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Abstract. Ovarian cancer (OC) is the leading cause of 
mortality among the various types of gynecological cancer, 
and >75% of the cases are diagnosed at a late stage. Although 
platinum‑based chemotherapy is able to help the majority of 
patients to achieve remission, the disease frequently recurs and 
acquires chemoresistance, resulting in high mortality rates. 
The complexity of OC therapy is not solely governed by the 
intrinsic characteristics of the OC cells (OCCs) themselves, 
but is also largely dependent on the dynamic communication 
between OCCs and various components of their surrounding 
microenvironment. The present review attempts to describe 
the mutual interplay between OCCs and their surrounding 
microenvironment. Tumor‑associated macrophages (TAMs) 

and cancer‑associated fibroblasts (CAFs) are the most abun‑
dant stromal cell types in OC. Soluble factors derived from 
CAFs steadily nourish both the OCCs and TAMs, facilitating 
their proliferation and immune evasion. ATP binding cassette 
transporters facilitate the extrusion of cytotoxic molecules, 
eventually promoting cell survival and multidrug resistance. 
Extracellular vesicles fulfill their role as genetic exchange 
vectors, transferring cargo from the donor cells to the recipient 
cells and propagating oncogenic signaling. A greater under‑
standing of the vital roles of the tumor microenvironment will 
allow researchers to be open to the prospect of developing 
therapeutic approaches for combating OC chemoresistance.
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1. Introduction

Ovarian cancer (OC) has been reported to be the third most 
common gynecological malignancy worldwide, and the most 
lethal type of cancer (1). A total of 313,959 newly diagnosed 
cases and 207,252 associated deaths were reported in 2020 (2). 
Since OC cells (OCCs) often manifest the disease silently, 
>75% of cases are diagnosed at the late stage, usually after 
the tumor has spread throughout the abdomen (3). Currently, 
the standard treatment for OC comprises maximal cytoreduc‑
tive surgery followed by platinum‑based chemotherapy (4). 
Although the majority of patients go into clinical remission 
after conventional chemotherapy, the recurrence rate can be as 
high as 85% (5). In addition, the overall 5‑year survival rate of 
OC is <50% in numerous countries throughout the world (6).

Almost 90% of ovarian tumors are of the epithelial OC 
(EOC) type, which is classified into five histological subtypes: 
Serous tumors (comprising ~80% of EOC), mucinous tumors, 
endometrioid cancer, ovarian clear cell carcinoma and mixed 
tumors (7). However, recurrent cases are often chemoresistant, 
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and therefore, these are associated with a high mortality 
rate (7). Chemoresistance may be driven by three main factors: 
Pharmacokinetic factors, the tumor microenvironment (TME) 
and tumor‑specific mechanisms (8). Maintenance therapy 
with poly(ADP‑ribose) polymerase inhibitors, bevacizumab 
and/or drugs targeting homologous recombination deficiency 
is becoming more widely used in the treatment of OC (9). 
Nevertheless, a plethora of studies have focused on the 
intrinsic characteristics of OCCs, while neglecting the role of 
the TME (10‑13).

The TME consists of the blood and lymphoid vessels, 
nerves, fibroblasts, extracellular matrix (ECM) proteins, 
endothelial cells, pericytes and immune cells (14). Essentially, 
communication between OCCs and various components of the 
TME has a major impact on chemoresistance (15). It is impor‑
tant to understand how OCCs interact with the surrounding 
matrix to improve our understanding of tumor cell biology, 
both during oncogenesis and in terms of how chemoresistance 
develops. The present review offers a summary of the four 
most vital aspects: Cancer‑associated fibroblasts (CAFs), ATP 
binding cassette (ABC) transporters, extracellular vesicles 
(EVs) and immune cells. Considered in their entirety, recovery 
of chemotherapeutic sensitivity and identification of novel 
anticancer drug targets are of great significance with respect 
to the treatment of OC.

