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Abstract. Recently, the cancer microenvironment (CME) has 
received significant attention. At the local site of the tumor, 
cancer progression is affected by secreted cytokines and condi‑
tions derived from the CME and stimulation by cancer‑induced 
cytokines in an autocrine manner. The CME is characterized 
by various types of conditions, such as hypoxia, inflammation 
stimulation, and angiogenesis, and contains various components, 
such as reactive oxygen species, cancer‑associated fibroblasts, 
infiltrated immune cells, exosomes, and cancer stem cells (CSCs). 
These conditions and components complicate the progression of 
cancer. The Hedgehog (HH) signaling pathway is a morpho‑
genesis signaling pathway that is reactivated in some cancers. 
In these cancers, reactivated HH signaling is involved in the 
induction of the malignant phenotype. HH signaling is also acti‑
vated under hypoxic conditions and is considered to be strongly 
correlated with the CME, including the induction of cancer 
fibrosis and maintenance of CSCs. The aim of the present review 
was to elucidate a cancer therapy that targets HH signaling by 
considering the CME, particularly focusing on hypoxia.
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1. How is the cancer microenvironment and Hedgehog 
signaling important for the cancer therapy?

The CME is an extremely special environment that favors 
cancer progression. The CME is characterized by various 
conditions, such as hypoxia and angiogenesis, and contains 
several components, such as cancer‑associated fibroblasts 
(CAFs), infiltrated immune cells, and cancer stem cells 
(CSCs) (1‑3). These conditions and components affect each 
other, establishing a cancer‑specific environment. The actual 
conditions of the CME are complex and multifactorial. 
Hypoxia is considered to be an important factor in the CME. 
Hypoxia regulates various factors and conditions of the CME. 
The signaling pathways and molecules that are not activated 
under normoxia may be activated under hypoxia. Cancer may 
induce a malignant phenotype through hypoxia‑activated 
signaling pathways, such as the Hedgehog (HH) signaling 
pathway, and molecules. HH signaling is involved in the CME 
and is activated under hypoxic conditions (4). Moreover, the 
contribution of HH signaling to cancer shifts from gene muta‑
tion to a ligand‑dependent paracrine manner via surrounding 
conditions such as the CME (5). Therefore, the importance of 
the CME in HH signaling activation has received significant 
attention. Treating cancers using only a single therapeutic 
method is considered difficult. Various processes in cancer 
progression that are observed in the CME may be involved 
in this refractory mechanism. It is considered that an in‑depth 
understanding of the various conditions observed in the CME 
and measures to prevent these conditions will contribute to 
the development of new effective cancer therapies for the next 
generation. To understand the CME, the individual factors that 
constitute the CME should be first elucidated. 

2. What is the Hedgehog signaling pathway? 

The HH signaling pathway is a morphogenesis signaling 
pathway that plays a pivotal role in growth and pattern during 
the embryonic period  (6). However, it may be reactivated 
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beyond the embryonic period in certain cancers, which acquire 
a malignant phenotype via HH signaling. Core components of 
HH signaling that are emphasized in the present review are the 
12‑transmembrane and negative regulatory receptors, Patch 
(PTC), 7‑transmembrane protein and Smoothened (SMO), 
3 Hh ligands including sonic HH (SHH), Indian HH (IHH) 
and desert HH (DHH), serine‑threonine kinase, FUSED, 
suppressor of FUSED (SUFU), and the 3 transcriptional 
factors, glioma‑associated oncogene (GLI)1, GLI2 and GLI3. 
In the absence of HH ligands, PTC inhibits SMO and GLIs 
form huge complexes with FUSED and SUFU. Therefore, 
GLIs cannot translocate to the nucleus, and the signal does not 
transduce. In contrast, in the presence of HH ligands, SMO is 
released from the inhibition of PTC, and then, GLIs can be 
released from the complex. Thereafter, GLIs can translocate 
to the nucleus, and signaling is successfully transduced. Target 
genes of HH signaling include GLI1 and PTC1. Therefore, 
GLI1 is considered to be an index of HH signaling activa‑
tion (7). Fig. 1 shows an outline of HH signal transduction. 
The mechanism of reactivation of HH signaling in cancers is 
considered to be gene mutation. For example, there are certain 
reports of gene mutations in HH signaling in basal cell carci‑
noma (8), medulloblastoma (9), rhabdomyosarcoma (10) and 
glioblastoma (11). After 2003, ligand‑dependent HH signaling 
activation, but not gene mutation, has been reported. For 
example, SHH secreted in an autocrine or paracrine manner 
from the CME activates HH signaling in pancreatic cancer (12), 
colon cancer  (13), hepatocellular carcinoma  (HCC)  (14), 
lung (15), ovarian (16), gastric (17) and prostate cancer (18). 
Previously, it was revealed that SHH, from monocytes that 
exist in pancreatic cancer stroma, activates HH signaling in 
pancreatic cancer to induce proliferation (19). HH signaling 
activation by SHH secreted from the adjacent tissue is a more 
severe problem than gene mutation from the viewpoint of the 
high probability of induction of HH signaling activation. This 
may also be a reason why determining the association between 
the HH signaling pathway and the CME is important. 

