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Abstract. Tamoxifen resistance remains a major obstacle in 
the treatment of estrogen receptor (ER)‑positive breast cancer. 
In recent years, the crucial role of the epithelial‑mesenchymal 
transition (EMT) process in the development of drug resis‑
tance in breast cancer has been underlined. However, the 
central molecules inducing the EMT process during the 
development of tamoxifen resistance remain to be elucidated. 
In the present study, it was demonstrated that tamoxifen‑resis‑
tant breast cancer cells underwent EMT and exhibited an 
enhanced cell motility and invasive behavior. The inhibition 
of snail family transcriptional repressor 1 (Snail) and twist 
family BHLH transcription factor 1 (Twist) reversed the EMT 
phenotype and decreased the tamoxifen resistance, migra‑
tion and invasion of tamoxifen‑resistant breast cancer cells. 
In addition, it was observed that the inhibition of epidermal 
growth factor receptor (EGFR) reversed the EMT phenotype 
in tamoxifen‑resistant MCF7 (MCF‑7/TR) cells via the down‑
regulation of Snail and Twist. Notably, the EGFR inhibitor, 
gefitinib, decreased tamoxifen resistance, migration and inva‑
sion through the inhibition of Snail and Twist. On the whole, 
the results of the present study suggest that EGFR may be a 
promising therapeutic target for tamoxifen‑resistant breast 
cancer. Moreover, it was suggested that gefitinib may serve as 

a potent novel therapeutic strategy for breast cancer patients, 
who have developed tamoxifen resistance.

Introduction

Breast cancer is the most frequently diagnosed neoplasm and 
the second leading cause of cancer‑related mortality among 
women worldwide (1,2); four molecular features are used for 
breast cancer subtypes based on the expression of estrogen 
receptor (ER), progesterone receptor, human epidermal growth 
factor receptor (HER)2 and Ki‑67 (3). ER‑positive breast 
cancer is the most common clinical subtype, constituting 
almost 70% of all breast cancer cases (4). Endocrine therapy 
to block ER activity is the mainstay therapy for ER‑positive 
breast cancer (3,5). Tamoxifen is the most commonly used 
endocrine treatment for ER‑positive breast cancer, particularly 
for pre‑menopausal patients (6). It decreases estrogen‑respon‑
sive gene transcription by competitively inhibiting the binding 
of estrogen to ER, thereby suppressing the proliferation of 
ER‑positive breast cancer (7). Treatment with tamoxifen 
reportedly decreases the risk of recurrence at 5 years by 
47% and mortality at 15 years by 34% in patients with early 
ER‑positive breast cancer and prolongs the survival of patients 
with metastatic breast cancer for ~8 months (8,9). However, 
~40% of patients with ER‑positive breast cancer develop 
tamoxifen resistance, leading to metastasis, recurrence and 
even mortality (10‑12). Therefore, tamoxifen resistance plays 
a main role in the mortality rate of patients with ER‑positive 
breast cancer. Various mechanisms have been proposed to 
combat this resistance; for example, the modification or loss 
of ER expression, the upregulation of oncogenic signaling 
pathways and epigenetic alterations (11,13,14). Nevertheless, 
the crucial question regarding the definition of therapeutic 
targets to overcome tamoxifen resistance in ER‑positive breast 
cancer remains unanswered. Therefore, it is important to iden‑
tify therapeutic targets for overcoming or reversing tamoxifen 
resistance in ER‑positive breast cancer.

In recent years, the importance of the epithelial‑mesen‑
chymal transition (EMT) process in the gain of aggressive 
characteristics in cancers has been recognized (15‑17). EMT 
is a complex process characterized by epithelial cells that lose 
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cell‑cell junctions and acquire mesenchymal properties (18). It 
is characterized by the downregulated expression of epithelial 
markers, including E‑cadherin, and the upregulated expression 
of mesenchymal markers, including N‑cadherin and vimentin, 
and EMT‑inducing transcription factors, including snail 
family transcriptional repressor 1 (Snai1), twist family BHLH 
transcription factor 1 (Twist) and snail family transcriptional 
repressor 2 (Slug) (19). Several studies have demonstrated that 
EMT is associated with the gain of migratory and invasive 
properties, and an increased tolerance to chemotherapy, being 
also a prominent hallmark of cancer progression (20,21). In 
addition, the decreased expression of E‑cadherin, and the 
increased expression of N‑cadherin and vimentin have been 
associated with a poor survival in breast, melanoma and 
prostate cancer (22‑24). Furthermore, the EMT phenotype 
has been identified in a number of cancer cells, including 
erlotinib‑resistant lung cancer cells, doxorubicin‑resistant 
gastric cancer cells and tamoxifen‑resistant breast cancer 
cells (25‑27). Therefore, therapeutic strategies based on 
reversing EMT may provide a novel approach with which to 
overcome acquired tamoxifen resistance in ER‑positive breast 
cancer.

