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Abstract. Lung adenocarcinoma (LUAD) poses a significant 
global health burden owing to its high incidence rate and 
unfavorable prognosis, driven by frequent recurrence and 
drug resistance. Understanding the biological mechanisms 
underlying LUAD is imperative to developing advanced ther‑
apeutic strategies. Recent research has highlighted the role of 
dysregulated microRNAs (miRNAs) in LUAD progression 
through diverse signaling pathways, including the Wnt and 
AKT pathways. Of particular interest is the novel patholog‑
ical mechanism involving the interaction between competing 
endogenous RNAs (ceRNAs) and miRNAs. This review 
critically analyzed the impact of aberrant miRNA expres‑
sion on LUAD development, shedding light on the associated 
signaling pathways. It also highlighted the emerging signifi‑
cance of ceRNA‑miRNA interactions in LUAD pathogenesis. 
Elucidating the intricate regulatory networks involving 
miRNAs and ceRNAs presents a promising avenue for the 
development of potential therapeutic interventions and diag‑
nostic biomarkers in LUAD. Further research in this area 
is essential to advance precision medicine approaches and 
improve patient outcomes.
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1. Introduction

Lung cancer has one of the highest cancer incidence rates 
globally (1). It is the leading cause of cancer‑related deaths, 
with a five‑year survival rate of only 15% (2). Among the 
numerous pathological tissue types, adenocarcinoma is the 
most prevalent (3). The prognosis of lung adenocarcinoma 
(LUAD) is often poor due to tumor heterogeneity, delayed 
diagnosis and drug resistance  (4). Despite the emergence 
of new therapies, including immunotherapy and targeted 
therapy, LUAD remains a global public health concern (5). 
Moreover, fluctuations in oncogene expression patterns and 
a limited understanding of LUAD pathogenesis have caused 
bottlenecks in the development of effective treatments for 
LUAD (6). Therefore, genomic medicine has increasingly 
gained prominence as an essential topic to address the gaps in 
tumor pathogenesis research.

~2% of the human genome encodes proteins  (7). The 
remaining 98% of the non‑coding portion has received 
considerable scientific attention over the past few decades (8). 
Previous studies have demonstrated that non‑coding RNA 
(ncRNA) is involved in various cellular and physiological 
processes (9). They have been found to play a role in human 
health and pathological conditions such as LUAD  (10). 
MicroRNAs (miRNAs) are endogenous ncRNAs that play 
crucial roles in the post‑transcriptional regulation of genes. 
Accumulating evidence confirms that miRNAs are involved 
in the regulation of LUAD via specific pathways. The expres‑
sion of these miRNAs indicates the emergence of an active 
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signaling marker (11). The present review analyzed the role of 
miRNAs in LUAD development and highlighted the potential 
pathways involved.

General characteristics of miRNAs and mode of action. 
miRNAs are a class of non‑coding single‑stranded RNA 
molecules with lengths of ~22‑24 nucleotides. They are widely 
present in animals, plants and viruses  (12). Pri‑miRNA is 
produced by RNA polymerase II via a clear miRNA‑processing 
mechanism (13). Subsequently, pri‑miRNA is transformed into 
pre‑miRNA through the processing of RNase III, Drosha and 
DGCR8 (14). DGCR8 identifies double‑stranded structures 
and recruits substrates (15). Drosha is responsible for cleaving 
pri‑miRNAs. This process occurrs as the first shear in the 
nucleus. The newly generated pre‑miRNA is transferred to the 
cytoplasm through RANGTP/exportin‑5 (16).

The ribonuclease Dicer then combines with the TRBP 
protein to synthesize a mature double‑stranded miRNA 
from pre‑miRNA (17). In the process of assembling miRNA 
particles, the RNA helicase separates the two strands of 
duplex miRNA (18). The 5' end of the single strand forms an 
active double strand with its partner, which enters a complex 
containing miRNA and ribonucleoprotein particles (19). The 
other strand breaks down (20). After a series of reactions, 
single‑stranded miRNAs combine with Argonaute  (2) in 
RNA‑induced silencing complexes and then bind to the 3' 
untranslated region of the target mRNA, leading to translation 
suppression or de‑adenylation (Fig. 1) (21). In recent years, 
numerous studies have confirmed that miRNAs are associated 
with numerous diseases, such as diabetic kidney disease (22) 
and neurodegenerative disorders (23). In addition, miRNAs are 
known to participate in various malignant biological behaviors 
of tumors, such as proliferation and epithelial‑mesenchymal 
transition (EMT) (24,25) (Table I).

Determination of miRNAs in LUAD. RNA microarrays and 
sequencing have been widely used to screen differentially 
expressed miRNAs in LUAD. The results were validated 
using reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR)  (102). Bioinformatics was employed 
to identify downstream target genes and enriched path‑
ways (103). Petkova et al  (104) used 12 pairs of tissues to 
screen 107 significantly dysregulated miRNAs through 
microarrays and performed RT‑qPCR validation on the 
obtained results using 50 pairs of samples. A total of eight 
significantly differentially expressed miRNAs were success‑
fully validated. Gene Ontology and Kyoto Encyclopedia of 
Genes and Genomes analyses revealed enrichment in the cell 
cycle, gene expression and EGFR pathways. The present study 
highlighted the potential of exploring differential miRNA 
expression profiles to understand their impact on tumor diag‑
nosis and prognosis (104). Beyond human 365, it can also be 
detected in plasma. Jin et al (105) performed next‑generation 
sequencing on samples from 16 patients with LUAD and 12 
healthy individuals. Subsequently, a validation set including 
10 LUAD patients and 30 healthy individuals was used to 
confirm significant differential expression of four miRNAs, 
including miR‑181‑5p. These miRNAs were further evaluated 
for diagnostic accuracy in an additional 60 patients initially 
diagnosed with non‑small cell lung cancer, resulting in an area 

under curve (AUC) value of 0.936. These results revealed that 
these miRNAs may be promising biomarkers for diagnosing 
LUAD (105).