3. Hypoxia 

Molecules and signaling pathways that are activated under 
hypoxia. Cancer hypoxia is an important characteristic of 
the CME. Hypoxia is ordinally investigated under 20% O2 
conditions, however, 20% O2 conditions do not exist in vivo. 
The O2 saturation of all human tissues is ~1% O2, and cancer 
tissue is particularly hypoxic (O2 saturation, ~0.1%)  (20). 
The molecules and signaling pathways that are not activated 
under normoxic conditions may be activated under hypoxic 
conditions. To determine the cancer phenotype under 
hypoxic cancer conditions, 1% O2 is used in experiments. It 
has been previously reported that activation of HH signaling 
is upregulated under hypoxic conditions (4). In the present 
study, SMO transcription increased under hypoxic condi‑
tions. A similar result was reported by Lei et al (21). In the 
analysis of the mechanism underlying the increase in SMO 
expression under hypoxia, the upstream molecules of SMO 
were analyzed and two molecules, recombination signal 
binding protein for immunoglobulin‑kappa‑J region (RBPJ) 
and mastermind‑like 3 (MAML3), were detected (22). RBPJ 
and MAML3 have recently been found to be a transcriptional 

factor and a coactivator of Notch signaling, respectively (23). 
The Notch signaling pathway is also a morphogenetic signaling 
pathway. Our previous study on pancreatic cancer cell lines 
revealed that hypoxia increases the expression of RBPJ and 
MAML3 and contributes to the transcription of SMO (22). 
This RBPJ/MAML3/SMO signaling pathway is also activated 
in small‑cell lung cancer  (24). The RBPJ/MAML3/SMO 
signaling may be a comprehensive therapeutic target for 
morphogenesis signaling. Hypoxia‑inducible factor (HIF)‑1a 
is an important transcriptional factor that plays a pivotal role 
in various cell functions such as cell proliferation, survival, 
apoptosis, and angiogenesis under hypoxia. No correlation or 
crosstalk was observed in RBPJ/MAML3/SMO signaling in 
our previous study (22). However, numerous studies have shown 
a correlation between HIF‑1α and HH signaling. Considering 
that HIF‑1α regulates HH signaling as an upstream mediator, it 
was demonstrated that fibroblast growth factor receptor‑like‑1 
(FGFRL1) expression is induced by HIF‑1α and that it promotes 
tumor progression by crosstalk with HH signaling in ovarian 
cancer (25). Mitochondrial glutamic pyruvate transaminase 
was revealed to promote tumorigenesis and stemness of breast 
cancer cells by activating HH signaling via HIF‑1α (26). In 
addition, it has been reported that natural agents contribute to 
the interaction between HIF‑1α and HH signaling. Resveratrol, 
which is extracted from various plants, decreased HIF‑1α 
expression and inhibited HH signaling to decrease invasive‑
ness in gastric cancer cells  (27). Oroxylin A, a bioactive 
flavonoid, induced HIF‑1α degradation and led to the inacti‑
vation of HH signaling to increase the sensitivity of glioma 
cells to temozolomide (28). Curcumin has an inhibitory effect 
on HIF‑1α, decreasing proliferation in breast cancer (29), and 
curcumin was revealed to suppress hypoxia‑induced endothe‑
lial‑mesenchymal transition (EMT) by inhibiting HH signaling 
in pancreatic cancer cells (30). HIF‑1a protects cancer cells 
from radiation‑induced apoptosis (31). Furthermore, curcumin 
has been shown to increase the efficiency of g‑irradiation 
in glioma by suppressing HH signaling (32). This suggests 
that the curcumin‑induced decrease of HIF‑1α may lead to 
inactivation of HH signaling and consequently suppression 
of cancer cell function. Conversely, HH signaling has been 
reported to regulate HIF‑1α. In a previous study, inhibition of 
HH signaling suppressed hepatic stellate cells through inhibi‑
tion of HIF‑1α and heat shock protein 90 (33). 