2. CAFs

CAFs, a well‑recognized abundant stromal cell population 
in the TME, steadily nourish the tumor cells by secreting 
soluble factors (16). The soluble factors derived from CAFs 
undoubtedly provide an important step in the development of 
CAF‑mediated chemoresistance. Fibroblast growth factor 4 
(FGF4) and fibroblast‑derived insulin‑like growth factor II 
(IGF2) are respectively able to activate the FGF4‑FGF4 
receptor 2 and IGF2‑IGF1 receptor signaling pathways to 
induce the OC stem cell (OCSC) niche in CAFs (17,18). 
OCSCs contain all the particular functionalities of the cell 
subclasses, such as the ability to self‑renew and to differen‑
tiate (19). Chemotherapeutic agents usually target fast‑dividing 
cells and act in a cell‑cycle specific manner, which confers 
an advantage on the ability of OCSCs to survive due to their 
slow proliferation rate (20). OCSCs may stay dormant for long 
periods of time, but they can self‑renew at low seeding concen‑
trations and produce more aggressive metastatic progeny (21). 
CAFs secrete matrix metalloproteinases (MMPs) to degrade 
matrix collagens, fibronectins and proteoglycans, facilitating 
TME structural remodeling and promoting matrix contrac‑
tility (22,23). Unlike a soft TME, such as the greater omentum, 
which promotes dispersion of the OCCs (24,25), the increased 
stiffness of the ECM triggers OCC survival and prolifera‑
tion (26). In addition, increased mechanical stress may lead 
to the collapse of blood vessels, leading to hypoxia, thereby 
promoting more aggressive cancer phenotypes and reducing 
drug delivery (27). Furthermore, the release of glutathione 
and cysteine by the CAFs contributes towards the depletion of 
platinum in the nuclei of the adjacent OCCs, thereby imparting 
resistance to platinum‑based chemotherapies (28,29).

In addition to the resident fibroblasts, CAFs may be derived 
from five alternative sources: Epithelial cells, endothelial 

cells, mesothelial cells, bone marrow mesenchymal cells 
and adipose‑derived mesenchymal stem cells (30‑32). The 
levels of surface markers, such as α‑smooth muscle actin, 
fibroblast‑specific protein 1 and fibroblast activation protein, 
differ in different CAFs populations (16,33,34). In breast and 
lung cancer, CD10 and G protein‑coupled receptor 77 have 
been demonstrated to unequivocally define a subset of CAFs 
that are associated with chemoresistance due to their ABC 
transporters (35).

However, relevant therapies in OC have been greatly 
hindered due to a high level of functional heterogeneity and 
a lack of a specific subset of markers (36,37). One of the 
most well‑characterized examples is provided by anti‑stromal 
therapy, in which it has proven difficult to precisely target 
CAFs, thereby increasing the risk of ablating vital stromal 
components required for tissue homeostasis (38). Therefore, 
there is an urgent need to classify different CAF phenotypes 
for improved stratification. With the emergence of single‑cell 
technologies, an increasing array of functional assays has 
become available, and studies on CAFs are entering a critical 
stage (39,40). Strategies to ‘normalize’ CAFs (41) or to deprive 
them of their soluble factors (28,42) may offer feasible methods 
to complement the existing therapies that target OCCs.

3. ABC transporters

It is well established that the human family of ABC transporters 
comprises 49 members, which are grouped into 7 distinct 
subfamilies, termed ABCA through to ABCG (43). In addition 
to enabling the unidirectional translocation of substrates such 
as saccharides, lipids, amino acids and proteins, >13 types of 
ABC transporters are able to permit the extrusion of cytotoxic 
molecules from cancer cells and reduce the intracellular drug 
concentration, thereby promoting cell survival and multidrug 
resistance (MDR) (43,44).

Intrinsically chemoresistant types of cancer (e.g., pancre‑
atic, liver, colon, adrenocortical and kidney cancer) express 
P‑glycoprotein (P‑gp; ABCB1) at a high level (44), whereas 
OC hardly expresses any P‑gp at the time of initial presenta‑
tion (45). The process of acquired chemotherapeutic resistance 
in OC is often accompanied by a marked overexpression of 
P‑gp, indicating a possible role for P‑gp in acquired resis‑
tance (45,46). Notably, ascites‑induced OC chemoresistance 
may be mediated by ABC transporters. A previously published 
study showed that specific MDR‑associated protein‑1 (MRP1; 
ABCC1) inhibitors could suppress the ascites‑induced resis‑
tance to paclitaxel (PTX) in ID8 cells (i.e., a mouse EOC cell 
line) (47). The expression levels of MRP1 and P‑gp were found 
to be closely associated with the clinical stage and patholog‑
ical differentiation grade of OC (48,49). Considered together, 
numerous findings have revealed that ABC transporters are 
important in facilitating OC drug resistance.

Although a logical approach to overcome MDR would 
be to inhibit ABC transporters, associated clinical trials 
that have been conducted have produced disappointing 
results (50,51). High doses of first‑generation P‑gp inhibitors 
(e.g., verapamil) were found to be required to be effective 
against MDR, resulting in increased levels of toxicity (52). 
Second‑generation inhibitors (e.g., valspodar) have proven to 
be effective in overcoming the obstacle of high doses, although 
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they still have poor efficacy due to pharmacokinetics (51). To 
date, no specific, safe and effective third‑generation inhibitors 
have been approved (53). A multiplicity of ABC transporters 
may be able to contribute to the acquired MDR of these 
tumors, providing a plausible explanation to explain how 
inhibiting only one of these ABC transporters is unlikely to 
reverse chemoresistance (50,54). Furthermore, the majority of 
clinical trials that have been performed have been small‑scale, 
randomized and single‑institution studies (51,55‑57). Due 
to insufficient inclusion criteria, non‑specific patients and 
inconsistent detection criteria, it has proven to be difficult 
to differentiate valid from invalid data. In addition to these 
issues, it may not be possible to regard mass‑published cell 
culture model studies (58) and phase I clinical trials (59‑61) 
with too much optimism, since unexpected results are likely to 
occur in phase II and III clinical trials.

