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Abstract. Prostate cancer is the leading cause of cancer death 
among men worldwide. Bone metastasis is one of the main 
problems arising from prostate cancer. Spondin 2 is a diag‑
nostic marker specific for prostate cancer; however, the role 
of spondin 2 in prostate cancer‑driven osteogenesis remains 
unclear. The present study was carried out to explore the role 
of spondin 2 on prostate cancer cell‑induced osteogenesis. In 
the present study, the expression of spondin 2 was analyzed 
in prostate cancer samples obtained from Gene Expression 
Omnibus. The supernatant of prostate cancer cells was used to 
treat the osteoblast precursor MC3T3‑E1 cell line to determine 
the effect of spondin 2 on osteoblasts. The effect of spondin 
2 on osteogenic factor production was also examined after 
neutralization with a spondin 2 antibody in vitro via reverse 
transcription‑quantitative PCR. Furthermore, the effect of 
spondin 2 on the PI3K/AKT/mTOR pathway was assessed 
using a patient dataset from The Cancer Genome Atlas and 
in vitro via western blot analysis. In addition, an inhibitor of 
spondin 2 receptor (ATN‑161) was used to explore the inhi‑
bition effect of spondin 2 receptor in MC3T3‑E1 cells. The 
results showed that spondin 2 promoted Osterix and Runx2 
expression in osteoblasts, and this process was tightly asso‑
ciated with the activation of the PI3K/AKT/mTOR pathway. 
Moreover, it was demonstrated that the function of spondin 
2 on prostate cancer‑driven osteogenesis at least partly relied 
on the integrin receptor α5β1. These results demonstrated 
that spondin 2 boosts osteogenesis via the PI3K/AKT/mTOR 
pathway under conditions of prostate tumor progression.

Introduction

Prostate cancer (PCa) is the most frequently diagnosed malig‑
nant tumor and a major cause of cancer mortality (6.8%) in 
men worldwide (1). A main problem arising from PCa is bone 

tumor metastasis. A total of ~80% of patients with advanced 
PCa develop bone metastases and are treated with androgen 
deprivation therapy (2). Androgen receptor (AR) is a leading 
factor for the development of bone metastasis, and recent 
advances in therapeutic options for PCa highlight the necessity 
to block AR signaling (3). However, the role of AR in osteo‑
genesis in PCa remains controversial and unclear. Therefore, 
for future therapeutic developments, it is essential to determine 
the underlying mechanism of PCa‑driven osteogenesis.

Tumor‑induced osteogenesis is a complex process that 
involves cell disengagement from the microenvironment 
in situ, degradation of the surrounding extracellular matrix, 
tumor cell dissemination and final proliferation of distant 
secondary bone tumors (4). Emerging evidence suggests that 
cytokines involved in the process mentioned above can also 
act as chemoattractants on pre‑osteoblastic MC3T3‑E1 cells 
and promote the secretion of osteogenic factors (5). Almost all 
osteogenic factors are activated via two important osteogenic 
transcription factors, which are runt‑related transcription 
factor 2 (Runx2) and osteoblast‑specific transcription factor 
Osterix (6‑8). However, the upstream factors and signaling 
pathways regulating these two osteogenic factors are still 
poorly understood.

As a member of the F‑spondin family of secreted 
extracellular matrix proteins, spondin 2 is encoded by the 
SPON2 gene (9). Initially, spondin 2 was reported as a diag‑
nostic marker specific for PCa (10,11). However, previous 
studies have shown that spondin 2 is overexpressed in 
the serum or tissue samples of malignant tumors, such as 
colorectal cancer and hepatocellular carcinoma (12,13). 
High levels of spondin 2 in colorectal cancer cells have 
been indicated to increase cell motility, thereby resulting 
in colorectal cancer metastasis in mice (14). Integrins are 
transmembrane heterodimers with α and β subunits that are 
considered to be major candidates as receptors for spondin 
2 (15). Yang et al (16) analyzed the expression of integ‑
rins in MC3T3‑E1 cells by flow cytometry and found high 
expression of integrin α5β1. Therefore, it was hypothesized 
that spondin 2 may play an important role in osteogenesis 
caused by PCa through integrin α5β1.