Correlation of hypoxia with other morphogenesis signaling 
pathways. Other morphogenesis signaling and HH signaling 
pathways have been associated to the CME. The correla‑
tion between hypoxia and Wnt/b‑catenin signaling has been 
well elucidated. Among the three subunits of HIF (HIF‑1α, 
2α and 3α), the contribution of HIF‑2α in tumor progression 
is well reported in Wnt/β‑catenin signaling (34). Inhibition 
of HIF‑2α leads to decreased expression of β‑catenin and 
SMAD4 and suppresses the progression to high‑grade 
mPanINs (35). However, the precise contribution of hypoxia 
to Notch signaling activation has not been clearly reported. 
As previously described, hypoxia induces the expression 
of RBPJ and MAML3  (22). Considering that RBPJ is a 
transcriptional factor for Notch signaling and MAML3 is a 
transcriptional mediator of Notch signaling, Notch signaling 
should be activated under hypoxia. Moreover, RBPJ and 
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MAML3 may regulate HH signaling and Notch signaling 
concurrently. RBPJ and MAML3 could be new comprehensive 
therapeutic targets for morphogenesis signaling. In another 
study, activated Notch1 markedly increased the transcriptional 
activity of HIF‑1 (36). In choriocarcinoma cells, it has been 
shown that HIF‑1α promotes invasiveness through Notch 
signaling activation (37). These results explain the associa‑
tion between hypoxia and Notch signaling. FGF signaling is 
also a type of morphogenesis signaling. Although a direct 
correlation between hypoxia and FGF signaling has yet to be 
demonstrated, hypoxia is involved in the activation of different 
signaling pathways in FGF‑2‑stimulated human microvascular 
endothelial cells, which may contribute to hypoxia‑induced 
angiogenesis  (38). FGF signaling is also a key pathway in 
HCC (39). Therefore, FGF signaling plays an important role in 
the progression of cancer in the CME. 

Acidosis and reactive oxygen species (ROS). Acidosis and 
ROS are among the most characterized properties of the CME. 
Hypoxic conditions are considered to induce ROS generation 
and cause acidosis. Acidosis also induces ROS generation (40). 
ROS contribute to transformation, survival, proliferation, 
invasion and metastasis of cancer cells  (41). Although the 
correlation between acidosis and HH signaling has not 
been fully elucidated, it has been shown that ROS promotes 
HIF‑1α stabilization to induce HH signaling activated‑cancer 
cell proliferation (42). Other studies have revealed that ROS 
inhibitors block GLI1‑dependent EMT and invasion under 
hypoxia (43) and that resveratrol suppresses hypoxia‑induced 
ROS‑mediated invasiveness and migration in pancreatic 
cancer via inhibition of HH signaling (44). 

Reoxygenation. Reoxygenation is an important process in the 
CME. It is considered to be the process by which cancer cells 
detach from hypoxic cancers and metastasize to secondary 
tissues through the bloodstream. HH signaling may contribute 
to cancer progression during reoxygenation. In a previous 

study, pancreatic cancer cells increased proliferation and inva‑
sion during the reoxygenation process through HH signaling 
activation using the chronic hypoxia‑resistant pancreatic 
cancer cells that were generated (45). Consistent with this 
result, it has been reported that the activation of HH signaling 
protects cell apoptosis and cell viability from reoxygenation 
stress in noncancerous H9C2 myocardial cells and HK‑2 
cells in experiments assuming the clinical situation of isch‑
emia (46,47). Therefore, reoxygenation‑induced HH signaling 
activation may be required for tissue repair. Cancer may utilize 
this nature of HH signaling during the reoxygenation process. 

Angiogenesis. Cancer adapts to hypoxic conditions by 
inducing the formation of new blood vessels, which is 
called angiogenesis. Angiogenesis is implicated in hypoxia. 
Angiogenesis‑related genes include vascular endothelial 
growth factor (VEGF), VEGF receptor, basic FGF (bFGF), 
platelet‑derived growth factor (PDGF), insulin‑like growth 
factor (IGF), adrenomedullin, and epidermal growth factor 
(EGF); these genes are targets of HIF (48). 