2. Role of miRNA in LUAD

Various studies have shown that miRNAs play an important 
role in regulating tumor biological behavior and influencing 
the tumor microenvironment (106,107). Numerous miRNAs 
have been recognized as tumor markers and therapeutic targets 
that play prominent roles in tumor prevention, diagnosis and 
treatment (108). Next, the roles of miRNAs in LUAD were 
investigated.

miRNAs as biomarkers in LUAD. Over the past 20 years, 
studies have confirmed that miRNAs can serve as biomarkers of 
malignant tumors, including LUAD (109,110). Tong et al (111) 
found that miRNA‑365 is significantly downregulated in 
LUAD, and its expression is associated with tumor invasion 
and migration as well as patient survival. Meanwhile, miR‑365 
upregulates ETS1 expression and inhibits EMT by inactivating 
the AKT/mTOR pathway (111). Kim et al (112) also reported 
that high miRNA‑130b expression is significantly associated 
with unfavorable clinicopathological parameters and poor 
survival outcomes in LUAD. Another study revealed a signifi‑
cant decrease in miR‑339‑5p expression in LUAD tissues 
and plasma, whereas miR‑21 expression was significantly 
elevated. Receiver operating curve analysis demonstrated that 
they could be distinguished from normal control individuals 
through the AUC. This result confirmed the role of miRNAs 
in the early screening of LUAD (113). These miRNAs may 
serve as targeted tools for the diagnosis and evaluation of 
LUAD prognosis. Several studies have demonstrated that 
miRNAs are involved in the biological processes of LUAD 
in addition to acting as biomarkers. Subsequently, a series of 
specific miRNA functions were presented to demonstrate their 
significant roles in LUAD.

Role of miRNAs in the malignant biological behavior of 
LUAD: Cell proliferation and apoptosis. Cell proliferation 
and apoptosis are common in tumors. Together, they consti‑
tute the ‘minimum platform’ for the further development 
of tumors (114). To date, research on miRNAs in the field 
of tumor cell proliferation and apoptosis has been the most 
extensive. MiR‑144‑5p is considered a tumor suppressor 
gene in ovarian and lung cancers. It is involved in almost 
all stages of tumor development  (115,116). Luo  et al  (28) 
found a negative regulatory relationship between miR‑144‑5p 
and CDCA3; miR‑144‑5p inhibited cell proliferation and 
promoted apoptosis through the interaction between CDCA3 
and p53 signaling pathways. This result indicated that the 
downregulation of miR‑144‑5p had an antitumor effect by 
affecting the activation of p53.

Another study confirmed that miR‑195‑5p is expressed 
at low levels in LUAD and can negatively upregulate its 
target gene, TrxR2. MiR‑195‑5p inhibits cell proliferation by 
arresting the cell cycle phase (39). A previous study revealed 
that miR‑3941 was significantly downregulated in LUAD 
tissues and cells, and miR‑3941 bound to IGBP1, thereby 
inhibiting its transcription. Overexpression of miR‑3941 not 
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only inhibited the cell cycle but also induced the production of 
caspase‑3 (44). Previous studies also demonstrated that other 
miRNAs, such as miR‑383‑5p, miR‑335‑3p, and miR‑216b‑3p, 
were all downregulated in LUAD, inhibited cell proliferation, 
and promoted apoptosis (43,45,54).

Correspondingly, various tumor promoters, such as 
miR‑516a‑3p, have been reported to promote cancer cell prolif‑
eration and inhibit apoptosis by regulating PTPRD expression. 
Researchers also found a significant relationship between 
the expression of miR‑516a‑3p and the clinical staging of 
LUAD (61). Thus, these molecules are potential targets for the 
diagnosis and treatment of LUAD.

Correlation of miRNA with LUAD invasion and metastasis. 
As a malignant tumor, LUAD can grow rapidly in situ and 
spread to distal organs via blood circulation and lymphatic 
tissue (117). Invasion and metastasis are important factors in 
the sustained progression of LUAD, and their mutual influence 
leads to lower survival rates (118). Strong evidence suggests 
that miRNAs participate in tumor invasion and metastasis by 
regulating the expression of their target genes. Mo et al (29) 
validated the differential expression of miR‑145 in LUAD 
tissues and found that the upregulation of miR‑145 inhibited 
the invasion and metastasis of SPC‑A1 and A549 cell lines. 
They also confirmed that miR‑145 mediated this process 
by influencing the translation of N‑cadherin, a known cell 

adhesion molecule. At the clinical level, the findings revealed a 
strong correlation between low miR‑145 expression and a high 
metastasis rate (29). Furthermore, a previous study demon‑
strated that miR‑937‑3p promotes the angiogenesis, invasion 
and metastasis of LUAD cells. MiR‑937‑3p has been reported 
to simultaneously regulate E‑cadherin, vimentin, Slug and 
N‑catenin, all of which are considered classic biomarkers of 
angiogenesis. Moreover, additional evidence was provided that 
the upstream oncogenic factor (MYC) of miR‑937‑3p binds 
to and upregulates its promoter region (37). Wu et al  (48) 
demonstrated that miR‑196b is upregulated in LUAD and 
is significantly correlated with an adverse prognosis. The 
knockdown of miR‑196b delayed the invasion and metastasis 
of LUAD cells (48).

EMT is a cellular process in which cells lose their epithe‑
lial and interstitial properties. During tumor evolution, EMT 
is closely related to tumor occurrence, metastasis and treat‑
ment resistance (119). Long et al (26) showed that miR‑214 is 
overexpressed in LUAD and promotes metastasis and EMT by 
regulating Sufu. During this process, epithelial and interstitial 
marker genes showed significant changes in opposite direc‑
tions. Simultaneously, knockdown of miR‑214 was shown to 
suppress EMT activity (26).

