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Abstract. Medulloblastoma (MB), grouped as either 
WNT‑activated, Sonic hedgehog (SHH)‑activated, or 
non-WNT/non-SHH group 3, accounts for almost 20% of all 
childhood brain cancers. In spite of current intensive treat‑
ments, not all patients are cured and survivors suffer from 
severe side‑effects. The present study therefore examined 
the effects of the poly‑ADP‑ribose polymerase (PARP) and 
WEE1‑like protein kinase (WEE1) inhibitors, BMN673 
and MK‑1775, respectively, alone or in combination on four 
MB cell lines. More specifically, the MB cell lines, DAOY, 
UW228‑3, MED8A and D425, were tested for their sensitivity 
to BMN673 and MK‑1775 alone or in combination, using cell 
viability, cell confluency and cytotoxicity assays. The effects 
on the cell cycle phases were also examined using FACS 
analysis. Monotherapy with BMN673 and MK‑1775 exerted 
dose‑dependent inhibitory effects on the viability of almost 
all MB cell lines. Notably, when BMN673 and MK‑1775 were 
used in combination, synergistic effects were noted in the SHH 
group cell lines (DAOY and UW228‑3), but not in the already 
WEE1‑sensitive group 3 (MED8A and D425) lines. Moreover, 
the combination treatment decreased the percentage of cells 
in the G1 phase and induced the novel distribution of both 
DAOY and UW228‑3 cells in the S and G2/M phases, with 
the UW228‑3 cells exhibiting a greater delay. To conclude, 
MK‑1775 was efficient in all and BMN673 in most cell lines, 
and their combined use exerted synergistic effects on the SHH, 
but not the group 3 cell lines. These data suggest that MK‑1775 
alone may be of interest for all MB cell lines, and that the 
combination of PARP/WEE1 inhibitors may provide possible 
therapeutic opportunities for the therapy of SHH MBs. Their 
use warrants further investigations in the future.

Introduction

Medulloblastoma (MB) is a highly malignant and invasive 
childhood brain tumor most predominantly located in the 
cerebellum (1‑4). Currently, the majority of patients with MB 
undergo surgical resection and receive multi‑agent chemo‑
therapy, while children ˃3 years of age are also treated with 
craniospinal radiation therapy (5,6). Although current treat‑
ment strategies have increased the average survival of rate 
of patients with MB up to 70%, the major disadvantages of 
such therapies include the development of drug resistance, 
metastasis, disease recurrence which is universally fatal, and 
long‑term toxicities (7‑9). There is therefore a need for the 
development of novel personalized targeted therapies focusing 
on molecular alterations and individual tumor molecular 
profiles.

According to the renewed 2021 World Health Organization 
(WHO) Classification of Tumor of the Central Nervous 
System, MB is classified into four genetically‑defined 
subgroups, including WNT‑activated (best prognosis), Sonic 
hedgehog (SHH)‑activated TP53 wild‑type, SHH‑activated 
TP53‑mutant, and non‑WNT/non‑SHH (group 3, worst prog‑
nosis; and group 4, intermediate outcomes) (10‑17).

The understanding of specific tumorigenic mutations, 
molecular drivers and deregulated signaling pathways in 
molecular subgroups accelerates the discovery of potential 
therapeutic targets. Potential targets are poly(ADP‑ribose) 
(PAR) polymerase (PARP)1 and PARP2, which are known 
as the key proteins coordinating the DNA damage response, 
specifically the damage detection and repair of both single‑ 
and double‑strand breaks (18‑21). In particular, PARP1 and 
PARP2 (PARP1/2) are involved in the synthesis of PAR chains, 
which in turn recruit DNA repair proteins. PARP inhibitors 
have therefore been actively used in the treatment of cancers 
harboring defects in homologous recombination, such as in 
tumors with BRCA1 and BRCA2 mutations, thereby leading 
to synthetic lethality (22,23). Among the PARP inhibitors, 
BMN673 (talazoparib) is the most potent selective PARP1/2 
inhibitor (24,25). BMN673 is currently approved by the US 
Food and Drug Administration (FDA) for the treatment of 
BRCA1 or BRCA2 mutated, negative HER2 locally advanced 
or metastatic breast cancer (26). In other clinical studies, an 
ongoing phase II trial is testing the effects of BMN673 in 
patients with recurrent high‑grade glioma (NCT04740190). 
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Although BMN673 has not extensively been tested in MB, 
previous studies have demonstrated that other PARP inhibi‑
tors, such as olaparib, rucaparib and veliparib are potential 
chemo‑ and radiosensitizing agents in MB cells and xenograft 
models (27‑29).