HH signaling contributes to vasculature development, 
differentiation, and maintenance during the embryonic 
period (49). Canonical HH signaling has been reported to 
regulate hepatic stellate cell‑induced angiogenesis in liver 
fibrosis (28). Yang et al (50) have revealed that HH signaling, 
prospero‑related homeobox 1, and HIF‑1α contribute to liver 
sinusoidal endothelial cell angiogenesis. Considering this 
fact, HH signaling appears to affect vasculature development 
even in cancer tissues. The association between HH signaling 
and VEGF has been reported in several types of cancers, 
such as HCC (51) and colorectal cancer (52). The associa‑
tion between HH signaling and bFGF has been reported (53), 
and it may also be related to cancer fibrosis induced by HH 
signaling, as described below. The association between 
HH signaling and PDGF (54), IGF (55), and EGF (56) has 
also been reported. Bausch et al (57) have shown that SHH 
stimulates angiogenesis indirectly through other pathways, 

Figure 1. Schematic representation of signal transduction in HH signaling. In the absence of SHH, PTC inhibits Smoothened and GLIs form a huge complex 
with FUSED and SUFU. Therefore, GLIs cannot translocate to the nucleus and the signal cannot be transduced (left panel). However, in the presence of SHH, 
SMO is released due to the inhibition of PTC, and GLIs can be released from the complex. GLIs can translocate to the nucleus to successfully transduce the 
signal (right panel). HH, Hedgehog; SHH, sonic HH; PTC, Patch; SMO, Smoothened; GLIs, glioma‑associated oncogenes; SUFU, suppressor of FUSED.
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including the reduction of antiangiogenic thrombospondin 
2 and tissue inhibitor of metalloproteinase 2 in stromal cells 
in pancreatic cancer. Thus, angiogenesis, hypoxia, and HH 
signaling are well correlated. 

4. Cancer fibrosis 

Cancer fibrosis is an important process and a complication in 
which cancer acquires the refractory phenotype. The associa‑
tion between HH signaling and fibrosis has been implicated 
in chronic lung fibrosis in 2003 (58) and biliary fibrosis in 
chronic cholecystitis in 2008  (59). Fibrosis is marked in 
pancreatic cancer, and desmoplasia has been investigated. 
HH signaling has been reported to promote desmoplasia in 
pancreatic cancer in 2008 (60). Recently, it was demonstrated 
that the increased secretion of SHH through HIF‑1α signaling 
is responsible for the cancer fibrosis or the stroma‑rich envi‑
ronment in pancreatic cancer (61,62). A severe case of cancer 
fibrosis in the CME may block the circulation of chemothera‑
peutic agents and infiltration of immune cells. Olive et al (63) 
have revealed that inhibition of HH signaling enhances the 
delivery of chemotherapy in a pancreatic cancer mouse model. 
In our xenograft experiments using pancreatic cancer cell 
lines and CAFs, inhibition of cancer fibrosis by HH inhibi‑
tion led to an increase in tissue‑infiltrating lymphocytes and 
an enhancement of the effect of immune checkpoint inhibi‑
tors (64). However, Steele et al (65) have shown that inhibition 
of HH signaling reduces myofibroblastic CAFs and increases 
inflammatory CAFs to decrease cytotoxic T‑cell infiltration 
and expand regulatory T (Treg) cells. There are few studies on 
infiltration of dendritic cells (DCs) and macrophages related 
to cancer fibrosis. However, some researchers have shown 
that macrophage infiltration induces fibrosis. Xue et al (66) 
revealed that macrophages promote pancreatic fibrosis in 
chronic pancreatitis, and Ueshima et al (67) demonstrated that 
macrophage‑secreted transforming growth factor (TGF)‑1 
contributes to fibroblast activation. Cancer fibrosis consists of 
CAFs and an extracellular matrix that secretes various cyto‑
kines. One of the most important cytokines is TGF‑β. Fibrosis is 
a typical pathological condition of TGF‑β‑driven disease (68). 
The TGF‑β/SMAD cascade is considered to be a potent 
inducer of GLI2 (69). Therefore, in the presence of TGF‑β, it 
may induce cancer fibrosis and activate HH signaling, which 
may lead to more fibrosis. Zhou et al (70) showed that HH 
signaling and TGF‑β1 contribute to the progression of fibrosis 
in nonalcoholic steatohepatitis. A previous study revealed the 
association among TGF‑β, fibrosis, and HH signaling, particu‑
larly in liver fibrosis, and GANT61, a GLI inhibitor, has been 
shown to be effective for liver fibrosis (71). Both HH signaling 
and TGF‑β in the CME may play an important role in cancer 
fibrosis. 