Tamoxifen‑resistant breast cancer cells have been reported 
to exhibit an EMT phenotype and an EMT gene expression 
pattern (28,29). Transcription factors, including Snail, Slug and 
Twist have been reported to mediate EMT by regulating the 
expression of E‑cadherin, N‑cadherin and vimentin (30,31). 
In addition, the dysregulation of EMT‑inducing transcrip‑
tion factors exhibits clinical relevance in patients with 
tamoxifen‑resistant breast cancer (32,33). Several growth 
factor receptors, including fibroblast growth factor 1 receptor 
(FGFR1), insulin‑like growth factor 1 receptor (IGF1R) and 
epidermal growth factor receptor (EGFR), which are involved 
in the EMT process, are also highly expressed in ER‑positive 
breast cancer cells, supporting the link between EMT and 
insensitivity to endocrine therapy (34,35). However, the central 
molecules inducing the EMT process during the development 
of tamoxifen resistance remain largely unknown.

In the present study, a tamoxifen‑resistant MCF‑7 
(MCF‑7/TR) breast cancer cell line was established. 
MCF‑7/TR cells underwent EMT and exhibited an enhanced 
cell motility and invasive behavior. In addition, Snail and 
Twist silencing reversed the EMT phenotype and decreased 
the tamoxifen resistance, migration and invasion of MCF‑7/TR 
cells. Of note, gefitinib, a known inhibitor of EGFR, reversed 
EMT and decreased the tamoxifen resistance, migration and 
invasion of MCF‑7/TR cells via the downregulation of Snail 
and Twist. The findings of the present study indicate that EGFR 
may be a promising therapeutic target for tamoxifen‑resistant 
breast cancer treatment. Moreover, it is suggested that gefitinib 
may serve as a potent novel therapeutic strategy for breast 
cancer patients, who have developed tamoxifen resistance.

Materials and methods

Reagents. Tamoxifen (MilliporeSigma) and gefitinib 
(Funakoshi Co., Ltd.) were first dissolved in dimethyl sulf‑
oxide (DMSO; FUJIFILM Wako Pure Chemical Corporation) 
up to a concentration of 50 mM (stock solution) and stored at 
‑20˚C. Stealth small interfering RNA (siRNA) targeting Snail 

(HSS143995; 5'‑CCT CGC TGC CAA TGC TCA TCT GGG A‑3') 
and Twist (HSS144372; 5'‑TGG CGG CCA GGT ACA TCG ACT 
TCC T‑3') were purchased from Thermo Fisher Scientific, Inc. 
Antibodies against phosphorylated (p)‑EGFR (cat. no. 2235; 
dilution 1:1,000) and EGFR (cat. no. 4267; dilution 1:1,000) 
were obtained from Cell Signaling Technology, Inc. 
Antibodies against β‑actin (cat. no. A2228; dilution 1:3,000) 
were purchased from MilliporeSigma. Anti‑rabbit secondary 
antibody (cat. no. 7074; dilution 1:5,000) and anti‑mouse 
secondary antibody (cat. no. 7076; dilution 1:5,000) were 
obtained from Cell Signaling Technology, Inc.

Cells and cell culture. The tamoxifen‑sensitive human breast 
cancer cell line, MCF‑7 (cat. no. JCRB0134), was obtained 
from the Health Science Research Resources Bank. The 
MCF‑7/TR cell line was established from the MCF‑7 cells, 
following continuous exposure to tamoxifen along with a 
gradual increase in the concentration from 1 to 25 µM over 
a period of 6 months. The MCF‑7/TR cells were main‑
tained in 25 µM tamoxifen. These cells were cultured in 
RPMI‑1640 (MilliporeSigma) supplemented with 10% FBS 
(Gibco; Thermo Fisher Scientific, Inc.), 2 mM L‑glutamine 
(FUJIFILM Wako Pure Chemical Corporation), 25 mM 
HEPES (FUJIFILM Wako Pure Chemical Corporation), 
100 µg/ml penicillin/streptomycin (Gibco; Thermo Fisher 
Scientific, Inc.), at 37˚C in a CO2 incubator (Sanyo Co., Ltd.) 
with 95% air and 5% CO2.