The aim of the present study was to elucidate the func‑
tion as well as the underlying mechanism of PCa cell‑derived 
spondin 2 during PCa‑driven osteogenesis. The detailed 
mechanisms of spondin 2 function in PCa‑induced bone 
metastasis need to be further clarified in future studies.
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Materials and methods

Cell culture and treatment. The human RWPE‑1 cell line, 
PCa cell lines (LNCaP and C4‑2 cells) and the osteoblastic 
cell line MC3T3‑E1 were all purchased from American Type 
Culture Collection. RWPE‑1 cells were cultured in keratino‑
cyte serum‑free medium supplemented with 25 µg/ml bovine 
pituitary extract, 5 ng/ml human recombinant epidermal 
growth factor, 100 u/ml penicillin and 100 µg/ml strepto‑
mycin (all from Invitrogen; Thermo Fisher Scientific, Inc.). 
LNCaP and C4‑2 cells were cultured in DMEM (Invitrogen; 
Thermo Fisher Scientific, Inc.), while MC3T3‑E1 cells were 
cultured in α‑MEM (Invitrogen; Thermo Fisher Scientific, 
Inc.). The culture media were supplemented with 10% fetal 
bovine serum (FBS; Invitrogen; Thermo Fisher Scientific, 
Inc.), 100 u/ml penicillin and 100 µg/ml streptomycin with 
(or without) 0.5 µg/ml spondin 2 neutralizing antibody 
(cat. no. SP2021041B; Wuhan Dian Biotechnology Co., 
Ltd.), and cells were maintained in a humidified incubator 
at 37˚C with 5% CO2. MC3T3‑E1 cells were treated with 
0.1 or 1.0 µg/ml spondin 2 recombinant protein (rSpondin 
2; cat. no. RPF396Mu01; Cloud‑Clone Corp.) for 24 h in a 
humidified incubator at 37˚C with 5% CO2. Control group 
cells were treated with 1X PBS for 24 h in a humidified incu‑
bator at 37˚C with 5% CO2. In the integrin α5β1 inhibitor 
assay, MC3T3‑E1 cells were treated with 100 µM ATN‑161 
(MedChemExpress) for 24 h in a humidified incubator at 
37˚C with 5% CO2.

Collection of conditioned media (CM). LNCaP and C4‑2 cells 
(2x106) were grown overnight in 100 mm culture dishes. After 
two washes with PBS, the cells were cultured in DMEM with 
1% FBS for 48 h prior to collection of CM.

ELISA. The supernatants of normal prostate epithelial cells 
(RWPE‑1) and PCa cells (LNCaP and C4‑2) cultures were 
centrifuged at 1,000 x g for 15 min at 4˚C before the assay. 
Proteins were assessed using a spondin‑2 ELISA kit (cat. 
no. JCSJ2862; Shanghai Jichun Industrial Co., Ltd.) according 
to the manufacturer's instructions.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA of MC3T3‑E1 cells was extracted using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.). according to the 
protocol provided by the manufacturer. cDNA was synthe‑
sized using Prime Script RT Master Mix Kit (Takara Bio, 
Inc.) according to the manufacturer's instructions. RT‑qPCR 
was performed in duplicate with a SYBR Premix Ex Taq™ 
kit (Takara Bio, Inc.) according to the manufacturer's 
instructions. PCR amplification conditions were as follows: 
Pre‑denaturation at 95˚C for 15 sec; 45 cycles of denaturation 
at 95˚C for 5 sec and annealing/extension at 62˚C for 30 sec. 
The following primers were used in the present study: Osterix 
forward, 5'‑GAT GGC GTC CTC TCT GCT TG‑3' and reverse, 
5'‑TCT TTG TGC CTC CTT TCC CC‑3'; Runx2 forward, 5'‑GAC 
GAG GCA AGA GTT TCA CC‑3' and reverse, 5'‑GG ACC GTC 
CAC TGT CAC TTT‑3'; Gapdh forward, 5'‑TCC ACC ACC CTG 
TTG CTG TA‑3' and reverse, 5'‑ACC ACA GTC CAT GCC ATC 
AC‑3'. Relative expression of the targeted genes was calculated 
using the 2ΔΔCq method (17).