Another promising molecular target is the WEE1‑like 
protein kinase (WEE1), which is involved in the regulation 
of the S phase and G2/M checkpoint of the cell cycle (30‑32). 
In response to DNA damage, WEE1 mediates the inhibition 
of the phosphorylation of cyclin‑dependent kinase (CDK) 1 
and CDK2, resulting in cell cycle arrest and possible DNA 
repair  (33,34). Multiple studies have reported increased 
expression levels of WEE1 in various types of cancer, 
including pediatric high‑grade gliomas, glioblastoma, 
ovarian cancer, melanoma, breast cancer and MB (33,35‑38). 
The inhibition of WEE1 can impair the G2/M checkpoint, 
allowing cancer cells with DNA damage to divide, eventually 
leading to mitotic catastrophe (39). Currently, MK‑1775 is the 
first selective small‑molecule inhibitor of WEE1, which has 
exhibited promising antitumor efficacy, when combined with 
chemotherapeutics agents, against pancreatic, breast, colon 
and ovarian cancer (40‑43). In addition, it has been reported 
that MK‑1775 is highly effective in tumor cells harboring p53 
mutations (44,45). Specifically, in MB, previous research has 
demonstrated that MK‑1775 single treatment can inhibit MB 
tumor growth in vivo (46).

The crucial roles of PARP and WEE1 in the DNA damage 
response render them potential therapeutic targets against MB 
tumors. The present study focused on targeting proteins that 
are critical for DNA damage repair, potentially making this 
treatment strategy applicable to different molecular subgroups. 
More specifically, the present study examined the effects of 
the FDA‑approved PARP inhibitor, BMN673, and the not yet 
FDA‑approved WEE1 inhibitor, MK‑1775, as single agents 
and in combination on four MB cell lines DAOY, UW228‑3, 
MED8A and D425.

Materials and methods

Tumor cell lines and cell seeding. The MB cell lines DAOY, 
UW228‑3 (both group SHH) and D425 and MED8A (both 
group 3), were obtained from Professor Per Kogner, Karolinska 
Institutet and cultured in minimum essential medium (MEM), 
Dulbecco's modified Eagle's medium (DMEM):nutrient 
mixture F‑12 (DMEM/F‑12) and DMEM with GlutaMAX 
(both Group 3 cell lines), respectively, with the addition of 
10% fetal bovine serum (FBS) (all from Gibco; Thermo Fisher 
Scientific, Inc.), together with 1% L‑glutamine, 100 U/ml of 
penicillin as well as 100 µg/ml streptomycin (Thermo Fisher 
Scientific, Inc.). The DAOY, UW228‑3 and D425 cells are p53 
mutated and D425 and MED8A have a MYC amplification (47) 
(https://www.cellosaurus.org/CVCL_1275; https://www.
cellosaurus.org/CVCL_M137). For the viability and prolifera‑
tion/cytotoxicity assays, 2.5x103 cells/well were plated for the 
DAOY cells, 5x103 cells/well were plated for the UW228‑3 cells, 
and 104 cells/well were plated for the D425 and MED8A cells 
(group 3 were grown in suspension) in 90 and 200 µl medium 
in 96‑well plates, respectively. For western blot (WB) and FACS 
analyses, 5x105 cells/Ti25 flask in 5 ml medium were plated for 
both the DAOY and UW228‑3 MB cell lines.

Inhibitors. The PARP inhibitor, BMN673 (talazoparib), the 
WEE1 inhibitor, MK‑1775 (AZD‑1775, adavosertib), the phos‑
phoinositide 3‑kinase (PI3K) inhibitor, BYL719 (alpelisib), 
and the CDK4/6 inhibitor, PD‑0332991 (palbociclib), in 
DMSO stock solutions (Selleck Chemicals GmbH), were used 
in various dilutions in PBS [further details have been previ‑
ously described (47,48)].