Certainly, novel approaches, such as photodynamic therapy 
based on mitochondrial oxidative stress (45) and time‑of‑flight 
cytometry for the direct quantitation of platinum (62), have 
aroused great interest. Further developments in positron emis‑
sion tomography, fluorescence in situ hybridization analysis, 
RNA sequencing and next‑generation sequencing will 
assist in enabling the selection of a subset of patients for the 
development of specific ABC transporter inhibitors (63).

4. EVs

EVs, which are classified into exosomes, microvesicles (MVs) 
and apoptotic bodies, are able to transfer nucleic acids and 
proteins from donor cells to recipient cells (64,65). MicroRNA 
(miR/miRNA) fulfills an important role in inducing chemo‑
resistance by targeting various signaling pathways as a major 
exosomal cargo molecule (66). A particular miRNA that 
has been widely reported to promote OC chemoresistance 
is miR‑21 (67). Exo‑miR‑21 released by CAFs induces 
PTX‑resistance in neighboring SKOV3 cells by downregu‑
lating apoptotic protease‑activating factor‑1 (APAF1) (67). 
APAF1 is able to bind to cytochrome c and dATP, which in 
turn recruit and activate caspases‑9 and ‑3, as well as the apop‑
totic pathway (68,69). Additionally, exo‑miR‑98‑5p derived 
from CAFs enhances cisplatin‑resistance in OCCs through 
the downregulation of cyclin‑dependent kinase inhibitor 1A, 
which serves an important role in cell cycle arrest (70).

Exosomal transmission of proteins also has a crucial role in 
modulating drug resistance in OC (71). Epithelial‑mesenchymal 
transition (EMT) inducers, such as MMPs, annexin A2 and 
integrin 3, have been found in tumor‑derived exosomes, 
suggesting that exosomes may promote the EMT process in 
which epithelial cell characteristics are lost and mesenchymal 
phenotypes are acquired (72,73). A number of different 
EMT‑driven mechanisms that lead to carboplatin and/or PTX 
resistance have been identified in OC, including β‑tubulin 
variants (taxane‑specific resistance), ABC transporter 
overexpression, changes in the cell cycle, a greater DNA 
repair capability, anti‑apoptotic effects and changes in stress 
chaperones (74).

Exosomes have been studied extensively in terms of 
OC chemoresistance, whereas apoptotic bodies and MVs 
have not been. Previously published studies showed that 
A2780/PTX‑derived MVs could transport bioactive P‑gp 

to chemosensitive A2780 cells in vitro, which conferred 
PTX‑resistance to the recipient A2780 cells (69,75,76). The 
same phenomenon had been demonstrated in breast cancer (77); 
however, much work needs to be completed to improve our 
understanding of the role of MVs in OC chemoresistance.

There are four widely accepted potential strategies to 
overcome the pro‑tumorigenic effects of exosomes (69): i) The 
inhibition of exosomal secretion; ii) the inhibition of the uptake 
of exosomes by target cells; iii) the promotion of exosomal 
depletion; and iv) the targeting of exosomal cargo. However, 
all these strategies remain at the preliminary and experi‑
mental stages (69). Notably, exosomes and MVs present an 
appealing platform for delivering drugs, as they are non‑toxic 
and have low immunogenicity (69). In particular, they are 
able to transport drugs in a specific and targeted manner (78). 
Bioengineered exosomes are currently in use for the treatment 
of several different cancer types, including lung, prostate and 
pancreatic cancer (79‑81). By contrast, the progress made 
using bioengineered exosomes in OC has been limited. 
Mesenchymal stem cells with a high proliferative capability 
have been used to produce large quantities of exosomes for 
therapeutic purposes (82). However, other challenges, such as 
how to isolate pure exosomes, how to obtain better loading 
efficiency and how to accurately deliver the targeted drugs, 
have to be overcome before the use of exosomes in cancer 
therapy may be successfully implemented (83).