Cell viability assay. Cell viability assay was performed 
using trypan blue staining. The MCF‑7 and MCF‑7/TR cells 
were plated in 96‑well plates in RPMI‑1640 medium, 
containing 10% FBS at a concentration of 2x103 cells per well. 
Subsequently, tamoxifen (0.1, 0.5, 1.5, 10, 25, 50, 100, 250 and 
500 µM), Snail siRNA (10 nM), Twist siRNA (10 nM), or gefi‑
tinib (1, 5, 10, and 25 µM) were added to the wells. All cells 
were stained with 0.4% trypan blue (FUJIFILM Wako Pure 
Chemical Corporation) for 3 min at room temperature, and 
counted at a magnification of x100 under a light microscope 
(Olympus CK2; Olympus Corporation) at 3 days. IC50 values 
were calculated using GraphPad Prism 9.0 (GraphPad Prism 
software, Inc.).

Transwell invasion and migration assays. For Transwell inva‑
sion assay, the Cell Culture Inserts (8.0 µm pore size; Becton, 
Dickinson and Company) were coated with 20 µl Matrigel 
(Corning, Inc.) for 30 min at 37˚C. Subsequently, MCF‑7 
(5x104 cells) and MCF‑7/TR (5x104 cells) cells previously 
transfected (as described below) with Snail siRNA (10 nM), 
Twist siRNA (10 nM), or gefitinib (5 µM) were plated in the 
upper chamber, and the lower chamber was supplemented 
with medium containing 10% FBS (Gibco; Thermo Fischer 
Scientific, Inc.). Following a 24‑h incubation, all cells on 
the upper chamber surface were removed using a wet cotton 
swab, and those attached on the lower side of the membrane 
were fixed with 95% ethanol for 10 min at room tempera‑
ture and stained hematoxylin (MilliporeSigma) for 5 min at 
room temperature. The cells passing through the Cell Culture 
Insert were counted at a magnification of x200 under a light 
microscope (Olympus BX50; Olympus Corporation) in five 
randomly selected fields. Transwell migration assay was 
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performed similarly to the Transwell invasion assay, without 
using Matrigel.

Reverse transcription‑quantitative PCR (RT‑qPCR). The 
MCF‑7/TR cells were cultured with Snail siRNA (10 nM), 
Twist siRNA (10 nM), or gefitinib (5 µM). Total RNA extrac‑
tion from the MCF‑7 and MCF‑7/TR cells was performed 
using TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.). Reverse transcription reactions were performed using 
the PrimeScript RT reagent kit (Invitrogen; Thermo Fisher 
Scientific, Inc.), according to the manufacturer's protocol 
under the following thermocycling conditions: 37˚C for 
15 min, followed by 85˚C for 5 sec. qPCR was performed 
using TB Green Premix Ex Taq (Takara Bio, Inc.) and an ABI 
Prism 7000 detection system (Applied Biosystems; Thermo 
Fisher Scientific, Inc.). Primers for RT‑qPCR were synthesized 
by Invitrogen; Thermo Fisher Scientific, Inc. The following 
primer sequences were used: E‑cadherin forward, 5'‑GAA 
CGC ATT GCC ACA TAC AC‑3' and reverse, 5'‑GAA TTC GGG 
CTT GTT GTC AT‑3'; N‑cadherin forward, 5'‑CTC CTA TGA 
GTG GAA CAG GAA CG‑3' and reverse, 5'‑TTG GAT CAA TGT 
CAT ATT CAA GTG CTG TA‑3'; vimentin forward, 5'‑AGA 
TGG CCC TTG ACA TTG AG‑3' and reverse, 5'‑CCA GAG 
GGA GTG AAT CCA GA‑3'; Snail forward, 5'‑GCG AGC TGC 
AGG ACT CTA AT‑3' and reverse, 5'‑GGA CAG AGT CCC AGA 
TGA GC‑3'; Slug forward, 5'‑CGT TTT TCC AGA CCC TGG 
TT‑3' and reverse, 5'‑CTG CAG ATG AGC CCT CAG A‑3'; Twist 
forward, 5'‑CGC CCC GCT CTT CTC CTC T‑3' and reverse, 
5'‑GAC TGT CCA TTT TCT CCT TCT CTG‑3'; GAPDH was 
used as an internal control and the following primer sequences 
were used: GAPDH forward, 5'‑ACT TTG TCA AGC TCA 
TTT‑3' and reverse, 5'‑TGC AGC GAA CTT TAT TG‑3'. Relative 
mRNA expression was calculated by the 2‑ΔΔCq method (36).

RNA interference/transfection. The MCF‑7/TR cells were 
transfected with 10 nM Snail siRNA, 10 nM Twist siRNA and 
10 nM Stealth™ RNAi Negative Control (Invitrogen; Thermo 
Fisher Scientific, Inc.) using Lipofectamine 3000® (Invitrogen; 
Thermo Fisher Scientific, Inc.). Lipofectamine 3000 and 
siRNAs were diluted in RPMI‑1640 medium, respectively, and 
were incubated for 5 min at room temperature. The diluted 
Lipofectamine 3000 and siRNAd were then mixed at a ratio of 
1:1, and subsequently they were incubated for 15 min at room 
temperature. Subsequently, the complexes were added to the 
cells followed by incubation for 48 h at 37˚C in a 5% CO2. 
Following transfection, the cells were treated according to the 
subsequent experimental protocol requirements.