WST‑1 viability assay. Following the addition of (0.1, 0.5, 1 
and 10 MK‑1775 and BMN673 and their combinations), for 24, 
48 and 72 h, the viability, i.e., the estimation of remaining live 
healthy cells in response to therapy of the cell population was 
estimated using WST‑1 viability assay (Roche Diagnostics 
GmbH) as previously described in more detail (47,48).

Cell confluency, cytotoxicity and apoptosis assays. The 
IncuCyte S3 Live Cell Analysis System was used to examine 
the cell confluency, as a measure of proliferation following 
treatment and cytotoxicity, as a measure of cell damage 
following treatment of the DAOY and UW228‑3 cells, both 
grown as monolayers (47,48). More specifically, at 24 h after 
seeding, the medium was changed to a new medium containing 
the Incucyte™ Cytotox Red Reagent (Essen Bioscience), that 
enters the damaged plasma membrane and binds to DNA 
in the nuclei, the treatments were then added and the plates 
were incubated at 37˚C in the machine for 72 h. Images were 
collected every 2 h to follow cell confluence/proliferation with 
IncuCyte S3 Live Cell Analysis System (Satorius). Cytotoxicity 
was quantified by counting the red nuclei. Apoptosis was also 
assayed in the DAOY and UW228‑3 cells using the IncuCyte 
S3 Live Analysis System by the addition of the IncuCyte 
Caspase‑3/7 Green Apoptosis reagent, that enters live cells, as 
previously described in further detail (47,48).

FACS analysis. For cell cycle analysis, the cells were collected 
following 48 h of treatment and fixed with 70% ethanol. A total 
of 5x105 cells were counted and stained with FxCycleR/RNAse 
solution (Invitrogen™, ThermoFisher Scientific, Inc.). All 
samples were analyzed with the FACS NovoCyte 3000, while 
the analysis of the data was conducted using FlowJo_v10.8.1 
software (BD Biosciences).

Statistical analysis. All the results were subjected to statistical 
analysis. To estimate the efficacy of the single or combina‑
tion treatments compared to the negative control, a multiple 
t‑test accompanied by the correction for multiple comparisons 
of the means using the Holm Sidak method were used as 
previously described (49). To investigate the efficacy of the 
drug combinations the Synergy FinderPlus computational 
tool (https://synergyfinderplus.org/#!/) with the highest single 
agent (HSA) was used. HSA values >10 indicated synergistic 
effects of the drugs, HSA values from ‑10 to 10 indicated addi‑
tive effects, and HSA values <‑10 indicated antagonism (50).

Results

Effects of single and combination drug treatment with WEE1 
and PARP inhibitors on MB cell lines measured using WST‑1 
assays. All MB cell lines (DAOY, UW228‑3, D425 and 
MED8A) exhibited a concentration‑dependent inhibition of 
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viability at 24‑72 h following treatment (determined using 
WST‑1 assays) with the WEE1 inhibitor, MK‑1775 (0.1‑10 µM), 
and likewise, with the exception of DAOY cells, with the PARP 
inhibitor, BMN673 (0.1‑10 µM).

MK‑1775. All MB cell lines exhibited a >50% significant 
decrease in viability in comparison to PBS control with 
the highest concentration (10 µΜ) of the WEE1 inhibitor, 
MK‑1775, at almost all time points following treatment (for all 
at least P<0.005) (Fig. 1A‑D). In addition, all MB cell lines, 
apart from the UW228‑3 cells, exhibited a >50% decrease in 
viability compared to the PBS control following treatment 
with 0.5 and 1 µΜ MK‑1775 at most time points (for all those 
at least P<0.05) (Fig. 1A‑D).

BMN673. Only the highest concentration (10 µΜ) of the 
PARP inhibitor, BMN673, led to a >50% decrease in viability 
in comparison to the PBS control at 72 h following treatment 
in all MB cell lines, apart from the DAOY cells (for all those 
at least P<0.001) (Fig. 1E‑H).