Other miRNAs, such as miR‑485, miR‑138‑5p and 
miR‑1827, regulate EMT in LUAD cells and affect LUAD 
progression. These miRNAs are associated with tumor 

Figure 1. The production process of miRNA and its role in mRNA expression.
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Table I. Dysregulated miRNAs in lung adenocarcinoma.

miRNA	 Expression	 Target	 Role in LUAD	 (Refs.)

miR‑214	 Upregulated	 Sufu	 EMT, metastasis	 (26)
miR‑106a	 Upregulated	 TP53INP1	 Autophagy, EMT, metastasis	 (27)
miR‑144‑5p	 Downregulated	 CDCA3	 Cell proliferation, apoptosis	 (28)
miR‑145	 Downregulated	 N‑cadherin	 Invasion, migration	 (29)
	 Downregulated	 OCT4	 Cell proliferation	 (30)
miR‑32‑5p	 Downregulated	 SMAD3	 Invasion, migration	 (31)
miR‑148a	 Downregulated	 E2F3	 Cell proliferation	 (32)
miR‑9‑5p	 Upregulated	 STARD13	 Cell proliferation, migration	 (33)
	 Upregulated	 ID4	 Cell proliferation, invasion, migration	 (34)
miR‑29a	 Downregulated	 CEACAM6	 Cell proliferation, migration, invasion	 (35)
miR‑192	 Upregulated	 Bcl‑2	 Chemo‑resistance	 (36)
miR‑937‑3p	 Upregulated	 SOX11	 Angiogenesis, invasion, metastasis	 (37)
miR‑195‑5p	 Downregulated	 PTBP1	 Cell proliferation, migration	 (38)
	 Downregulated	 TrxR2	 Cell proliferation, invasion, migration,	 (39)
			   apoptosis
	 Downregulated	 HOXA10	 Radiosensitivity	 (40)
miR‑202‑3p	 Downregulated	 RRM2	 Cell proliferation, metastasis	 (41)
miR‑30e‑5p	 Upregulated	 PTPN13	 Cell proliferation	 (42)
miR‑383‑5p	 Downregulated	 CIP2A	 Cell proliferation, apoptosis	 (43)
miR‑3941	 Downregulated	 IGBP1	 Cell proliferation, apoptosis	 (44)
miR‑335‑3p	 Downregulated	 COPB2	 Cell proliferation, apoptosis, migration	 (45)
miR‑204	 Downregulated	 SOX4	 Metastasis	 (46)
miR‑195	 Downregulated	 Apelin	 Cell proliferation, invasion	 (47)
miR‑196b	 Upregulated	 AQP4	 Invasion, migration	 (48)
miR‑3666	 Downregulated	 BPTF	 Cell proliferation, invasion, migration	 (49)
miR‑485	 Downregulated	 Flot2	 EMT, metastasis	 (50)
miR‑134	 Downregulated	 FOXM1	 Multidrug resistance	 (51)
miR‑873	 Upregulated	 SRCIN1	 Cell proliferation, migration	 (52)
miR‑29c	 Downregulated	 VEGFA	 Cell proliferation, invasion, migration,	 (53)
			   angiogenesis
miR‑216b‑3p	 Downregulated	 PBK, TOPK	 Cell proliferation, apoptosis	 (54)
miR‑138‑5p	 Downregulated	 ZEB2	 Cell proliferation, metastasis, EMT	 (55)
miR‑590	 Upregulated	 OLFM4	 Invasion, migration	 (56)
miR‑182	 Upregulated	 PDCD4	 Cell proliferation, invasion, migration	 (57)
miR‑576‑3p	 Downregulated	 SGK1	 Invasion, migration	 (58)
miR‑520c‑3p	 Downregulated	 AKT1, AKT2	 Cell proliferation, invasion, migration	 (59)
miR‑1827	 Downregulated	 MYC, FAM83F	 Cell proliferation, metastasis, EMT,	 (60)
			   invasion, apoptosis
miR‑516a‑3p	 Upregulated	 PTPRD	 Cell proliferation, apoptosis, migration,	 (61)
			   invasion
miR‑30a‑5p	 Downregulated	 VCAN	 Cell proliferation, metastasis, EMT,	 (62)
			   invasion
	 Downregulated	 CCNE2	 Cell proliferation, invasion, migration	 (63)
miR‑130‑5p	 Downregulated	 EZH2	 Invasion, migration	 (64)
miR‑1205	 Downregulated	 APC2	 Cell proliferation	 (65)
miR‑144‑3p	 Downregulated	 IRS1	 Invasion, metastasis	 (66)
miR‑200b‑3p	 Upregulated	 ABCA1	 Cell proliferation, metastasis	 (67)
miR‑550a‑5p	 Upregulated	 LIMD1	 Cell proliferation	 (68)
miR‑297	 Upregulated	 GPC5	 Cell proliferation, invasion, migration	 (69)
miR‑197‑3p	 Upregulated	 CYLD	 Cell proliferation, apoptosis	 (70)
miR‑505‑5p	 Upregulated	 TP53AIP1	 Cell proliferation, apoptosis	 (71)
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invasion and metastasis and are related to an unfavorable 
prognosis and malignancy (50,55,60). However, the role of 
miRNAs in monitoring prognosis and delaying the progres‑
sion of LUAD requires further exploration.