Receptor tyrosine kinase (RTK) analysis. RTK analyses were 
conducted using the 7‑Plex RTK Mitogenesis Phosphoprotein 
Magnetic Bead kit (cat. no. 48‑671MAG; Merck Life 
Science UK, Ltd.) according the manufacturer's protocol. 
Briefly, the MCF‑7 and MCF‑7/TR cells were collected 
and lysed using lysis buffer [20 mM Tris‑HCl pH 8.0 
(FUJIFILM Wako Pure Chemical Corporation), 150 mM 
NaCl (FUJIFILM Wako Pure Chemical Corporation), 
2 mM ethylenediaminetetraacetic acid (EDTA; FUJIFILM 
Wako Pure Chemical Corporation), 100 mM NaF, 1% NP40 
(both from FUJIFILM Wako Pure Chemical Corporation), 
1 µg/ml leupeptin (MilliporeSigma), 1 µg/ml antipain 

(MilliporeSigma) and 1 mM phenylmethylsulfonyl fluoride 
(PMSF) (MilliporeSigma)]. The samples were mixed with 
7‑Plex RTK Mitogenesis magnetic beads and incubated 
overnight at 4˚C. Subsequently, the samples were washed 
and mixed Biotin‑Labeled Detection Antibody (dilution 1:20; 
cat. no. 48‑671MAG; Merck Life Science UK, Ltd.). RTK 
expression was measured using the Luminex® 200 instrument 
(Luminex Corporation).

Western blot analysis. The MCF‑7 and MCF‑7/TR cells 
were cultured with gefitinib (5 µM). Subsequently, the 
MCF‑7 and MCF‑7/TR cells were collected and lysed 
with lysis buffer [20 mM Tris‑HCl (pH 7.5), 10 mM 
NaCl, 1 mM EDTA, 0.5% NP‑40, 1 µM pepstatin, 1 µM 
leupeptin, 2 mM sodium orthovanadate, 1 µM calpain 
inhibitor, phosphatase inhibitor cocktail I/II and 1 mM 
phenylmethylsulfonyl fluoride (PMSF)]. Protein samples 
were quantified using the BCA Protein assay kit (Thermo 
Fischer Scientific, Inc.). The extracts (40 µg) were separated 
using 10% sodium dodecyl sulfate (FUJIFILM Wako Pure 
Chemical Corporation)‑polyacrylamide gel electrophoresis 
(SDS‑PAGE), followed by a transfer to polyvinylidene fluoride 
(PVDF) membranes (Cytiva). The membranes were blocked 
with 5% skim milk for 30 min at room temperature and incu‑
bated with the primary antibodies (as indicated above in the 
‘Reagents’ paragraph) overnight at 4˚C. The membranes were 
then incubated with secondary antibodies (as indicated above 
in the ‘Reagents’ paragraph) for 2 h at room temperature. 
The immunoreactive bands were visualized using Luminata 
Forte Western HRP substrate (Merck Life Science UK, Ltd.). 
β‑actin was used as the loading control. The bands were 
analyzed using Densitograph software CS Analyzer ver 3.0 
(Atto Corporation).

Statistical analysis. GraphPad Prism 9.0 (GraphPad Prism 
software, Inc.) was used for analysis. All data are expressed 
as the mean ± standard deviation (SD). Data comparisons 
between two groups were performed using an unpaired 
Student's t‑test. Comparisons among multiple groups were 
performed using analysis of variance (ANOVA) followed by 
Dunnett's post hoc test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

MCF‑7/TR cells exhibit an enhanced motility and invasive 
behavior. To confirm whether MCF‑7/TR cells acquired a 
tamoxifen‑resistant phenotype, parental MCF‑7 and MCF‑7/TR 
cells were treated with various concentrations of tamoxifen for 
72 h. Tamoxifen decreased the viability of the MCF‑7 cells; 
however, it exerted a limited effect on the viability of 
MCF‑7/TR cells (Fig. 1A). The IC50 value was 8.0 µM for the 
parental MCF‑7 cells and 107.2 µM for the MCF‑7/TR cells. 
Subsequently, it was examined whether the acquisition of a 
tamoxifen‑resistant phenotype enhances cell motility and 
invasive behavior. It was observed that the MCF‑7/TR cells 
exhibited a significantly increased migratory and invasive 
ability in comparison with the MCF‑7 cells (Fig. 1B and C). 
These results indicated that the MCF‑7/TR cells exhibit an 
enhanced motility and invasive behavior.
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MCF‑7/TR cells acquire the EMT phenotype. To determine 
whether the MCF‑7/TR cells acquired the EMT pheno‑
type, morphological changes in the MCF‑7/TR cells were 
examined. The MCF‑7/TR cells exhibited a spindle shape, 
intercellular spaces and scattering, whereas the MCF‑7 cells 
exhibited firmly packed cobblestone‑like clusters (Fig. S1A). 
Moreover, E‑cadherin expression was downregulated, and 

