were investigated by adding 
CQ (a lysosomal inhibitor) to the TCG‑treated cells to 
CQ. The results revealed that both LC3‑II and P62 were 
significantly increased in TCG‑treated cells, but expression 
was not further increased upon combined treatment with 
CQ (Fig.  3A). Furthermore, the colocalization of LC3B 
with LAMP2 (a lysosomal marker) was not observed in the 
TCG‑treated cells (Fig. 3B), suggesting that TCG hinders 
the fusion of autophagosomes with lysosomes. These results 

Figure 1. TCG inhibits SW480 cell cytotoxicity and proliferation, which is independent of apoptosis. (A) MTT assay was used to determine the cytotoxicity 
of cells treated with the indicated concentrations of TCG for 24 h. (B) Colony formation and (C) BrdU incorporation assays were used to determine the 
proliferation of TCG‑treated cells. (D) LDH release assay was performed using the SW480 cell line treated with the indicated concentrations of TCG for 24 h. 
(E) Apoptosis was analyzed using flow cytometry following AnnexinV‑FITC/PI double staining. (F) Western blot analysis was used to analyze the protein 
expression levels of cleaved PARP and cleaved caspase‑3 in the TCG‑treated cells, and the protein ratios were calculated following densitometric analysis 
using ImageJ software. The experiments were repeated in triplicate. **P<0.01, ***P<0.001. TCG, toxicarioside G; BrdU, bromodeoxyuridine; LDH, lactate 
dehydrogenase; PARP, poly (ADP‑ribose) polymerase 1; ns, non‑significant.
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indicated that TCG may induce autophagosome accumula‑
tion by blocking autophagosome‑lysosome fusion.

To determine whether autophagy was involved in the 
TCG‑mediated inhibition of cell viability and proliferation, 
the SW480 cell line was treated with TCG in combination with 
3‑MA or CQ. As shown in Fig. 4A and B, 3‑MA treatment mark‑
edly restored the TCG‑mediated inhibition of cell viability, 
whereas CQ treatment did not affect cell viability. The results 
of the BrdU incorporation and colony formation assays showed 
that 3‑MA treatment significantly restored the TCG‑mediated 
suppression of cell proliferation (Fig. 4C and D). In addition, 
3‑MA treatment markedly decreased TCG‑induced cytotox‑
icity, as evidenced by the LDH release assay (Fig. 4E). Atg5 
knockdown significantly decreased Atg5 protein expression 
levels in the SW480 cell line compared with that in the control 
group (Fig. 4F and G). Knockdown of Atg5 also prevented the 
TCG‑mediated suppression of cell viability, as evidenced by 
MTT and LDH release assays (Fig. 4H and I). Taken together, 
these results suggested that TCG may inhibit SW480 cell 

viability and proliferation by promoting lethal autophagosome 
accumulation.

YAP is activated in TCG‑treated SW480 cells. As the Hippo 
signaling pathway has been found to play a key role in the 
development of numerous types of human cancer  (31), the 
present study aimed to determine whether the Hippo signaling 
pathway was associated with the TCG‑mediated inhibition of 
SW480 cell viability and proliferation. The results demon‑
strated that TCG treatment promoted YAP dephosphorylation 
at serine 127 in the SW480 cell line (Fig. 5A). In addition, 
YAP nuclear localization was found to be elevated in the 
TCG‑treated cells (Fig. 5B and C). The mRNA expression 
levels of downstream target genes of YAP were also inves‑
tigated. As shown in Fig.  5D, TCG treatment markedly 
upregulated the mRNA expression levels of CTGF and 
CCN1. Furthermore, TCG treatment significantly downregu‑
lated LATS1 protein expression level in the SW480 cell line 
(Fig. 5E). Collectively, these results indicated that TCG may 