miRNA‑regulated drug resistance and radiation sensitivity in 
LUAD. Drug resistance and reduced sensitivity to radiotherapy 
can lead to treatment failure and tumor recurrence (120,121). 
miRNAs are considered to induce the corresponding mecha‑
nisms in LUAD to improve drug resistance or radiation 
sensitivity. Cao et al (36) found that miR‑192 was significantly 
upregulated in A549 cells and that LUAD mice carrying 
miR192 inhibitors were more sensitive to cisplatin and 

gemcitabine treatment. Moreover, in the process of improving 
chemotherapy resistance, Bcl‑2 is upregulated as a key regula‑
tory factor following miR‑192 knockdown (36). Thus, miR‑192 
may be a potential target for LUAD chemotherapy. Another 
miRNA, miRNA‑134, has been shown to be associated with 
multiple‑drug resistance in LUAD. MiR‑134 has been reported 
to be significantly downregulated in cisplatin‑resistant LUAD 
cells. Further studies have shown that miR‑134 overexpres‑
sion enhances the sensitivity of LUAD cells to vincristine 
and 5‑fluorouracil  (51). Yuan et al  (40) confirmed that the 
upregulation of miR‑195‑5p promotes the expression of Bax 
and reduces the expression of cyclin D1 and Bcl‑2 in A549 and 
PC9 cells exposed to ionizing radiation. This result indicated 

Table I. Continued.

miRNA	 Expression	 Target	 Role in LUAD	 (Refs.)

miR‑938	 Upregulated	 RBM5	 Cell proliferation	 (72)
miR‑885‑3p	 Downregulated	 Aurora A	 Chemo‑resistance	 (73)
miR‑139‑5p	 Downregulated	 CCNB1	 Cell proliferation, invasion, migration	 (74)
	 Downregulated	 MAD2L1	 Cell proliferation, invasion, migration	 (75)
miR‑660	 Downregulated	 SATB2	 Cisplatin resistance	 (76)
miR‑147b	 Upregulated	 MFAP4	 Cell proliferation, invasion, migration	 (77)
miR‑140‑3p	 Downregulated	 TYMS	 Cell proliferation, invasion, migration,	 (78)
			   angiogenesis
miR‑30a‑3p	 Downregulated	 CNPY2	 Cell proliferation, migration	 (79)
miR‑30b‑3p	 Downregulated	 COX6B1	 Cell proliferation, invasion	 (80)
miR‑3648	 Upregulated	 SOCS2	 Cell proliferation, invasion, migration	 (81)
miR‑96‑5p	 Upregulated	 ARHGAP6	 Cell proliferation, invasion, migration	 (82)
	 Upregulated	 FHL1	 Cell proliferation, invasion, migration	 (83)
miR‑218‑5p	 Downregulated	 ERO1A	 Cell proliferation, invasion, migration	 (84)
miR‑1‑3p	 Downregulated	 CELSR3	 Cell proliferation, invasion, migration	 (85)
	 Downregulated	 PRC1	 Cell proliferation, invasion	 (86)
miR‑944	 Downregulated	 STAT1	 Cell proliferation	 (87)
miR‑186‑5p	 Upregulated	 PTEN	 Cell proliferation, invasion, migration	 (88)
miR‑196b‑5p	 Upregulated	 RSPO2	 Cell proliferation, invasion, migration	 (89)
miR‑22‑3p	 Downregulated	 TP53	 Cell proliferation, invasion, migration,	 (90)
			   apoptosis
miR‑451	 Downregulated	 MIF	 Cell proliferation, migration	 (91)
miR‑21‑5p	 Upregulated	 WWC2	 Cell proliferation, invasion, migration	 (92)
miR‑486‑5p	 Downregulated	 SAPCD2	 Cell proliferation, invasion, migration,	 (93)
			   apoptosis
miR‑93‑5p	 Upregulated	 PTEN, RB1	 Cell proliferation, invasion, migration,	 (94)
			   apoptosis
miR‑326	 Downregulated	 PD‑L1, B7‑H3	 Immune escape, metastasis	 (95)
miR‑3677‑3p	 Upregulated	 KLF12	 Cell proliferation, invasion, migration	 (96)
miR‑145	 Downregulated	 OCT4	 EMT, metastasis	 (97)
miR‑593‑5p	 Downregulated	 ICAM‑1	 Cell proliferation, migration	 (98)
miR‑650	 Upregulated	 ING4	 Chemo‑resistance	 (99)
miR‑140‑5p	 Upregulated	 ZNF800	 Cell proliferation, invasion, migration,	 (100)
			   apoptosis
miR‑335‑5p	 Downregulated	 CCNB2	 Cell proliferation, metastasis	 (101)

miR, microRNA.
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that miR‑195‑5p enhanced the radiosensitivity of LUAD 
cells by promoting apoptosis  (40). In summary, different 
miRNAs participate in LUAD progression by influencing the 
downstream target genes. They play an important role in the 
different phenotypes of LUAD.

3. miRNA‑mediated targeting of specific signaling 
pathways in LUAD

miRNAs play an undeniable role in LUAD, yet, the specific 
molecular mechanism remains controversial. Generally, these 
molecules regulate tumor development by targeting down‑
stream genes in multiple signaling pathways (122) (Table II).

AKT signaling pathway. Akt, also known as protein kinase B, is 
a key medium for GF‑induced cell survival (164). Upregulation 
of Akt activity has been observed in numerous cancers. The 
interaction between tumor suppressors and tumor‑promoting 
factors in the Akt pathway leads to proliferation, differentiation 
and inhibition of tumor cell apoptosis (165). The Akt pathway 
mediates by transporting signals from upstream regulatory 
proteins (such as PTEN and PI3K) to downstream effector 
proteins (MDM2 and FOXO). Subsequently, these effectors 
intersect with numerous other compensatory signaling path‑
ways (166). Furthermore, miRNAs impact tumor progression 
by interfering with the expression of related genes in the Akt 
pathway (167). The roles of miRNAs in LUAD progression via 
the Akt pathway were summarized.

Downregulation of miR‑382‑3p has been shown to 
contribute to LUAD carcinogenesis. Fang et al (128) found 
that miR‑382‑3p inhibition promotes proliferation and 
inhibits apoptosis in LUAD cells by mediating SAE1, which 
is considered a key member of the SUMO activation complex. 
The aforementioned study further verified that upregula‑
tion of SAE1 increases SUMO1 and pAkt protein levels. 
In summary, low miR‑382‑3p expression promotes LUAD 
progression by promoting SUMO protein modification and 
Akt phosphorylation.