MK‑1775 and BMN673 in combination. All MB cell lines, 
apart from the UW228‑3 cells, exhibited a >50% decrease 
in viability compared to the PBS control at both 48 and 72 h 
following treatment with all drug combinations, while the 
UW228‑3 cells only exhibited a significant decrease with the 

highest combination concentrations at 72 h following treat‑
ment (for all at least P<0.05) (Fig. 1I‑L).

To summarize, all four MB cell lines exhibited concentra‑
tion‑dependent responses to both inhibitors with the exception of 
the DAOY cells to BMN673, and with MK‑1775 being more effi‑
cient than BMN673 at the drug concentrations used. Moreover, 
upon combining the inhibitors, the UW228‑3 cells were gener‑
ally more resistant as compared to the other three MB cell lines.

Synergistic effects of combined drug treatment with WEE1 
and PARP inhibitors on MB cell lines. Based on the cell 
viability data described above, the synergy between WEE1 and 
PARP inhibitors was examined using the Synergy FinderPlus 
program. To examine the synergy, the synergy scores for the 
four MB cell lines treated with a range of combinations of 
WEE1 and PARP inhibitors were calculated (Fig. 2). HSA 
values >10 indicated synergistic effects of the drugs, HSA 
values from ‑10 to 10 indicated additive effects, and HSA 
values <‑10 indicated antagonism (50).

The calculations obtained revealed that synergy was most 
clearly found when combining MK‑1775 and BMN673 in the 
DAOY and UW228‑3 cells, while the same drug combinations 
exerted mainly antagonistic effects in the D425 and MED8A 

Figure 1. Effects of WEE1 (MK‑1775) and PARP (BMN673) single and combination treatments on the viability of DAOY, UW228‑3 (SHH group), D425 and 
MED8A (group 3) medulloblastoma cell lines. The absorbance was measured 24, 48 and 72 h following the addition of (A‑D) MK‑1775, (E‑H) BMN673 or 
(I‑L) their combination. The graphs represent at least three experimental runs per cell line. MK, MK‑1775; BMN, BMN673.

https://www.spandidos-publications.com/10.3892/or.2023.8562
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cells (Fig. 2). Since synergy was optimal in the UW228‑3 
and DAOY cells, these two cell lines were selected for use in 
further experiments.

Other combinations. MK‑1775 was also combined with 
BYL719 and PD‑0332991, two other regulators of the cell cycle, 
in order to examine the joint effects of MK‑1775 with BYL719 
or PD‑0332991 on DAOY and UW228‑3 cells. However, at 
the concentrations used (5 and 10 µΜ of BYL719, and 5 and 
10 µΜ of PD‑0332991), no major enhancements were observed 
as compared to the effect of MK‑1775 alone, with possibly 
one exception of a slight enhancement using MK‑1775 and 
PD‑0332991 in combination on the UW228‑3 cells (data not 
shown). These data were therefore not pursued further herein.

Cell confluency and cytotoxicity following treatment of the 
DAOY and UW228‑3 cells with WEE1 and PARP inhibitors 
either alone or in combination. The effects of treatment 

with the MK‑1775 and BMN673 inhibitors either alone or in 
combination on the DAOY and UW228‑3 cells were further 
analyzed up to 72 h following treatment using cell confluency 
and cytotoxicity assays utilizing the IncuCyte S3 Live‑Cell 
Analysis System (Figs. 3 and 4).

Cell confluency
MK‑1775. For the DAOY cells, both the MK‑1775 concen‑

trations (0.5 and 1 µΜ) used induced an almost complete 
reduction in cell confluency as compared to the PBS control, 
while for the UW228‑3 cells, only a marginal reduction in cell 
confluency was noted (Fig. 3A and D).

BMN673. For the DAOY cells, both concentrations (0.5 and 
1 µΜ) of BMN673 used resulted in a reduced cell confluency 
compared to the PBS control, while for the UW228‑3 cells, no 
effect on cell confluency was observed (Fig. 3B and E).