Figure 2. TCG induces autophagy in the SW480 cell line. (A) Western blot analysis was used to analyze the protein expression levels of LC3, Beclin 1 and ATG5 
in TCG‑treated cells. (B) GFP‑tagged LC3B puncta were visualized using a fluorescence microscope. (C) Endogenous LC3 puncta were visualized using a 
fluorescence microscope and the results were (D) statistically analyzed. (E) Western blot analysis was used to determine the protein expression levels of LC3 in 
cells treated with TCG and/or in combination with 3‑MA. The protein ratios were calculated following densitometric analysis using ImageJ software. The experi‑
ments were repeated in triplicate. **P<0.01, ***P<0.001. Scale bar, 10‑µm. TCG, toxicarioside G; ATG5, autophagy related 5; 3‑MA, 3‑methyladenine; Ctrl, control.
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enhance YAP dephosphorylation and nuclear localization, and 
downstream target gene expression, suggesting that YAP may 
be activated in the TCG‑treated SW480 cell line.

Inhibition of YAP activity enhances the TCG‑induced antiprolif‑
erative effect in the SW480 cell line. To determine the role of 
YAP in the TCG‑mediated inhibition of cell viability and prolif‑
eration, cell viability and proliferation were measured following 
treatment with the YAP inhibitor, VP. The results of the MTT 
assay showed that VP treatment significantly decreased cell 
viability compared with that in cells treated with TCG alone 
(Fig. 6A). In addition, VP treatment further suppressed cell 
proliferation in TCG‑treated cells, as demonstrated by the BrdU 
incorporation assay (Fig. 6B). Furthermore, VP treatment mark‑
edly increased TCG‑induced cytotoxicity, which was evidenced 
using a LDH release assay (Fig. 6C). YAP knockdown signifi‑
cantly decreased YAP protein expression levels in the SW480 
cell line compared with that in the control group (Fig. 6D and E). 
Knockdown of YAP further enhanced the TCG‑mediated inhibi‑
tion of cell viability and proliferation, which was evidenced by 
MTT, BrdU incorporation and LDH release assays (Fig. 6F‑H). 

Taken together, these findings indicated that TCG‑induced YAP 
activation may play a protective role against the TCG‑mediated 
inhibition of cell viability and proliferation.

Discussion

In recent years, natural products have been of significant 
interest due to the use of their compounds for medicinal 
purposes. Numerous natural products derived from plants 
have exhibited potent anticancer activities and have been 
successfully used in cancer treatment, such as vincristine, 
etoposide, irinotecan and paclitaxel (32‑34). Cardenolides, a 
class of natural products, including digitoxin, oleandrin and 
ouabain, have received considerable attention due to their 
reported anticancer activities (1,35,36). TCG is a cardenolide 
isolated from Calotropis gigantea, which has been shown 
to exert potential anticancer activities in several types of 
cancer cell line (6). However, to the best of our knowledge, 
the molecular mechanisms of TCG remain largely unknown. 
The results of the present study demonstrated that TCG inhib‑
ited the viability and proliferation of the SW480 cell line. In 

Figure 3. TCG induces autophagosome accumulation in the SW480 cell line. (A) Western blot analysis was used to analyze the protein expression levels of 
LC3 and P62 in cells treated with TCG in combination with CQ. The protein ratios were calculated following ImageJ densitometric analysis and using ImageJ 
software. (B) Immunofluorescent analysis of the colocalization of endogenous LC3B with LAMP2 in cells treated as described in part. (A) Scale bar, 10‑µm. 
The experiments were repeated in triplicate. **P<0.01, ***P<0.001. TCG, toxicarioside G; CQ, chloroquine; LAMP2, lysosomal associated membrane protein 2; 
ns, non‑significant; Ctrl, control.
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addition, TCG induced autophagosome accumulation and the 
inhibition of autophagy restored the TCG‑mediated inhibition 
of cell viability and proliferation, suggesting that TCG may 
induce lethal autophagy arrest. The data further showed that 
TCG induced YAP activation in the SW480 cell line, while the 
inhibition of YAP activity enhanced the TCG‑induced effects 
on cell viability and proliferation, indicating that YAP may 
play a protective role in TCG‑treated cells.