N‑cadherin and vimentin expression was upregulated in the 
MCF‑7/TR cells, but not in the MCF‑7 cells (Fig. 2). These 
results indicated that the MCF‑7/TR cells acquired the EMT 
phenotype.

Silencing of Snail and Twist reverses the EMT phenotype 
in MCF‑7/TR cells. Snail, Slug and Twist are three 

Figure 1. MCF‑7/TR cells exhibit an enhanced cell motility and invasive behavior. (A) MCF‑7 and MCF‑7/TR cells were treated with tamoxifen (0.1‑500 µM) 
for 72 h and subsequently stained with trypan blue. The number of stained cells was counted on day 3. Results are presented as the mean ± SD of three 
independent experiments. *P<0.05, as compared to the untreated MCF‑7 or MCF‑7/TR cells. (B and C) Cell migration was analyzed using Transwell culture 
inserts, whereas cell invasion was analyzed using Transwell culture inserts coated with Matrigel. Results are presented as the mean ± SD of three independent 
experiments. Representative images of invasion assay of MCF‑7 and MCF‑7/TR cells are presented on the top panels. Magnification, x20. Scale bar, 50 µm. 
*P<0.05 as compared to MCF‑7 cells. MCF‑7/TR, tamoxifen‑resistant MCF‑7 cells.
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well‑documented EMT regulatory transcription factors. 
Therefore, the present study examined their expression levels 
in MCF‑7 and MCF‑7/TR cells. Snail and Twist expression 
levels were upregulated in the MCF‑7/TR cells compared 
with the MCF‑7 cells, while Slug expression was not signifi‑
cantly unaltered (Fig. 2). Furthermore, it was investigated 
whether Snail and Twist silencing reversed the EMT pheno‑
type in MCF‑7/TR cells. Transfection with Snail and Twist 
siRNA induced morphological changes, resulting in EMT 
in MCF‑7/TR cells (Fig. S1B). In addition, Snail and Twist 
silencing resulted in E‑cadherin upregulation, and N‑cadherin 
and vimentin downregulation (Fig. 3). These results indicated 
that the silencing of Snail and Twist may reverse the EMT 
phenotype in MCF‑7/TR cells.

Silencing of Snail and Twist decreases the tamoxifen 
resistance, migration and invasion of MCF‑7/TR cells. The 
present study then examined whether the inhibition of Snail 
and Twist impaired tamoxifen resistance, and decreased the 
migration and invasion of MCF‑7/TR cells. It was revealed 
that transfection with Snail and Twist siRNA impaired the 
tamoxifen resistance of MCF‑7/TR cells (Fig. 4A). In addition, 
Snail and Twist siRNA inhibited cell migration and invasion 
(Fig. 4B and C). These results indicated that the silencing of 
Snail and Twist may decrease tamoxifen resistance, migration, 
and invasion in MCF‑7/TR cells.

Inhibition of EGFR reverses the EMT phenotype in 
MCF‑7/TR cells by downregulating Snail and Twist expres‑
sion. The molecular mechanisms underlying the increased 
expression levels of Snail and Twist in the MCF‑7/TR cells 
have not yet been fully elucidated. Recent research has 
reported that several RTKs, including EGFR, IGF1R and 
fibroblast growth factor 1 receptor, which are involved in the 
EMT process, are highly expressed in tamoxifen‑resistant 
breast cancer, supporting the link between EMT and insensi‑
tivity to endocrine therapy (37). Therefore, the present study 
examined RTK expression in MCF‑7 and MCF‑7/TR cells 
using Luminex® 200. It was revealed that EGFR expres‑
sion was higher in the MCF‑7/TR cells in comparison 
with the MCF‑7 cells (Fig. 5). However, no changes in the 
expression of c‑Met, IGF1R, insulin receptor (IR), HER3 
and HER4 proteins were observed between the MCF‑7 and 
MCF‑7/TR cells. It was then examined whether EGFR inhi‑
bition reversed the EMT phenotype through Snail and Twist 
inhibition. Firstly, the effect of the EGFR inhibitor, gefitinib, 
on the viability of MCF‑7 and MCF‑7/TR cells was examined 
using trypan blue exclusion assay. The MCF‑7 cells treated 
with 1, 5 and 10 µM gefitinib, and the MCF‑7/TR cells treated 
with 1 and 5 µM gefitinib did not exhibited an inhibition of 
cell viability (Fig. 6A). However, the MCF‑7 cells treated 
with 25 µM gefitinib, and the MCF‑7/TR cells treated with 
10 and 25 µM gefitinib exhibited a decrease in cell viability 