5. Immune cells 

As aforementioned, the CME is closely correlated with 
hypoxia and HH signaling activation. Therefore, the functions 
of immune cells such as lymphocytes, macrophages, DCs, 
myeloid‑derived suppressor cells (MDSCs), and Treg cells that 
infiltrate local cancer sites should be considered with regard 
to these factors. 

Association to hypoxia. It has been shown that hypoxic stress 
increases the cytotoxicity of CD8+ T cells and decreases their 
proliferative and differentiating capacities (72). Consistent 
with this result, in our previous study, proliferation of acti‑
vated lymphocytes decreased under hypoxia, but there was 
no significant change in their migration (73). The function of 
DCs is also altered under hypoxia. The duration of hypoxic 
exposure may affect the DC response and continuous vs. 
intermittent hypoxia (74). The motility and phagocytic ability 
of hypoxia‑induced DCs are significantly lower than those of 
normoxia‑induced DCs. Maturation of hypoxia‑induced imma‑
ture DCs is more suppressed than that of normoxia‑induced 
immature DCs due to their decreased motility and phagocy‑
tosis (75). In addition, previous studies have shown that the 
cross‑linking of triggering receptors expressed on myeloid 
cells‑1 under hypoxia is associated with an induced release of 
inflammatory cytokines and chemokines in DCs (76,77). With 
respect to immune‑suppressing cells, it has been reported 
that hypoxia induces CCL28 to recruit Treg cells at the local 
site of the cancer (78). It has also been revealed that hypoxia 
enhances immunosuppression by promoting immunosuppres‑
sive capacities of Treg cells (79). Similarly, hypoxia induces 
MDSC recruitment through CCL26 in HCC (80). It has been 
identified that HIF‑1α regulates the function and differentia‑
tion of MDSCs within the hypoxic CME (72). HIF‑1α plays 
a pivotal role in macrophage‑mediated inhibition of T cells 
under hypoxia (81). Macrophages also upregulate the expres‑
sion of matrix metalloproteinase‑7 in hypoxic tumor cells to 
protect tumor cells from the cytotoxic activity of natural killer 
cells and T cells (82,83). In a study by Sureshbabu et al (84), 
hypoxia‑exposed γδT cells exhibited reduced cytotoxicity in 
oral tumor cells. Thus, hypoxia mainly supports the immuno‑
suppressive function of immune cells. 

Association to HH signaling. HH signaling contributes to the 
function of activated lymphocytes, such as migration, prolif‑
eration and cytotoxicity (73). T‑cell receptor activation triggers 
the expression of HH signaling components, and HH signaling 
is required for cytotoxic T lymphocyte (CTL) killing (85). 
Conversely, certain researchers have shown that HH signaling 
promotes tumor‑associated macrophage polarization to inhibit 
tumor‑infiltrated CD8 T‑cell recruitment (86) and that HH 
signaling promotes Th2 differentiation in naive human CD4 T 
cells (87). Other researchers have shown that GLI1 induces the 
polarization of invading myeloid cells to MDSCs (88). These 
results indicated that HH signaling is required for lymphocyte 
function and immune response in both activation and inhibi‑
tion. HH signaling is also involved in the functions of DCs, 
including induction, migration, chemotaxis, phagocytosis, 
maturation, and IL‑12 p40 or p70 secretion and the alloge‑
neic lymphocyte stimulation activity of monocyte‑derived 
DCs (89). The association between hypoxia and HH signaling 
may determine the functions of immune cells. 