Western blotting. MC3T3‑E1 cells were collected and lysed 
using RIPA buffer (Boster Biological Technology) containing 
protease inhibitor cocktail and PMSF (Boster Biological 
Technology). For determining the protein concentration, a 
BCA method was used, and equal amounts (30 µg) of proteins 
were separated under 90 V via 10% SDS‑PAGE and subse‑
quently transferred onto PVDF membranes (MilliporeSigma). 
After blocking the membranes with 1X TBS‑Tween (TBST; 
0.05% Tween‑20) containing 5% skimmed milk for 2 h at room 
temperature, the membranes were incubated with primary 
anti‑phosphorylated (p)‑PI3K (cat. no. 4228), anti‑PI3K 
(cat. no. 4257), anti‑p‑AKT (cat. no. 4060), anti‑AKT (cat. 
no. 9272), anti‑p‑mTOR (cat. no. 5536), anti‑mTOR (cat. 
no. 2972) (all 1:1,000 dilution; Cell Signaling Technology, 
Inc.) and anti‑GAPDH (1:1,000 dilution; cat. no. 60004‑1‑Ig; 
ProteinTech Group, Inc.) antibodies overnight at 4˚C. GAPDH 
was used as a normalization control. Membranes were rinsed 
in TBST, incubated with secondary anti‑mouse IgG, AP‑linked 
antibody (cat. no. 7056; 1:4,000 dilution; Cell Signaling 
Technology, Inc.) and anti‑rabbit IgG, HRP‑linked antibody 
(cat. no. 7074; 1:3,000 dilution; Cell Signaling Technology, 
Inc.) for 1 h at room temperature and then washed in 1X TBST. 
After incubation with the ECL Plus system (Amersham; 
Cytiva), signals were detected using the ImageQuant LAS 
4000 mini system (GE Healthcare Bio‑Sciences). The signals 
were detected using Adobe Photoshop CS3 software (Adobe 
Systems, Inc.).

Public database analysis. Gene expression data (GSE101607 
dataset) were downloaded as raw signals from Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo) (18), and analyzed 
using the Geo2R tool from NCBI (https://www.ncbi.nlm.
nih.gov/geo/geo2r). The differentially expressed genes were 
filtered by |log2FoldChange|>1 and FDR<0.05. Accordingly, 
a heatmap was generated using the ‘pheatmap’ package in R 
3.6.1 (https://mirrors.tuna.tsinghua.edu.cn/CRAN/). Published 
gene expression profiles and clinical data of PCa patients were 
obtained from The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov). The data type was selected 
as ‘count’ and transformed into the transcript per million 
format. All patients with PCa were divided into two subgroups 
according to the median SPON2 expression, namely SPON2 
low group (n=246) and SPON2 high group (n=246). This 
part of data was analyzed via Gene Set Enrichment Analysis 
(GSEA v3.0; https://www.gsea‑msigdb.org/gsea/index.jsp). 
GSEA is a computational method that determines whether 
an a priori defined set of genes shows statistically significant, 
concordant differences between two biological states (19).

Statistical analysis. Data are presented as the mean ± SD 
and were analyzed using GraphPad Prism software v6.01 
(GraphPad Software, Inc.). Differences between two groups 
were assessed using a two‑tailed unpaired Student's t‑test. 
One‑way analysis of variance tests with Bonferroni's post 
hoc test was used for multiple comparisons. The association 
between SPON2 and the survival rate of patients with PCa 
was obtained using Kaplan‑Meier analysis (the log‑rank test 
was used to obtain the P‑value) in GraphPad Prism software. 
P<0.05 was considered to indicate a statistically significant 
difference. All experiments were repeated at least three times.
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Results