5. Immune cells

Even though limited numbers of immune cells are able to 
infiltrate in OC, they exert direct or indirect effects on OC 
chemoresistance (84). Tumor‑associated macrophages (TAMs) 
are the major population of immune cells that exist in the TME 
of OC (85), comprising two distinct subsets: Anti‑tumorigenic 
M1‑like TAMS and pro‑tumorigenic M2‑like TAMs (86). 
A previous study showed that exo‑miR223 derived from the 
M2‑like TAMs was effectively internalized by OC cell lines 
(A2780 and SKOV3 cells), thereby creating a chemoresistant 
phenotype through activation of the PI3K/AKT signaling 
pathway (87). In addition to secreting miR‑loaded exosomes, 
in another study, M2‑like TAMs were revealed to induce 
higher expression levels of ABC transporters in A2780 
cells (85). Furthermore, TAMs have been shown to occur in 
close proximity to CAF‑populated areas, indicating that a 
close association may exist between these two cell types (88). 
A number of previously published studies have established that 
CAFs are able to actively increase monocyte recruitment and 
promote their differentiation into M2‑like TAMs by secreting 
multiple soluble factors, including interleukin‑6, ‑8 and ‑10, 
and transforming growth factor‑β (88,89). More importantly, 
CAF‑induced M2‑like TAMs exhibit higher expression 
levels of programmed cell death protein‑1, thereby impairing 
effector T cell responses and inducing immune suppression of 
TAMs (90). Reciprocally, M2‑like TAMs have been shown to 
regulate CAF activation as well (86), consequently establishing 
a positive feedback loop.

Studies that have focused on the influence of other 
immune cells on OC chemoresistance have been scarce up 
to the present time. Nevertheless, it should be mentioned that 
OC‑derived EVs have an impact on the adaptive immune 
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escape process (91). For example, EVs stimulate T cell and NK 
cell proliferation, as well as inhibiting their functional activa‑
tion (92,93). FAS ligand and TNF‑related apoptosis‑inducing 
ligand expressed by OC‑derived EVs were shown to inhibit 
dendritic cell (DC) activation by inducing apoptosis (94). In 
brief, EVs assist OCCs in acquiring chemoresistance through 
immune suppression and immune evasion.

Strategies to block macrophage recruitment have been 
successfully developed (95). It is well established that colony 
stimulating factor‑1 (CSF‑1) and chemokine C‑C motif ligand 2 
are macrophage chemoattractants (96). Anti‑CSF‑1 receptor 
agents have been shown to prevent the recruitment of M2‑like 
TAMs to tumor areas in pancreatic ductal adenocarcinoma 
(PDAC) models (97). However, CSF‑1 receptor is not exclu‑
sively expressed by M2‑like TAMs (98). Other immune cells, 
including M1‑like TAMs and DCs, would be affected too, 
leading to complex interactions (98). By contrast, repolarizing 
M2‑like TAMs back into the M1‑like phenotype appears to be 
the more attractive option. In the PDAC model, the combination 
of anti‑CD40 antibody and gemcitabine has been demonstrated 
to repolarize M2‑like TAMs back into the M1‑like phenotype, 
leading to increased sensitivity to gemcitabine and a reduced 
tumor burden (95). However, further clinical trials are required 
in a range of solid tumors. Additionally, the mechanism through 
which TAMs interact with CAFs has not been fully investigated 
to date (86). Future studies are required to delineate the precise 
mechanisms underlying CAF‑TAM interactions in the TME in 
order to make further advances on the current cancer‑targeted 
therapies.

6. Conclusion

Low survival rates in patients with OC are considered to 
mainly result from a late diagnosis, disease recurrence and 
chemoresistance. Specifically, chemoresistance is emerging 
as a major hurdle in OC treatment. Rather than focusing on 
the isolated impact of OCCs, the present review attempted 
to encompass the dynamic interplay between the TME and 
OCCs.

The soluble factors derived from CAFs not only induce 
formation of the OCSC niche, but also increase the stiffness 
of the ECM, which promotes the development of more aggres‑
sive and drug‑resistant cancer phenotypes (17,18,22,23). ABC 
transporters are responsible for the extrusion of cytotoxic 
molecules from the OCCs and for reducing the intracellular 
drug concentration, eventually promoting cell survival and 
MDR (43,44). Since exosomes are used as genetic exchange 
vectors in the TME, exosomal cargoes activate signaling 
pathways in recipient cells, thereby facilitating cell prolifera‑
tion and the EMT process, and inhibiting apoptosis (67,73). In 
addition, OCCs acquire chemoresistance through immune 
suppression and immune evasion (90).

Extensive crosstalk occurs among these components in 
the TME. Soluble factors secreted by CAFs and P‑gp proteins 
can be released in the form of exosomes (70,75). TAMs may 
secrete EVs and express ABC transporters as well (85,87). 
TAMs are found close to the CAF‑populated areas, and they 
engage in complex bidirectional interactions with CAFs (88).

The current review briefly presents the most up‑to‑date 
roles of the TME in OC chemoresistance and summarizes 

current research gaps in TME‑targeted therapy. Although the 
role of the TME in fostering OC chemoresistance is becoming 
more recognized, research into this topic is just beginning and 
further work is required to advance current TME‑targeted OC 
therapies.
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