MiR‑200 is considered to promote cancer cell growth via 
the PI3K/Akt pathway, with FOG2 as its downstream target. 
However, the FOG2 knockdown had almost no effect on Akt 
activation. Guo et al (140) confirmed that the activation of Akt 
by miR‑200 was accompanied by the inactivation of p70S6K 
and significant upregulation of IRS‑1, which is considered a 
substrate of p70S6K. More importantly, the knockdown of 
IRS‑1 inhibited Akt phosphorylation, indicating that miR‑200 
activates Akt via IRS‑1.

Similarly, miR‑381 and miR‑409‑3p inhibited proliferation 
and reduced invasion and migration by regulating the Akt 
signaling pathway (147,149). Notably, He et al (125) found that 
miR‑3613‑5p acts as an intermediate hub, promoting LUAD 
progression. The upregulation of miR‑3613‑5p was mediated 
by RELA as a subunit of nuclear factor‑kB (NF‑kB) through 
JUN. Subsequently, miR‑3613‑5p stimulates the Akt/MAPK 
pathway via NR5A2. In addition, the phosphorylation of Akt1 
and MAPK3/1 jointly activates RELA. From this, it could be 
observed that a RELA/JUN/miR‑3613‑5p/NR5A2/Akt/MAPK 
forward feedback loop had been established in the progress 
of LUAD. Therefore, the pathway mediated by a miRNA 
in LUAD is not unique and includes multiple overlapping 

pathways and upstream and downstream pathways forming 
feedback loops.

STAT3 signaling pathway. Signal transducer and activator 
of transcription (STAT) proteins are a family of cytoplasmic 
transcription factors that include STAT5a, STAT4, and 
STAT3 that regulate numerous signaling pathways. STAT3 
is associated with diverse biological processes, including cell 
proliferation, apoptosis and differentiation (168). Lv et al (143) 
found that miR‑320a not only regulates STAT3 but also affects 
its related signals, such as Bcl‑2, Bax and Caspase8 to suppress 
the proliferation and metastasis of LUAD in vivo and in vitro. 
It is well known that certain cytokines, such as interleukin‑6 
(IL‑6), bind to corresponding receptors on the cell membrane 
to activate the JAK2‑STAT3 signaling pathway (169). MiR‑204 
and miR‑425 were based on this mechanism to suppress the 
malignant biological behavior of LUAD (141,151). In addi‑
tion, Xu et al (162) confirmed from another perspective that 
miR‑30e‑5p targets the upregulation of USP22 and mediates 
the Sirt1/JAK2/STAT3 pathway, which also inhibits LUAD.

Wnt signaling pathway. The Wnt pathway is a critical signaling 
cascade in cancer. Abnormal Wnt signaling is observed in 
numerous cancers, including LUAD. The Wnt signaling 
pathway mainly affects the stability, migration and immune 
escape of cancer stem cells  (170). Additionally, signaling 
pathways, such as the Wnt and Notch pathways, typically 
form a network within cells to jointly regulate tumor progres‑
sion (171). MiR‑1275 has been reported to be significantly 
upregulated in LUAD. This trend increased the expression of 
β‑catenin in the Wnt pathway and NICD in the Notch pathway. 
This miRNA also directly targets and inhibits negative regu‑
latory factors, such as GSK3, RUNX3 and NUMB, in two 
signaling pathways. This enhances the stem cell phenotype of 
LUAD cells (123).

Coincidentally, miR‑33b, miR‑149,and miR‑490‑3p inhibit 
the malignant progression of LUAD through the Wnt/β‑catenin 
signaling pathway. Their main mechanism of action is to 
reduce catenin expression to inhibit tumor cell proliferation, 
metastasis and EMT (132,137,153).

MTOR signaling pathway. The mammalian target of 
rapamycin (mTOR), a serine/threonine kinase, combines 
hormones, cytokines, nutrients and other factors to regulate 
biological behaviors including proliferation, differentiation and 
metabolism of cancer cells (172). It has two different complex 
forms in cells, mTORC1 and mTORC2, and its C‑terminus is 
homologous to the catalytic domain of phosphatidylinositol 
kinase (PI3K). mTOR itself does not possess esterase kinase 
activity but rather has Ser/Thr protein kinase activity (173).

MiR‑125 has been shown to inhibit LUAD. It also reduced 
the p‑AKT/AKT ratio, the p‑mTOR/mTOR ratio and the expres‑
sion of RhoA by downregulating TNS1 (154). Additionally, 
miR‑363‑3p inhibited the proliferation and metastasis of 
LUAD cells through the mTOR/4EBP‑1 and ERK signaling 
pathways (145). Evidently, the effect of miRNA on cancer often 
occurs in a multi‑pathway and multi‑target manner.

LUAD treatment with cisplatin can lead to multiple toler‑
ances in malignant cells. This can cause the cancer cells to 
lose their sensitivity to drugs, leading to treatment failure. 
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Cisplatin resistance is a major bottleneck in the treatment 
of LUAD (174). However, some studies have confirmed that 
miRNAs affect cisplatin resistance in LUAD through the 
mTOR signaling pathway. Liu et al (138) reported that the 

overexpression of miR‑181 in A549/DDP cells (a LUAD 
drug‑resistant cell line) promoted autophagy and upregu‑
lated the expression of LC3 and AGT5 proteins through the 
PTEN/PI3K/AKT/mTOR signaling pathway. Additionally, 

Table II. Signaling pathways regulated by miRNAs in lung adenocarcinoma.

miRNA	 Expression	 Target	 Signaling pathway	 (Refs.)