Accumulating evidence has indicated that autophagy 
is induced following treatment with numerous anticancer 
agents  (15,37); however, the reported role of autophagy is 

paradoxical. Some anticancer agents have been shown to induce 
cytoprotective autophagy and inhibition of autophagy rendered 
tumor cells vulnerable to these drug treatments (28,38). On 
the other hand, other anticancer agents were found to induce 
cytotoxic autophagy and inhibition of autophagy promoted 
cancer cell proliferation (17,39). The results of the present study 
revealed that TCG induced autophagy in the SW480 cell line 
and inhibition of autophagy favored cancer cell proliferation, 
indicating that TCG may induce cytotoxic autophagy in the 
SW480 cell line. Autophagy arrest, which is involved in cyto‑
toxic autophagy, has been frequently observed in response to 

Figure 4. TCG inhibits SW480 cell viability and proliferation by promoting autophagosome accumulation. MTT assay was used to determine the viability 
of cells treated with DMSO or TCG for 24 h in the presence or absence of (A) 3‑MA or (B) CQ. (C) BrdU incorporation assay was used to determine the 
proliferation of cells treated as described in part (A). (D) Colony formation assay was used to determine the proliferation of cells treated with DMSO or TCG 
for 7 days in the presence or absence of 3‑MA. (E) LDH release assay was performed using SW480 cells treated as described in part (A). (F and G) Effect of 
Atg5 knockdown on Atg5 protein expression. (H) MTT assay was used to determine the viability of cells transfected with Atg5 siRNA or siScramble followed 
by treatment with or without TCG for 24 h. (I) LDH release assay was performed using SW480 cells transfected as described in part. (H) The experiments 
were repeated in triplicate. *P<0.05, **P<0.01. TCG, toxicarioside G; CQ, chloroquine; 3‑MA, 3‑methyladenine; BrdU, bromodeoxyuridine; LDH, lactate 
dehydrogenase; si, small interfering; Atg5, autophagy related 5; DMSO, dimethyl sulfoxide; Ctrl, control; ns, non‑significant.
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Figure 5. YAP is activated in TCG‑treated SW480 cells. (A) Western blot analysis was used to determine the phosphorylation levels of YAP (serine 127) in 
TCG‑treated cells. (B) Immunofluorescent analysis of YAP subcellular localization in TCG‑treated cells and the results were (C) statistically analyzed. (D) Reverse 
transcription‑quantitative PCR was used to analyze CTGF and CCN1 mRNA expression levels in TCG‑treated cells. (E) Western blot analysis was used to analyze 
the protein expression levels of LATS1 in TCG‑treated cells. The protein ratios were calculated following densitometric analysis using ImageJ software. The 
experiments were repeated in triplicate. **P<0.01, ***P<0.001. Scale bar, 25‑µm. TCG, toxicarioside G; YAP, Yes1 associated transcriptional regulator; CTGF, cellular 
communication network factor 2; CCN1, cellular communication network factor 1; LATS1, large tumor suppressor kinase 1; p, phosphorylated; Ctrl, control.

Figure 6. Inhibition of YAP activity enhances TCG‑induced lethal autophagosome accumulation in the SW480 cell line. (A) MTT, (B) BrdU incorporation 
and (C) LDH release assays were used to determine the viability, proliferation and LDH levels in cells treated with DMSO or TCG for 24 h in the presence or 
absence of VP. (D) Effect of YAP knockdown on YAP protein expression and the results were (E) statistically analyzed. (F) MTT assay was used to determine 
the viability of cells transfected with YAP siRNA or siScramble, followed by treatment with or without TCG for 24 h. (G) BrdU incorporation assay was used 
to determine the proliferation of cells transfected as described in part (F). (H) LDH release assay was performed using SW480 cells transfected as described 
in part. (F) The experiments were repeated in triplicate. *P<0.05, **P<0.01, ***P<0.001. YAP, Yes1 associated transcriptional regulator; TCG, toxicarioside G; 
VP, verteporfin; BrdU, bromodeoxyuridine; LDH, lactate dehydrogenase; si, small interfering; CtrL, control; DMSO, dimethyl sulfoxide.
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chemotherapy. For example, elaiophylin, a natural product, was 
reported to block the autophagic flux and promote the accumu‑
lation of autophagosomes by attenuating lysosomal cathepsin 
activity, resulting in lethal autophagy arrest (40). Regorafenib, 
an oral multi‑kinase inhibitor, induced lethal autophagy 
arrest in glioblastoma by inhibiting autophagosome‑lysosome 
fusion (39). Consistent with these observations, the present study 
demonstrated that TCG induced lethal autophagy arrest in the 
SW480 cell line by blocking autophagosome‑lysosome fusion.