Correlation between the programmed cell death protein 1 
(PD‑1)/programmed death‑ligand 1 (PD‑L1) axis and the 
CME. Previously, the concept of immune checkpoints has 
received significant attention. There are patients who are not 
eligible to receive standard therapy due to their drug tolerance 
and achieve complete response by immune checkpoint inhibitor 
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treatment  (90). Thus, studies on the PD‑1/PD‑L1 axis are 
considered important. It has been shown that PD‑L1 is a direct 
target of HIF‑1α (91). Hypoxia‑induced PD‑L1/PD‑1 crosstalk 
impairs T‑cell function  (92). Tumors may escape immune 
cells by regulating the PD‑1/PD‑L1 axis under hypoxic condi‑
tions. However, it has been shown that HH signaling induces 
PD‑L1 expression in gastric cancer (93) and that HH inhibi‑
tion leads to a decrease in PD‑L1 expression under hypoxia 
in pancreatic cancer (94). Previously, it has been shown that 
soluble PD‑1/PD‑L1 or exosomal PD‑L1 plays an important 
regulatory role in antitumor immunity (95,96). Development 
of a measure against the enhanced PD‑1/PD‑L1 axis should be 
the next strategy for cancer therapy. With respect to the other 
factors of the CME, lymphocytes secrete INF‑γ, which induces 
PD‑L1 when lymphocytes infiltrate the cancer tissue (97). A 
previous study has shown that PD‑L1 expression is associated 
with tumor‑infiltrating lymphocytes in squamous cell cervical 
carcinoma (98). However, it is unclear whether lymphocyte 
infiltration into cancer tissue is the cause or result of PD‑L1 
expression. In addition, although PD‑L1 is considered to be an 
exhaustion marker (99), the significance of PD‑L1 expression 
as a biomarker for immunotherapy is controversial. 

6. Autophagy 

Autophagy is a cellular self‑degradation process that maintains 
homeostasis using this system. Autophagy is involved in the 
initiation, progression, and drug resistance of cancers (100); 
therefore, autophagy is considered a target for cancer therapy. 
Hypoxia and metabolic stress upregulate autophagy  (101). 
Autophagy and hypoxia‑upregulated HH signaling appear to 
be correlated, and the association between autophagy and HH 
signaling has been well elucidated (102,103). However, it is unclear 
whether HH signaling inhibits or upregulates cancer autophagy. 
The SMO antagonist vismodegib was demonstrated to trigger 
marked autophagy in non‑small cell lung cancer (104), while the 
GLI1/2 inhibitor GANT61 induced autophagy in HCC (105). 
Milla et al (102) have shown that the HH antagonist cyclopa‑
mine prevents autophagy. Further, Gagné‑Sansfaçon et al (106) 
have revealed that loss of HH signaling leads to a decrease in 
autophagy in the intestinal ileum. Therefore, it is deemed that 
the contribution of HH signaling to autophagy warrants further 
investigation, considering the fact that there is crosstalk between 
HH signaling and other signaling pathways. 

7. Cancer stem cells 

Increasing evidence suggests that the host microenvironment 
plays a pivotal role in CSC status (107). For example, hypoxia 
promotes stem‑like properties of laryngeal cancer cells (108) 
and is closely associated with the resistance of CSCs to 
chemotherapy and radiotherapy (109). Hypoxia enhances the 
expression of the CSC transcription factors NANOG, Oct4, 
SOX2 and CD133  (110). Multiple secreted cytokines and 
growth factors in the CME induce the enrichment of CSCs in 
ovarian cancer (111). As with other CME factors, nutritional 
stress in the microenvironment induces increased expression 
of glioblastoma CSC‑specific biomarkers with higher inva‑
siveness and angiogenesis through Wnt/HH signaling (112). 
In addition, numerous studies have shown that morphogenesis 

signaling is important for the maintenance of CSCs. For 
example, in an experiment on breast cancer, the HH signaling 
pathway was activated in the CD24‑/low CD44+ CSC popula‑
tion, but not in the CD24+ CD44+ non‑CSC population, and 
HH signaling inhibition in the CD24‑/low CD44+ CSC popu‑
lation attenuated tumor proliferation (113). Notch signaling 
contributes to endocrine resistance in breast cancer through 
the promotion of the CSC phenotype (114). Notch inhibitors 
increase the chemotherapy effect through CD133+ CSC inhibi‑
tion in endometrial cancer (115). Inhibition of Wnt/β‑catenin 
signaling is considered to decrease the aggressiveness of 
breast cancer through CSC inhibition (116). Wnt/β‑catenin 
signaling contributes to CSC‑initiated HCC  (117). Bone 
morphogenetic protein (BMP)/TGF‑β signaling, which is a 
morphogenesis signaling pathway, contributes to the homeo‑
stasis of neural and glioma stem cells (118). The correlation 
between Notch signaling and BMP/TGF‑β signaling has also 
been reported (119). 