MK‑1775 and BMN673. For the DAOY cells, all drug 
combinations resulted in an almost complete reduction of 
cell confluency compared to the PBS control, while for the 

Figure 2. Representation of (A‑D) 2D and (E‑H) 3D surface plots illustrating the optimal concentrations of MK‑1775 and BMN673 in medulloblastoma cell 
lines. The synergy score was calculated using the Synergy Finder plus program. HSA values >10 indicated synergistic effects of the drugs, HSA values from 
‑10 to 10 indicated additive effects, and HSA values <‑10 indicated antagonism. MK, MK‑1775; BMN, BMN673; HSA, highest single agent.

Figure 3. Effects of with WEE1 (MK‑1775) and PARP (BMN673) inhibitors alone and in combination on the confluency of DAOY and UW228‑3 medul‑
loblastoma cell lines. The cells were followed for up to 72 h after treatment. Single treatments are presented for (A and D) MK‑1775 and for (B and E) BMN673. 
(C and F) Combined treatments are presented. MK, MK‑1775; BMN, BMN673.
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UW228‑3 cells, the effects were concentration‑dependent and 
less pronounced (Fig. 3C and F).

To conclude, MK‑1775 alone considerably reduced the 
confluency of the DAOY cells and this was also the case, to a 
certain extent, for cell confluency upon treatment with BMN673; 
an enhanced was not detected for the DAOY cells following 
combination treatment. By contrast, while almost no effect on 
UW228‑3 cell confluency was observed upon treatment with the 
inhibitors alone, when used in combination, the inhibitors led to 
a concentration‑dependent inhibition of cell confluency.

Cytotoxicity
MK‑1775. Both the MK‑1775 concentrations (0.5 and 

1 µΜ) exerted marked cytotoxic effects on the DAOY cells, 
whereas no marked cytotoxic effects were observed on the 
UW228‑3 cells (Fig. 4A and D).

BMN673. Both the BMN673 concentrations (0.5 and 
1 µΜ) exerted some cytotoxic effects on the DAOY cells, 
whereas no cytotoxic effects were observed on the UW228‑3 
cells (Fig. 4B and E).

MK‑1775 and BMN673. The combined use of MK‑1775 with 
BMN673 did not exert any exerted enhanced cytotoxic effects 
on either the DAOY or UW228‑3 cells as compared to using 
the most efficient single inhibitor, MK‑1775 (Fig. 4C and F).

To investigate this further, and to determine whether part 
of the cytotoxic response was due to apoptosis, an apoptosis 
assay was also performed. However, no major effects on apop‑
tosis were observed with any of the single or combined drug 
administrations used above (Fig. S1).

To conclude, although treatment with MK‑1775, but also 
BMN673 alone exerted cytotoxic effects on the DAOY cells, 
their combined use did not exert any enhanced effects. In the 
UW228‑3 cells, none of the single or combined treatments 
exerted pronounced cytotoxic effects.

Effects of PARP and WEE1 inhibitors alone or in combina‑
tion on the cell cycle progression of MB cells. The effects on 
cell cycle progression were examined using a FACS NovoCyte 

3000 machine and FlowJo_v10.8.1 software. More specifi‑
cally, the effects of WEE1 and PARP inhibitors alone or in 
combination (MK‑1775 and BMN673) were examined on the 
SHH cell lines, DAOY and UW228‑3 (Figs. 5 and S2).

MK‑1775. Both single MK‑1775 concentrations (0.5 and 
1 µΜ) induced an increase in the proportion of cells in the S 
and G2 phases (compared to the PBS control), with a higher 
percentage of cells arrested in the G2 phase using the 1 µΜ 
concentration in both cell lines, although with a higher amount 
of UW228‑3 cells remaining in the G1 phase in comparison to 
the DAOY cells (Fig. 5).

BMN673. Both single BMN673 concentrations (0.5 and 
1 µΜ) induced an increase in the proportion of cells in the S 
phase and to a lower extent in the G2 phase (compared to the 
PBS control) in both cell lines, although with a higher number 
of UW228‑3 cells remaining in the G1 phase in comparison to 
the DAOY cells (Fig. 5).

MK‑1775 and BMN673. All MK‑1775 and BMN673 
combinations, irrespective of the concentrations used, led to a 
decrease in the percentage of cells in the G1 phase, with a clear 
shift of the cells from the S to the G2 and >G2 phases in both 
the DAOY and UW228‑3 (Fig. 5).