SPON2 expression is increased in patients with AR‑positive 
PCa. Patients with castration‑resistant PCa (GSE101607 
dataset) were divided into two subgroups according to AR 
positivity, namely the AR‑positive group (n=32) and the 
non‑AR‑positive group (n=8). By setting log2 (fold change) 
at ±1 and P<0.05, 687 differentially expressed genes (DEGs) 
between the AR‑positive and the non‑AR‑positive group were 
identified with 188 upregulated DEGs and 499 downregu‑
lated DEGs. According to the heat map of the top five most 
up‑ and downregulated DEGs (Fig. 1A and Table SI), SPON2 
was indicated to be highly expressed in AR‑positive group 
(Fig. 1B). Consistent with this, ELISA results also showed 
that spondin 2 protein was secreted from PCa cells. Spondin 2 

protein in the supernatants of PCa cells was significantly 
increased compared with normal prostate epithelial cells 
(235.13±61.82 pg/ml in LNCaP and 280.02±90.50 pg/ml in 
C4‑2 cells vs. 34.97±12.60 pg/ml in RWPE‑1 cells) (Fig. S1). In 
the present study, the association of SPON2 with the survival 
of patients with PCa based on TCGA data was also analyzed. 
The data showed that high level of SPON2 was associated 
with poor prognosis, but there was no significant difference 
between the two groups (Fig. S2).

PCa cell‑derived spondin 2 promotes osteogenic factor 
production in osteoblasts. Next, the osteoblastic classification 
of PCa bone metastasis was sought to be determined, based 
on the evidence of tumor cell‑derived osteogenic factors from 
two AR‑positive PCa cell lines (LNCaP and C4‑2), leading 

Figure 1. SPON2 is highly expressed in AR‑positive prostate cancer. (A) Heatmap of top five up‑ and downregulated differentially expressed genes between the 
AR‑positive and non‑AR‑positive groups in the GSE101607 dataset. (B) Boxplots showing the expression levels of SPON2 in the GSE101607 dataset. **P<0.01. 
AR, androgen receptor; SPON2, spondin 2.

Figure 2. Prostate cancer cell‑derived spondin 2 enhances the production of osteogenic factors in osteoblasts. MC3T3‑E1 cells were treated with CM from 
LNCaP or C4‑2 cell lines. The mRNA levels of (A) Osterix and (B) Runx2 in MC3T3‑E1 cells were measured using RT‑qPCR analysis. The results were 
normalized to Gapdh. MC3T3‑E1 cells were treated with CM from LNCaP or C4‑2 cell lines and spondin 2 antibody. The mRNA levels of (C) Osterix and 
(D) Runx2 in MC3T3‑E1 cells were measured using RT‑qPCR analysis. The results were normalized to Gapdh. *P<0.05 and **P<0.01. CM, conditioned 
medium; RT‑qPCR, reverse transcription‑quantitative PCR; Runx2; runt‑related transcription factor 2; Ab, antibody.
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to increased bone formation. Compared with untreated 
MC3T3‑E1 cells, it was found that CM from the LNCaP and 
C4‑2 cells enhanced Osterix and Runx2 mRNA expression 
in osteoblasts (Fig. 2A and B). To examine whether spondin 
2 was a critical factor in PCa cells, CM was treated with 
spondin 2 antibody. The results showed that spondin 2 anti‑
body effectively reduced Osterix and Runx2 mRNA synthesis 
after treatment with PCa cell CM (Fig. 2C and D), indicating 
that PCa cell‑derived spondin 2 promotes the production of 
osteogenic factors in osteoblasts.

SPON2 is positively associated with the PI3K/AKT/mTOR 
pathway in patients. The expression levels of SPON2 were 
further analyzed using TCGA PCa dataset, and it was found 
that the expression levels of SPON2 were elevated in tumor 
compared with normal tissues (Fig. 3A). Furthermore, patients 
with PCa were divided into two subgroups according to the 
median SPON2 expression, namely SPON2 low group (n=246) 
and SPON2 high group (n=246). As a previous study indicated 
that the PI3K/AKT/mTOR pathway could regulate the migra‑
tion and invasion of PCa (20,21), it was then explored whether 
SPON2 expression was associated with the PI3K/AKT/mTOR 
pathway. According to GSEA using TCGA PCa dataset, high 
expression of SPON2 was positively associated with the enrich‑
ment of the PI3K/AKT/mTOR signaling pathway (Fig. 3B).