Figure 2. MCF‑7/TR cells acquire the epithelial‑mesenchymal transition phenotype. E‑cadherin, N‑cadherin, vimentin, Snail, Slug and Twist mRNA expres‑
sion was measured using reverse transcription‑quantitative PCR. Data are presented as the mean ± SD of three independent experiments. *P<0.05 as compared 
to MCF‑7 cells. Snai1, snail family transcriptional repressor 1; Twist, twist family BHLH transcription factor 1; Slug, snail family transcriptional repressor 2; 
MCF‑7/TR, tamoxifen‑resistant MCF‑7 cells.
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compared to the untreated cells. In addition, the expression 
of EGFR in the gefitinib‑treated MCF‑7 and MCF‑7/TR cells 
was examined using western blot analysis. It was revealed 
that gefitinib suppressed the expression of p‑EGFR (Figs. 6B 
and S2). These results revealed that 5 µM gefitinib did not 
inhibit cell viability, whereas at a concentration >10 µM, it 
inhibited the viability of the MCF‑7/TR cells. Therefore, the 
MCF‑7/TR cells were treated with gefitinib at 5 µM in subse‑
quent experiments. It was thus demonstrated that gefitinib 
may reverse the EMT phenotype through the inhibition of 
Snail and Twist (Figs. 7 and S1A). These results suggested 

that EGFR inhibition reversed the EMT phenotype in 
MCF‑7/TR cells via the downregulation of Snail and Twist.

Inhibition of EGFR decreases the tamoxifen resistance, 
migration and invasion of MCF‑7/TR cells. The present study 
then examined whether gefitinib decreases the tamoxifen 
resistance, migration and invasion of MCF‑7/TR cells. 
Gefitinib treatment was found to decrease the tamoxifen 
resistance of MCF‑7/TR cells (Fig. 8A). The combination of 
tamoxifen and gefitinib slightly reduced the viability of the 
MCF‑7 cells compared to the tamoxifen‑treated MCF‑7 cells. 

Figure 3. Snail and Twist inhibition reverses the epithelial‑mesenchymal transition phenotype in MCF‑7/TR cells. MCF‑7/TR cells were transfected with Snail 
siRNA (10 nM), Twist siRNA (10 nM), or Stealth™ RNAi Negative Control (siRNA control) for 3 days. E‑cadherin, N‑cadherin, vimentin, Snail, and Twist 
mRNA expression levels were measured using reverse transcription‑quantitative PCR. Data are presented as the mean ± SD of three independent experi‑
ments. *P<0.05 as compared to the siRNA control. The F values are 43.6 (E‑cadherin), 79.52 (N‑cadherin), 41.13 (Vimentin), 46.48 (Snail) and 158.5 (Twist). 
Snai1, snail family transcriptional repressor 1; Twist, twist family BHLH transcription factor 1; Slug, snail family transcriptional repressor 2; MCF‑7/TR, 
tamoxifen‑resistant MCF‑7 cells.
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In addition, Transwell invasion and migration assays revealed 
that gefitinib treatment inhibited the migration and invasion of 
MCF‑7/TR cells (Fig. 8B and C). However, no changes were 
observed in the migration and invasion of the gefitinib‑treated 
MCF‑7 cells. These results indicated that gefitinib may 
successfully decrease the tamoxifen resistance, migration and 
invasion of MCF‑7/TR cells.

Discussion

Tamoxifen has been used in the treatment of both pre‑ and 
post‑menopausal patients with ER‑positive breast cancer 
for >40 years. However, ~40% of ER‑positive breast cancer 
patients develop resistance to tamoxifen (10). Numerous 

studies have been conducted to identify the underlying mecha‑
nisms of tamoxifen resistance in various research and clinical 
settings (11,14,38,39). EMT has been reported to contribute to 
drug resistance, an increased motility and cancer metastasis 
in a variety of cancer types, including breast, pancreatic, and 
colorectal cancers (40). Furthermore, tamoxifen‑resistant 
breast cancer cells undergo EMT morphological changes, 
which alters their growth rate and increases aggressive 
behavior (41,42). Additionally, restoring E‑cadherin expression 
or reversing EMT in resistant cancer cells has been reported 
to enhance cancer cell susceptibility to chemotherapy and 
radiotherapy (43). Taken together, therapeutic strategies that 
reverse EMT may be a novel approach which may be used 
to overcome acquired tamoxifen resistance in breast cancer. 