8. Exosomes 

Exosomes are extracellular microvesicles measuring 30‑100 nm 
in diameter, are actively secreted through an exocytosis pathway 
by various cell types (120,121), and comprise a nucleic acid and 
protein derived from secreted cells. Exosomes are significantly 
rigid and resistant to enzymatic degradation; therefore, they 
are considered to play a pivotal role in cell‑to‑cell interac‑
tions in the CME. Deep and Panigrahi  (122) have reported 
that exosomes mediate tumor microenvironment remodeling, 
such as angiogenesis, EMT, metastasis, survival, proliferation, 
metabolism, stemness, and therapeutic resistance under hypoxic 
conditions through several signaling pathways, including the 
HH signaling pathway. Even during the morphogenesis period, 
exosomes are required for the distribution of morphogenes, 
such as HH ligands  (123). In relation to HH signaling and 
CSC, it has been shown that exosomes derived from human 
bone marrow mesenchymal stem cells promote the growth of 
osteosarcoma and gastric cancer through HH signaling (124). 
CSC‑derived exosomes contain stemness‑specific proteins, 
self‑renewal‑promoting miRNAs, and survival factors, and they 
play a significant role in tumor heterogeneity and tumor progres‑
sion (125). HH pathway proteins, including PTC1, SMO, and 
SHH, are exported to the cervical cancer cell line (126). SHH is 
highly expressed in CAFs, and CAF‑derived exosomes contribute 
to the augmentation of growth and progression in esophageal 
squamous cell carcinoma (127). With respect to the association 
between exosomes and CME, Wada et al (128) have shown 
that TGF‑β1 expressed on the surface of cancer ascites‑derived 
exosomes is involved in the maintenance of the number and 
suppressive function of Treg cells. Matsumoto et al (129) have 
shown that dendritic cell‑derived exosome supports CD4+ T 
cell survival. Taken together, exosomes play a pivotal role in the 
maintenance of CME. 

9. Nuclear transcription factor‑κΒ

Local cancer sites often arise from inf lammation. 
Inflammation is closely related to the CME and is required 
for the initiation of immune cell activation. Nuclear transcrip‑
tion factor (NF)‑κB is an important transcriptional factor that 
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regulates inflammation (130). The association between SHH 
and NF‑κB has been mainly reported. In a previous study, 
NF‑kB was shown to contribute to the initiation of chronic 
pancreatitis and be involved in cancer initiation through SHH 
expression in pancreatic cancer (131). A similar finding was 
reported by Kasperczyk et al (132). The correlation between 
SHH and NF‑κB has been revealed in multiple myeloma (133). 
SHH is secreted by tumor‑infiltrated macrophages through 
the NF‑κB pathway and induces proliferation in a paracrine 
manner in pancreatic cancer (19). The contribution of NF‑κB 
to cancer‑infiltrated lymphocytes has also been reported (134). 
Collectively, NF‑κB significantly contributes to the CME. 

10. Future directions 

In the present review, the individual factors that constitute 
the CME have been described, focusing on hypoxia and HH 
signaling. As previously described, these factors are correlated 
and form the CME (Fig. 2). Inhibitors of each factor have been 
developed, and the mechanisms involved should be under‑
stood considering the complex correlation among the factors. 
Fosko et al (135) have revealed that vismodegib exhibited 60% 
response in basal cell carcinoma regardless of the histopatho‑
logic subtype. On the other hand, a phase 2 trial using the SMO 
inhibitor vismodegib with gemcitabine and nab‑paclitaxel in 
patients with untreated metastatic pancreatic adenocarcinoma 
did not show a significant effective result  (136). This trial 
had difficulties in analyzing the specimens before and after 
chemotherapy; the cause of the failure was not clear. Previous 

studies have shown that SMO mutation in cancer cells affects 
the effects of vismodegib  (137,138). Thus, although HH 
inhibitors have exhibited a significant tumor suppressive effect 
in vitro (139), this effect has not always been observed in vivo. 
It was hypothesized that this discrepancy may be due to the 
difficulty in obtaining similar results with human CME as in 
in vitro and in vivo mouse experiments. 

The therapy that targets only one CME factor may not 
be sufficient for cancer treatment. If the correlation among 
these CME factors can be substantiated, each CME inhibitor 
can be used effectively for cancer therapy. In Fig. 2, an over‑
view of the correlation among hypoxia, HH signaling and 
other CME factors is demonstrated. Each factor individually 
plays a pivotal role in the formation of the CME. The corre‑
lated factors constitute the CME and contribute to cancer 
progression.
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