miR‑1275	 Upregulated	 DKK3, SFRP1,	 Wnt/β‑catenin pathway; Notch signaling	 (123)
		  GSK3β, RUNX3	 pathway
		  and NUMB
miR‑1307‑5p	 Upregulated	 TRAF3	 MAPK/NF‑κB pathway	 (124)
miR‑3613‑5p	 Upregulated	 NR5A2	 AKT/MAPK pathway	 (125)
miR‑6077	 Upregulated	 GLUT1	 Glucose transporter 1 pathway	 (126)
miR‑6742‑5p	 Downregulated	 FGF8	 ERK12/MMP9/MMP2 pathway	 (127)
miR‑382‑3p	 Downregulated	 SAE1	 AKT signaling pathway	 (128)
miR‑1‑3p	 Downregulated	 E2F8	 NF‑κB pathway	 (129)
miR‑21	 Upregulated	 ‑	 PI3K/AKT/mTOR/HIF‑1a Pathway	 (130)
miR‑31	 Upregulated	 ‑	 RAS/MAPK pathway	 (131)
miR‑33b	 Downregulated	 ZEB1	 Wnt/β‑catenin signaling pathway	 (132)
miR‑106a‑5p	 Upregulated	 LKB1	 AMPK pathway	 (133)
miR‑125a‑5p	 Downregulated	 TMPRSS4	 NF‑κB signaling pathway	 (134)
		  TIMP‑1	 p53 signaling pathway	 (135)
miR‑140‑3p	 Downregulated	 ADAM10	 Notch pathway	 (136)
miR‑149	 Downregulated	 RAP1B	 Wnt/β‑catenin pathway	 (137)
miR‑181	 Downregulated	 PTEN	 PTEN/PI3K/AKT/mTOR signaling	 (138)
			   pathway
miR‑182‑5p	 Downregulated	 GLI2	 Hedgehog signaling pathway	 (139)
miR‑200	 Upregulated	 IRS‑1	 PI3K/AKT signaling pathway	 (140)
miR‑204	 Downregulated	 JAK2	 JAK2‑STAT3 signaling pathway	 (141)
miR‑206	 Downregulated	 SMAD3	 TGF‑β signaling pathway	 (142)
miR‑320a	 Downregulated	 STAT3	 STAT3 signaling pathway	 (143)
miR‑345‑5p	 Downregulated	 RhoA	 Rho/ROCK pathway	 (144)
miR‑363‑3p	 Downregulated	 PCNA	 mTOR and ERK signal pathway	 (145)
miR‑365	 Upregulated	 USP33	 USP33/SLIT2/ROBO1 signalling pathway	 (146)
miR‑381	 Downregulated	 LMO3	 PI3K/Akt signaling pathway	 (147)
miR‑383	 Downregulated	 RBM24	 NF‑κB signaling pathway	 (148)
miR‑409‑3p	 Downregulated	 c‑Met	 Akt signaling pathway	 (149)
miR‑423‑3p	 Upregulated	 CYBRD1	 FAK signaling pathway	 (150)
miR‑425	 Downregulated	 ADAM9	 IL‑6/STAT3 signaling pathway	 (151)
miR‑451	 Downregulated	 c‑Myc	 c‑Myc/ERK/GSK‑3b signalling pathway	 (152)
miR‑490‑3p	 Downregulated	 ‑	 Wnt/β‑catenin signaling pathway	 (153)
miR‑152	 Downregulated	 TNS1	 Akt/mTOR/RhoA pathway	 (154)
miR‑520e	 Downregulated	 Zbtb7a	 Wnt signaling pathway	 (155)
miR‑148b	 Downregulated	 ALCAM	 NF‑κB signaling pathway	 (156)
miR‑1258	 Downregulated	 GRB2	 GRB2/Ras/Erk pathway	 (157)
miR‑25	 Upregulated	 LATS2	 LATS2/YAP signaling pathway	 (158)
	 Upregulated	 KLF4	 ERK signaling pathway	 (159)
miR‑103a	 Downregulated	 OTUB1	 Hippo signaling pathway	 (160)
miR‑150	 Upregulated	 SIRT2	 Sirt2/JMJD2A signaling pathway	 (161)
miR‑30e‑5p	 Downregulated	 USP22	 Sirt1/JAK/STAT3 signaling pathway	 (162)
miR‑132	 Downregulated	 ‑	 TGFβ1/Smad2 signaling pathway	 (163)

‑, not mentioned; miR, microRNA.
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downregulation of miR‑21 in A549/DDP cells slowed the loss 
of glucose and the production of pyruvic acid and lactic acid, 
which promoted the expression of apoptosis‑related proteins. 
This process inhibits glucose metabolism and promotes cell 
death via the PI3K/AKT/mTOR/HIF‑1a pathway (130).

NF‑κB signaling pathway. The NF‑kB is not a single gene but 
a family of transcription factors involved in multiple biological 
processes (175). This signaling pathway not only participates 
in inflammation and immune response but also plays an impor‑
tant role in the occurrence and development of tumors (176).

Lin (129) reported that miR‑1‑3p binds to the promoter 
region of E2F8, thereby inhibiting the malignant phenotype 
of LUAD cells. During this process, upregulated miR‑1‑3p 
significantly negatively regulated NF‑κB and STAT3 protein 
phosphorylation expression (129). MiR‑125a‑5p had an effect 
similar to that of miR‑1‑3p, except that its downstream target 
was replaced with TMPRSS4. After enhancing miR‑125a‑5p 
expression, the expression of IκBκ and cytoplasmic NF‑κB 
was significantly increased, accompanied by a marked 
decrease in the expression of nuclear NF‑κB and p‑IκB. 
Therefore, miR‑125a‑5p inhibited LUAD by inactivating the 
NF‑κB signaling pathway (134). Similarly, overexpression of 
miR‑148b and miR‑383 both inhibited the phosphorylation of 
p65 and IkBa proteins, leading to the inactivation of the NF‑κB 
signaling pathway. This process suppresses LUAD progression 
and improves sensitivity to chemotherapy (148,156).