Figure 4. Snail and Twist inhibition decreases the tamoxifen resistance, migration and invasion of MCF‑7/TR cells. MCF‑7/TR cells were transfected with 
Snail siRNA (10 nM), Twist siRNA (10 nM), or Stealth™ RNAi Negative Control (Control) for 3 days. (A) MCF‑7/TR cells were treated with 25 µM tamoxifen. 
The cells were stained with trypan blue, and the number of stained cells was counted on day 3. The results are presented as the mean ± SD of three independent 
experiments. *P<0.05 compared to the control. The F value is 25.29. (B and C) Cell migration was analyzed using Transwell culture inserts, whereas cell 
invasion was analyzed using Transwell culture inserts coated with Matrigel. Representative images of invasion assay of MCF‑7/TR cells are presented on the 
top panels. Magnification, x20. Scale bar, 50 µm. The results are presented as the mean ± SD of three independent experiments. *P<0.05 as compared to the 
control. The F value is 27.22 (cell migration) and 12.32 (cell invasion). Snai1, snail family transcriptional repressor 1; Twist, twist family BHLH transcription 
factor 1; MCF‑7/TR, tamoxifen‑resistant MCF‑7 cells.
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However, crucial questions concerning the central molecules 
controlling the EMT process during the development of 
tamoxifen resistance remain unanswered.

In the present study, a tamoxifen‑resistant breast cancer 
cell line, MCF‑7/TR, was established, that exhibited an 
enhanced cell motility and invasive behavior. In addi‑
tion, an increased expression of the mesenchymal protein, 
vimentin, and a decreased expression of the epithelial 
marker, E‑cadherin, were revealed, as well as morphological 
changes consistent with EMT. It was also demonstrated that 
Snail and Twist silencing may reverse the EMT phenotype, 
and decrease the tamoxifen resistance, migration and inva‑
sion of MCF‑7/TR cells. Increased Snail expression levels 
may induce an EMT phenotype, and increased migration 
and invasion in various physiological and pathological 
settings (44‑46). The expression of Twist has also been 
found to be associated with various aggressive cancer 
types, including breast, gastric and bladder cancer (47‑51). 
Previous studies have reported that Snail and Twist may 
function by inducing epigenetic silencing at the E‑cadherin 
promoter in the form of hypermethylation and histone 
deacetylation (40,44,45‑54). Twist overexpression has been 
reported to increase the expression of protease‑activated 
receptor 1 (PAR1), and promote the EMT, migration and 
invasion of ER‑positive breast cancer cells (55). The results 
of the present study suggested that Snail and Twist may be 
important targets for overcoming tamoxifen resistance, and 
controlling cancer migration and invasion.

Tamoxifen‑resistant breast cancer is unresponsive to the 
majority of targeted clinical therapies; thus, there is an urgent 
need for alternative therapies. Therapeutic strategies based on 
the reversal of EMT may be a novel approach for overcoming 

acquired tamoxifen resistance in breast cancer. The RTK 
signaling pathway has been demonstrated to contribute to 
EMT and tumor cell invasion (56). The activation of RTK 
and its downstream signaling effectors, including MAPK 
or PI3K, is crucial for an increased rate of cell proliferation 
in epithelial cells (57). In the present study, it was demon‑
strated that EGFR expression was increased in MCF‑7/TR 
cells in comparison with MCF‑7 cells. Notably, the EGFR 
inhibitor, gefitinib, reversed the EMT phenotype through 
the inhibition of Snail and Twist. In addition, gefitinib 
decreased the tamoxifen resistance, migration and invasion 
of MCF‑7/TR cells. EGFR is an important transmembrane 
protein that is involved in normal epithelial development, as 
well as in tumor cell proliferation, migration and metastasis. 
It has been reported to be overexpressed in breast cancer, 
particularly in more aggressive breast tumor phenotypes 
associated with poor disease prognosis (58‑60). Furthermore, 
EGFR activation has been reported to induce EMT in cancer 
cells via the upregulation of Snail and Twist (61,62). The 
findings of the present study indicated that EGFR activation 
was an independent biomarker in tamoxifen‑resistant breast 
cancer, and a potential novel therapeutic target that may 
contribute to reversing EMT and re‑sensitizing breast cancer 
cells to tamoxifen treatment.