Spondin 2 activates the PI3K/AKT/mTOR pathway in 
osteoblasts. To investigate the specific effect of spondin 2 
on osteogenic factor production in osteoblasts, MC3T3‑E1 
cells were treated with rSpondin 2. Different concentra‑
tions of rSpondin 2 were used according to a previous 
study (22), and in the present study it was observed that two 
concentrations of rSpondin2 (0.1 and 1.0 µg/ml) showed 
the most highly promoting effect on the transcription of 
Osterix and Runx2 as well as the phosphorylation of PI3K, 
AKT and mTOR. RT‑qPCR analysis showed that rSpondin 
2‑induced MC3T3‑E1 cells had higher transcriptional 
levels of Osterix and Runx2 compared with control cells 
in a concentration‑dependent manner (Fig. 4A and B). To 
further investigate the underlying mechanism, the activity 
of the PI3K/AKT/mTOR pathway was further explored. The 
protein levels of PI3K, p‑PI3K, AKT, p‑AKT, p‑mTOR and 
mTOR were measured in osteoblasts cultured with various 
concentrations of rSpondin 2. According to the results, the 
phosphorylation of PI3K, AKT and mTOR were significantly 
increased after treatment with rSpondin 2 in a concentra‑
tion‑dependent manner, compared with control cells. On the 
other hand, the total PI3K, AKT and mTOR levels remain 
unchanged (Fig. 4C).

Inhibition of integrin α5β1 suppresses the PI3K/AKT/mTOR 
pathway in osteoblasts. Spondin 2 is known to bind to integrin 
receptors (9). Integrins α5 and β1 are known to be expressed 
in osteoblasts on the bone surface (23). In order to determine 
whether spondin 2 activated the PI3K/AKT/mTOR pathway 
via integrin α5β1, an integrin α5β1 inhibitor (ATN‑161) was 
used to determine its effects on spondin 2‑mediated osteogenic 
factor production. According to RT‑qPCR analysis, ATN‑161 
significantly inhibited spondin 2‑induced mRNA expression 
of Osterix and Runx2 (Fig. 5A and B). Furthermore, western 

Figure 3. SPON2 is positively associated with the PI3K/AKT/mTOR 
pathway. (A) Boxplots showing the expression levels of SPON2 in the TCGA 
PCa dataset. (B) Gene Set Enrichment Analysis of the PI3K/AKT/mTOR 
signaling pathway in the SPON2 high group compared with the SPON2 low 
group in the TCGA PCa dataset. **P<0.01. FDR, false discovery rate; NES, 
normalized enrichment score; PCa, prostate cancer; SPON2, spondin 2.

Figure 4. Spondin 2 activates the PI3K/AKT/mTOR pathway. MC3T3‑E1 
cells were treated with 0.0, 0.1 or 1.0 µg/ml rSpondin 2. The mRNA levels 
of (A) Osterix and (B) Runx2 in MC3T3‑E1 cells were measured using 
reverse transcription‑quantitative PCR analysis. The results were normal‑
ized to Gapdh. (C) The expression levels of p‑PI3K, PI3K, p‑AKT, AKT, 
p‑mTOR and mTOR in MC3T3‑E1 cells were determined by western blot 
analysis. *P<0.05 and **P<0.01. rSpondin 2, recombinant spondin 2; Runx2; 
runt‑related transcription factor 2; p, phosphorylated.
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blot analysis indicated that ATN‑161 significantly inhibited 
spondin 2‑mediated PI3K, AKT and mTOR phosphorylation 
(Figs. 5C and S3).

Discussion

A previous study has shown that SPON2 is a new serum and 
histological diagnostic biomarker for PCa (11). Similarly, 
the present study found that spondin 2 facilitated osteogenic 
factor production induced by PCa cells, and SPON2 was 
upregulated in AR‑positive tumors of patients with PCa. 
Moreover, it was identified that PCa cell‑derived spondin 2 
promoted the osteogenic activity of osteoblasts by activating 
the PI3K/AKT/mTOR pathway.