MAPK signaling pathway. The mitogen‑activated protein 
kinase (MAPK) signaling pathway plays an important role 
in proliferation, differentiation and inflammation‑related 
signaling pathways. It contains four branches, of which the 
main substrates are extracellular signal‑related kinase (ERK) 
and Jun amino terminal kinase (JNK) (177). Among these, 
the MAPK/ERK signaling pathway has been associated with 
tumor‑related malignant phenotypes such as cell proliferation 
and apoptosis (178).

MiR‑6742‑5p, miR‑363‑3p, miR‑451 and miR‑1258 are 
expressed at low levels in LUAD and inhibit cell prolif‑
eration. Mechanistically, they reduced the phosphorylation 
of the ERK1/2 protein through the ERK pathway, which 
is considered a classic branch of the MAPK signaling 
pathway  (127,145,152,157). By contrast, miR‑1307‑5p and 
miR‑25 participated in the regulation of LUAD as oncogenes 
through the ERK signaling pathway (127,159).

Other signaling pathways involved in LUAD. Numerous 
signaling pathways are involved in LUAD tumor regulation, 
with numerous miRNAs associated with these pathways. 
Ma et al (126) found that miR‑6077 targeted GLUT1 (glucose 
transporter 1) and inhibited glucose absorption and lactate 
production after its upregulation. By mediating the glucose 
transport pathway, miR‑6077 increased the sensitivity 
of LUAD cells to alotinib  (126). Other miRNAs, such as 
miR‑106a‑5p, were upregulated in LUAD, and it has been 
shown to suppress the phosphorylation of AMPK and TSC2 
proteins, while upregulating the phosphorylation of mTOR. 
This change promotes the proliferation and autophagy of tumor 
cells (133). Ghoshal‑Gupta et al (135) showed that miR‑125a‑5p 
regulates apoptosis in LUAD cells by upregulating the p53 

protein and altering the expression of other related apoptotic 
proteins, such as Bcl‑2 and BAX. There are several additional 
examples. MiR‑140‑3p enhanced the sensitivity of LUAD 
cells to antitumor drugs by suppressing the Notch signaling 
pathway, and miR‑182‑5p plays a similar role through the 
Hedgehog pathway (136,139). Additionally, TGF β, Hippo, 
and YAP signaling pathways participated in the regulation of 
LUAD (142,158,160).

4. Interactions of lncRNA and circRNA with miRNA in 
LUAD

Recently, competing endogenous RNAs (ceRNAs) have 
garnered significant research interest as they represent a 
novel regulatory mechanism between RNAs, rather than 
representing a distinct type RNA (179). This theory reveals the 
presence of miRNA response elements (MREs) not only on 
mRNA but also on lncRNAs and circRNAs (180). Therefore, 
mRNA, lncRNAs and circRNAs compete with miRNAs to 
form complex regulatory networks that affect gene expression. 
Some lncRNAs and circRNAs interact with miRNAs and 
subsequently affect LUAD progression (Tables III and IV).

Yang et al (181) found that linc00483 is highly expressed 
in LUAD and positively correlated with poor prognosis. 
Moreover, it acted as a sponge for miR‑204‑3p in the 
cytoplasm and regulated ETS1. Another study revealed 
that HMMR‑AS1 plays an important role as a ceRNA in 
the proliferation and metastasis of LUAD, which regulates 
the expression of SIRT6 through sponging miR‑138 (183). 
Chen et al (184) demonstrated that HOXA11‑AS suppresses 
the expression of miR‑148b‑3p by binding to its MREs. 
Subsequently, PKM2 expression is indirectly upregulated 
and plays a role in glycolysis in cancer cells (184). Numerous 
miRNAs, such as Linc00520 and Linc01833, are highly 
expressed in LUAD. They mainly promote cancer cells via 
the lncRNA/miRNA/mRNA axis  (186‑193,195). Indeed, 
lncRNAs exhibit inhibitory effects on cancer phenotypes 
in LUAD. Linc01089 is significantly underexpressed in 
LUAD and competitively binds to miR‑301b‑3p as a ceRNA. 
Moreover, miR‑301b‑3p interacted with STARD13, contrib‑
uting to the proliferation and metastasis of LUAD (183). 
Recently, Liu et al (193) found that SGMS1‑AS1 regulates 
MYLI9 through the competitive isolation of miR‑106a‑5p. 
A rescue experiment revealed that MYLI9 overexpression 
or miR‑106a‑5p inhibition offset the regulatory effect of 
SGMS1‑AS1 silencing in LUAD cells (194).

Furthermore, multiple studies have confirmed that 
circRNAs regulate gene expression by suppressing miRNA 
activity (206). Circle_ 0006427 was significantly localized 
in the cytoplasm and was positively regulated by DKK1 
through competitive sponging of miR‑6783‑3p in LUAD 
cells (195). Huang et al (199) reported that the overexpression 
of circ_000881 slowed the malignant phenotypes of LUAD 
cells. Furthermore, circRNA_000881 acts as a sponge for 
miR‑665 and indirectly regulates the downstream target gene 
PRICKLE2 (199). Similarly, circ_0129047 and circ‑MTO1 
play similar roles as tumor suppressors in LUAD (201,202). 
Numerous circRNAs act as cancer promoters in LUAD. 
For example, circ‑CAMK2A was not only significantly 
upregulated in LUAD but was also positively correlated 
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with an unfavorable prognosis. It upregulates the expression 
of fibronectin 1 by competitively binding to miR‑615‑5p, 
thereby enhancing the expression of MMP9 and MMP2 
and promoting LUAD progression  (196). In summary, 
the circRNA‑miRNA‑mRNA axis plays a crucial role in 
LUAD (197,198,200,203‑205).