Increased knowledge of the signaling factors and path‑
ways inducing tamoxifen resistance could not only aid in 
the discovery of novel drug targets in ER‑positive breast 
cancer, but also in expanding further the use of presently 
available medications. Although a number of studies have 
revealed that tamoxifen resistance promotes EMT‑like 
behavior, the underlying molecular mechanisms and the 
participating cellular signaling pathways have not yet 

Figure 5. MCF‑7/TR cells exhibit an increased EGFR phosphorylation in comparison with MCF‑7 cells. c‑Met, EGFR, IGF‑1R, IR, HER3 and HER4 protein 
phosphorylation levels were measured using Luminex® 200. Data are presented as the mean ± SD of three independent experiments. *P<0.05 as compared 
to MCF‑7 cells. MCF‑7/TR, tamoxifen‑resistant MCF‑7 cells; c‑Met, tyrosine‑protein kinase Met; HER, human epidermal growth factor receptor; EGFR, 
epidermal growth factor receptor; IGF1R, insulin‑like growth factor 1 receptor; IR, insulin receptor.
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been studied in detail (63‑65). In the present study, it was 
indicated that EGFR is a promising therapeutic target for 
tamoxifen‑resistant breast cancer. In addition, the EGFR 
inhibitor, gefitinib, decreased tamoxifen resistance, migra‑
tion and invasion through the inhibition of Snail and Twist. 
Gefitinib has been approved by the FDA for the treatment of 
metastatic non‑small cell lung cancer. Moreover, gefitinib is 
well‑tolerated and has been shown to be effective in treating 
acquired tamoxifen‑resistance in breast cancer patients in a 
phase II study (66). Therefore, gefitinib may serve as a potent 

novel therapeutic strategy for breast cancer patients, who have 
developed tamoxifen resistance. In addition, repurposing 
gefitinib may be a more effective and inexpensive approach 
than traditional drug development.

The present study has a few limitations, however. The 
present study clarified that the EGFR inhibitor, gefitinib, 
reversed the EMT phenotype through the inhibition of Snail 
and Twist. Consistent with these findings, Hiscox et al (41) 
reported that the inhibition of EGFR may alter the 
EMT‑like phenotype in tamoxifen‑resistant breast cancer 

Figure 6. EGFR inhibition decreases MCF‑7/TR cell viability. (A) MCF‑7 and MCF‑7/TR cells were treated with gefitinib (1, 5, 10 and 25 µM), stained with 
trypan blue and the number of stained cells was counted on day 3. The results are presented as the mean ± SD of three independent experiments. *P<0.05 as 
compared to the untreated control. The F values are 151 (MCF‑7) and 231.5 (MCF‑7/TR). (B) MCF‑7 and MCF‑7/TR cells were treated with gefitinib (1, 5 and 
10 µM) for 2 days. The expression of phosphorylated EGFR and EGFR was evaluated by using western blot analysis. β‑actin was used as an internal control. 
Bands were normalized to EGFR. Data are presented as the mean ± SD of three independent experiments. *P<0.05 as compared to the untreated control. The 
F values are 13.49 (MCF‑7) and 445.3 (MCF‑7/TR). EGFR, epidermal growth factor receptor; MCF‑7/TR, tamoxifen‑resistant MCF‑7 cells.
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cells. However, previous studies concerning the association 
between EGFR and EMT in tamoxifen resistance have been 
contradictory. Jiang et al (67) reported that the inhibition of 
the EGFR pathway, which successfully restored the tamoxifen 
sensitivity of Snail‑expressing breast cancer cells, could not 
reverse their mesenchymal phenotype. In the present study, 
tamoxifen‑resistant MCF‑7 cells were used, established from 
the MCF‑7 cells, following a continuous exposure to tamox‑
ifen and a gradual increase in the tamoxifen concentration. 
By contrast, Jiang et al (67) used stable Snail‑overexpressing 
breast cancer cells (MCF‑7 and T47D). Therefore, these 
inconsistent results may be attributed to the methods of 
tamoxifen‑resistant breast cancer cell establishment. The 
association between EGFR and EMT warrants further inves‑
tigations using tamoxifen‑resistant breast cancer cell studies. 
In addition, the EGFR inhibition efficacy in MCF/TR cells 
should be validated in vivo.

In conclusion, the present study demonstrated that 
tamoxifen‑resistant breast cancer cells may undergo EMT, 
and exhibit an enhanced cell motility and invasive behavior. 

Snail and Twist silencing reversed the EMT phenotype, 
and decreased tamoxifen resistance, migration and inva‑
sion. More importantly, the EGFR inhibitor, gefitinib, may 
be capable of reversing the EMT phenotype through the 
inhibition of Snail and Twist, and enhancing tamoxifen 
susceptibility in breast cancer cells. Taken together, the 
results of the present study suggest that EGFR may be a 
promising therapeutic target in tamoxifen‑resistant breast 
cancer, and gefitinib may have potential clinical treatment 
applications.
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