The disruption of homeostasis between osteoblasts is 
involved in PCa‑induced osteogenesis (2,24). These processes 
are regulated by tumor cell‑derived cytokines, such as bone 
morphogenetic protein, platelet‑derived growth factor, 
insulin‑like growth factor and extracellular calcium (25‑28). 
As an extracellular matrix protein, increased levels of spondin 
2 in serum are correlated with high incidence of osteogenesis 
induced by prostate tumor cells (29). According to previous 
studies, spondin 2 is a critical regulator of cancer progres‑
sion; however, its underlying mechanism in osteoblast activity 
remains to be elucidated (11‑13). On the other hand, Runx2 
can promote the differentiation of mesenchymal stem cells 

towards osteoblasts, while Osterix plays an important role 
in osteoblast differentiation (30,31). On this basis, it was 
identified that spondin 2 derived from PCa cells significantly 
enhanced the expression of the osteogenic genes Runx2 and 
Osterix, indicating an increased activity of osteoblasts.

The PI3K/AKT/mTOR signaling pathway has been 
indicated to participate in cell proliferation, inflammation, 
immunity and tumorigenesis (32‑34). Inhibition of the 
PI3K/AKT/mTOR signaling pathway can suppress tumor 
growth and tumor‑induced osteogenesis (35,36). Moreover, 
the PI3K/AKT/mTOR pathway has been reported to be a 
potential target in castration resistant PCa (37,38). However, 
whether spondin 2 upregulates the PI3K/AKT/mTOR 
signaling during osteogenesis driven by PCa progression 
requires further investigation. In the present study, it was 
indicated that spondin 2 secreted by AR‑positive PCa cells 
could promote the differentiation of osteoblast precursors to 
mature osteoblasts (showed by the increased expression of 
Runx2 and Osterix) through the PI3K/AKT/mTOR signaling 
pathway. As a well‑known receptor of spondin 2, integrin 
α5β1 plays a significant role in bone formation (23), and 
the present study showed that spondin 2 receptor inhibitor 
ATN‑161 could inhibit spondin 2‑mediated PI3K, AKT and 
mTOR phosphorylation in osteoblast precursor MC3T3‑E1 
cells.

The present study explored the role of spondin 2 on osteo‑
genesis caused by PCa cells in vitro, while the association 
between spondin 2 and bone metastasis in animal models as 
well as patients with PCa requires further investigation.

In summary, the current study demonstrated that spondin 
2 derived from AR‑positive PCa cells could effectively 
enhance PCa‑induced osteogenesis through activation of the 
PI3K/AKT/mTOR signaling cascade (Fig. 6). Furthermore, to 
the best of our knowledge, the present study was the first to 
demonstrate that integrin α5β1 is involved in spondin 2‑regu‑
lated osteogenesis in PCa cells in vitro.

Figure 5. ATN‑161 inhibits the PI3K/AKT/mTOR pathway. MC3T3‑E1 cells 
were treated with 1.0 µg/ml rSpondin 2 and 10.0 µM ATN‑161. The mRNA 
levels of (A) Osterix and (B) Runx2 in MC3T3‑E1 cells were measured using 
reverse transcription‑quantitative PCR analysis. The results were normal‑
ized to Gapdh. (C) The expression levels of p‑PI3K, PI3K, p‑AKT, AKT, 
p‑mTOR and mTOR in MC3T3‑E1 cells were determined by western blot 
analysis. *P<0.05 and **P<0.01. rSpondin 2, recombinant spondin 2; Runx2; 
runt‑related transcription factor 2; p, phosphorylated.

Figure 6. Schematic diagram summarizing the mechanism of spondin 2 func‑
tion. Spondin 2 secreted from AR‑positive PCa cells increases Osterix and 
Runx2 synthesis in osteoblasts via the PI3K/AKT/mTOR signaling pathway. 
AR, androgen receptor; PCa, prostate cancer; p, phosphorylated.
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