5. Limitations and outlook

However, these experiments also have certain limitations. 
Firstly, in the article, the approach to revealing the mecha‑
nism is relatively singular. It is nothing more than verification 
at the tissue, cell and animal levels, and further verification 
through functional gene experiments and phenotype rescue 
experiments is required. Secondly, during experimental 
verification, the number of cell line types and tissue samples 

is relatively small. Thirdly, the current research on miRNAs 
remians in the basic experimental stage, and how to transi‑
tion to clinical practice is an urgent issue that needs to be 
solved.

At present, although numerous miRNAs have been 
proven to have promoting or inhibiting effects on LUAD, 
the manipulation of miRNAs has not been translated into 
practical clinical treatment strategies. The reasons for this 
are multifaceted. Firstly, numerous miRNAs regulate tumor 
progression through different target genes and signaling 
pathways. Therefore, interfering with a single miRNA cannot 
fundamentally treat LUAD. Correspondingly, a method or 
drug that can alter the regulatory network targeting miRNAs 
should be developped. Secondly, the reagents required 
for overexpression or low expression of miRNAs in basic 
experiments are cytotoxic. In actual clinical treatment, this is 

Table III. Interaction between lncRNAs and miRNAs in lung adenocarcinoma.

lncRNA	 Expression	 miRNA	 Expression	 Target	 (Refs.)

Linc00483	 Upregulated	 miR‑204‑3p	 Downregulated	 ETS1	 (181)
Linc01089	 Downregulated	 miR‑301b‑3p	 Upregulated	 STARD13	 (182)
HMMR‑AS1	 Upregulated	 miR‑138	 Downregulated	 Sirt6	 (183)
HOXA11‑AS	 Upregulated	 miR‑148b‑3p	 Downregulated	 PKM2	 (184)
Linc00520	 Upregulated	 miR‑1252	 Downregulated	 FOXR2	 (185)
Linc01833	 Upregulated	 miR‑519e‑3p	 Downregulated	 S100A4	 (186)
DGCR5	 Upregulated	 miR‑22‑3p	 Downregulated	 ‑	 (187)
AC009948.5	 Upregulated	 miR‑186‑5p	 Downregulated	 NCAPG2	 (188)
FAM201A	 Upregulated	 miR‑7515	 Downregulated	 GLO1	 (189)
Linc00960	 Upregulated	 miR‑124a	 Downregulated	 SphK1	 (190)
GLIDR	 Upregulated	 miR‑1270	 Downregulated	 TCF12	 (191)
TMPO‑AS1	 Upregulated	 miR‑383‑5p	 Downregulated	 ‑	 (192)
SGMS1‑AS1	 Downregulated	 miR‑106a‑5p	 Upregulated	 MYLIP	 (193)
Linc00346	 Upregulated	 miR‑30c‑2‑3p	 Downregulated	 MYBL2	 (194)

lncRNA, long non‑coding RNA; miR, microRNA; ‑, not mentioned.

Table IV. Interaction between circRNAs and miRNAs in lung adenocarcinoma.

circRNA	 Expression	 miRNA	 Expression	 Target	 (Refs.)

circ_0006427	 Downregulated	 miR‑6783‑3p	 Upregulated	 DKK1	 (195)
circ‑CAMK2A	 Upregulated	 miR‑615‑5p	 Downregulated	 FN1	 (196)
circ_0020850	 Upregulated	 miR‑326	 Downregulated	 BECN1	 (197)
circ_0007142	 Upregulated	 miR‑186	 Downregulated	 FOXK1	 (198)
circ_000881	 Downregulated	 miR‑665	 Upregulated	 PRICKLE2	 (199)
circ_0001998	 Upregulated	 miR‑145	 Downregulated	 ‑	 (200)
circ_0129047	 Downregulated	 miR‑375	 Upregulated	 ACVRL1	 (201)
circ‑MTO1	 Downregulated	 miR‑17	 Upregulated	 QKI‑5	 (202)
circ_0020123	 Upregulated	 miR‑1283	 Downregulated	 PDZD8	 (203)
circ_0001588	 Upregulated	 miR‑524‑3p	 Downregulated	 NACC1	 (204)
circ_0072088	 Upregulated	 miR‑1261	 Downregulated	 PIK3CA	 (205)

‑, not mentioned; circRNA, circular RNA; miR, microRNA.
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clearly unacceptable. Thirdly, even if drugs that can interfere 
with miRNAs while being non‑toxic are obtained, how to 
efficiently and safely enter the human organism remains a 
challenging issue.

6. Conclusions

Emerging evidence suggests that miRNAs are involved in the 
regulation of LUAD by degrading or silencing downstream 
target genes at the post‑transcriptional level. miRNAs have 
been shown to regulate multiple malignant biological pheno‑
types of LUAD through multiple signaling pathways. The 
present review systematically summarized the roles of abnor‑
mally expressed miRNAs in LUAD and their related signaling 
pathways.

Research findings suggest that miRNAs hold promise as 
potential biomarkers of LUAD, and the signaling pathways that 
they influence could offer innovative targets for LUAD treat‑
ment. The interactions between ceRNAs and miRNAs present 
a novel mechanism for LUAD development. The lncRNA or 
circRNA/miRNA/mRNA axis has emerged as a major focus 
in cancer research. Continued investigation is likely to unveil 
additional miRNA‑mediated signaling pathways and thera‑
peutic targets for LUAD, enhancing diagnosis and treatment 
approaches for this disease.

However, basic research is not equivalent to clinical 
application. There are still numerous urgent problems to be 
solved in the treatment of LUAD using miRNAs. For example, 
there is a lack of effective means for overall intervention in 
miRNAs‑regulatory networks. Meanwhile, drugs that inter‑
fere with miRNAs need to be proven to be effective and safe. 
These practical problems not only pose challenges, but also 
point in the direction of progress.
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