To conclude, the single MK‑1775 and BMN673 administra‑
tions increased the proportion of cells in the S and G2 phases in 
both cell lines, and their combination exerted additive effects 
on both cell lines; however, the shifts in cell cycle progression 
were generally delayed in the UW228‑3 cells when compared 
to the DAOY cells.

Discussion

In the present study, WEE1 and PARP inhibitors (MK‑1775 and 
BMN673, respectively) were evaluated alone or in combination 
in four MB cell lines, namely DAOY, UW228‑3 (both group 
SHH), and D425 and MED8A (both group 3). All MB cell lines 
exhibited, at the concentrations used, concentration‑dependent 
responses, with a decrease in viability upon single MK‑1775 

Figure 4. Cytotoxic effects of WEE1 (MK‑1775) and PARP (BMN673) inhibitors alone and in combination on DAOY and UW228‑3 medulloblastoma cell 
lines. The cytotoxic effects of the inhibitors on the DAOY and UW228‑3 cells were measured for up to 72 h after treatment. Single treatments are presented 
for (A and D) MK‑1775 and for (B and E) BMN673. (C and F) Combined treatments are presented. The graphs represent one experimental run per cell line. 
MK, MK‑1775; BMN, BMN673.

https://www.spandidos-publications.com/10.3892/or.2023.8562
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Figure 5. Cell cycle profiles and analysis of each cell cycle phase of DAOY and UW228‑3 MB cell lines following treatment with WEE1 (MK‑1775) and PARP 
(BMN673) inhibitors alone or in combination for 48 h. Representative cell cycle profiles of (A) DAOY and (B) UW228‑3 MB cell lines are shown on the upper 
panel and the percentages of cell distribution in the different cell cycle phases are presented on the bottom panel. The percentages represent three experimental 
runs per cell line. Ctl, control; BMN, BMN673; MK, MK‑1775, MB, medulloblastoma.
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treatment and with the exception of the DAOY cells, which 
to certain to a certain extent, also exhibited a response to 
BMN673 treatment. Furthermore, upon combining the two 
drugs, synergy was noted in the DAOY and UW228‑3 cells 
(both group SHH), but not in the group 3 cell lines; thus, only 
the former two cell lines were examined in further detail for 
the effects of single and combined inhibitor treatments on cell 
confluency, cytotoxicity and the cell cycle.

Presently, the authors have no explanation as to why 
synergy with regard to viability upon combination treatments 
with MK‑1775 and BMN673 was not obtained in group 3 MB 
cell lines. One could have argued that this could have been due 
to the fact that the two SHH cell lines, DAOY and UW228‑3, 
have p53 mutations; however, this was also the case for the 
D425 cells; thus, obviously, this is an issue that warrants 
further investigation in future studies.

Notably, at the concentrations used, MK‑1775 alone was 
superior to BMN673 upon single treatments as regards its 
effects on viability in all cell lines. A similar outcome was also 
observed in cell confluency and cytotoxicity, where the DAOY 
cells were more sensitive than the UW228‑3 cells, which in 
turn exhibited marginal effects with regard to both cell conflu‑
ency and cytotoxicity. The data obtained herein for BMN673 
are thereby in line with previous data on BMN673 in other 
childhood cancers; a previous study demonstrated limited 
clinical activity and suggested that single treatment with 
BMN673 possibly would be more efficient in patients whose 
tumors had defects in homologous recombination repair (51).

When MK‑1775 and BMN673 were used in combination, 
synergy was disclosed, particularly as mentioned above, in 
viability, in which a reduction was observed in both the DAOY 
and UW228‑3 cells, while the synergistic effects on cell 
confluency mainly applied to the UW228‑3 cells, where the 
single drugs had limited effects. On the other hand, a syner‑
gistic effect on cytotoxicity was not detected in any cell line, 
although the DAOY cells were generally more sensitive than 
the UW228‑3 cells, corresponding to similar findings from 
previous research by the authors using other inhibitors (47).

The concentration‑dependent effects which were observed 
on the MB cell lines with single MK‑1775 treatments were 
expected, since this has been previously demonstrated with 
corresponding inhibitors on MB and other tumor cell lines, 
such as head and neck cancer (46,52‑55).