The Hippo signaling pathway plays an important role 
in regulating numerous aspects of tumor biology, and the 
dysregulation of the Hippo signaling pathway components 
has been associated with aberrant cell proliferation and tumor 
formation  (31,41). YAP, a key downstream effector of the 
Hippo signaling pathway, regulates several context‑specific 
transcriptional programs, and was discovered to promote 
proliferation and tumor growth (19,25). Amplification of YAP, 
and high expression levels and nuclear localization, have been 
frequently observed in numerous types of cancer, including 
lung, colon and breast cancer, and the abnormal activation 
of YAP has been associated with tumorigenesis and tumor 
progression through its ability to act as a powerful tumor 
promoter (18,24,25). Conversely, in some circumstances, YAP 
has been discovered to inhibit cell expansion, and also control 
organ size and growth, which indicated that it may function as a 
possible tumor suppressor (42). The results of the current study 
revealed that TCG promoted YAP dephosphorylation, nuclear 
localization and downstream target gene expression, suggesting 
that YAP may be activated in the TCG‑treated SW480 cell line. 
The inhibition of YAP activity enhanced the TCG‑mediated 
inhibition of cell viability and proliferation, indicating that 
YAP activation may play a protective role in TCG‑treated cells.

Recently, the emerging link between the Hippo signaling 
pathway and autophagy has attracted significant attention 
due to their complex and reciprocal interactions, which have 
been found to be involved in a wide range of human diseases, 
including cancer (43,44). Accumulating data have suggested 
that the Hippo signaling pathway may control autophagy 
through various mechanisms and the inhibition of YAP func‑
tion was found to reduce basal autophagy levels (45,46). On 
the other hand, autophagy has been suggested to regulate the 
Hippo signaling pathway via numerous different mechanisms. 
Since YAP acts as an autophagic substrate, the expression 
levels of the YAP protein and YAP target genes are regulated 
by autophagy (47,48). The results of the present study demon‑
strated that TCG induced autophagy, while activating YAP. 
The findings further revealed that YAP activation restored 
the inhibited cell viability and proliferation mediated by 
TCG‑induced lethal autophagy arrest in the SW480 cell line.

Admittedly, the present study on TCG‑induced autophagy 
arrest is preliminary and also focuses on the SW480 cell line. 
Further investigation is required to verify the effect of TCG on 
autophagy in an additional cell line, to clarify the association 
between autophagy and the cell cycle, and to perform in vivo 
experiments.

In conclusion, the findings of the present study suggested 
that TCG may inhibit SW480 cell proliferation and viability, 
which may be independent of apoptosis, but associated with 
autophagy and the Hippo signaling pathway. TCG induced 
high levels of autophagosome accumulation by blocking 

autophagosome‑lysosome fusion, thereby resulting in lethal 
autophagy arrest. Furthermore, YAP was found to be acti‑
vated in the TCG‑treated cells and YAP activation attenuated 
TCG‑induced lethal autophagy arrest in the SW480 cell line. 
These results suggested that TCG may represent a potential 
anticancer agent for colorectal cancer, and the combined use of 
YAP inhibitors and TCG may represent a promising strategy 
for anticancer therapy.
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