Previous analysis with other PARP inhibitors, such as 
olaparib, rucaparib and veliparib has shown that they are 
potential chemo‑ and radiosensitizing agents in MBs, even 
though there are, to the best of our knowledge, no other publi‑
cations available using BMN673 on MB (27‑29). Furthermore, 
to the best of our knowledge, there are no other studies avail‑
able examining the MK‑1775 and BMN673 combinations in 
MB cell lines. Nevertheless, it is known that WEE1 inhibition 
is efficient in cell lines exhibiting p53 mutations, although the 
response is not always only related to a p53 mutation alone (56).

In addition, in the present study, as mentioned above in the 
two SHH MB cell lines, the effects on cell cycle progression 
were examined, since both MK‑1775 and BMN673 induce 
G2/M cell cycle arrest (30‑32,57). Following single MK‑1775 
and BMN673 treatments, there was a decrease in the propor‑
tion of cells in the G1 phase in both the DAOY and UW228‑3 
cells, and an increase in the proportion of cells shifting 

towards the S and G2/M phase, which is in accordance with 
recent study, particularly for MK‑1775, since it exerts cytotoxic 
effects in both the S and G2/M phase (56).

Combined treatment with MK‑1775 and BMN673 exerted 
synergistic effects on both cell lines and further decreased the 
proportion of cells in the G1 and S phases, and increased the 
number of cells in the G2/M phase. Of note, combined treatment 
in both cell lines resulted in a clear increase in the proportion of 
cells in the >G2 phase; this is not surprising, as previous studies 
on MK‑1775 have suggested that WEE1 inhibition causes an 
impairment in cytokinesis, leading to tetraploid cells (55). This 
needs to be examined further in order to validate the obtained 
results. When comparing DAOY and UW228‑3 with regard to 
shifting towards the G2/M phase, the responses of the UW228‑3 
cells were generally more delayed as compared to those of the 
DAOY cells. The reason for this currently remains unknown, 
apart from the fact that the UW228‑3 cells are generally more 
resistant than the DAOY cells (47,48).

Notably, since it has been previously demonstrated that 
targeted therapy may cause problems in G1 control and can 
lead to cancer cells becoming dependent on the G2 control to 
repair DNA damage (58), targeting the G2 checkpoint could 
be proposed as a possible additional anticancer strategy. Based 
on the aforementioned hypothesis, the present study combined 
the WEE1 inhibitor, MK‑1775, with the FDA‑approved PI3K 
and CDK4/6 inhibitors, BYL719 and PD‑0332991; however, 
at the concentrations used, only slight synergistic effects were 
observed with MK‑1775 and PD‑0332991 on the UW228‑3 cells 
(data not shown); thus, this was not pursued further herein.

There were some limitations to the present study, since 
only a small number of inhibitors and cell lines were used. 
Nevertheless, of note, the obtained data demonstrate that 
drug‑drug interactions using WEE1 and PARP inhibitors are 
complex and can result in either synergistic or antagonistic 
interactions, depending on the MB subgroup profile and the 
mutation profile of the different cell lines. While broader 
concentration ranges and modified incubated periods may 
shed further light on the drug interactions with respect to their 
antitumor efficacy, the concentrations used herein adhere to 
commonly used standard conditions, and therefore allow for 
more direct comparisons (47,55).

Further and more detailed studies are warranted in order to 
disclose the possible mechanisms underlying the tested drug 
combinations exerting synergistic or antagonistic effects and 
to provide a pre‑clinical rationale of how to apply the corre‑
sponding combinations clinically. Nevertheless, combining the 
WEE1 inhibitor, MK‑1775, and the PARP inhibitor, BMN673, 
in two SHH MB cell lines, exerted synergistic effects and 
allowed for the use of lower inhibitor concentrations compared 
to those of single treatments, and this could possibly reduce 
some side‑effects. Moreover, targeting MB with two different 
mechanisms may decrease the risk of resistance.

In conclusion, the present study suggests that treatment 
with WEE1 alone can have effects on SHH and group 3 MB, 
and combining WEE1 and PARP inhibitors may be of poten‑
tial interest for the treatment of the SHH MB group.
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