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Abstract. Oxaliplatin (OXA)‑containing regimens are used as 
first‑line chemotherapy in colorectal cancer (CRC). However, 
OXA resistance remains a major challenge in CRC treatment. 
CRC cells that adapt to hypoxia can potentially develop OXA 
resistance, and the underlying molecular mechanisms still 
need to be further investigated. In the current study, the OXA 
drug sensitivity of two CRC cell lines, HCT116 (TP53WT) 
and HT29 (TP53MT), was compared under both normoxic 
and hypoxic conditions. It was found that under normoxic 
condition, HCT116 cells showed significantly higher OXA 
sensitivity than HT29 cells. However, both cell lines showed 
remarkable OXA resistance under hypoxic conditions. It was 
also revealed that P53 levels were increased after OXA and 
hypoxia treatment in HCT116 cells but not in HT29 cells. 
Notably, knocking down P53WT decreased normoxic but 
increased hypoxic OXA sensitivity in HCT116 cells, which 
did not exist in HT29 cells. Molecular analysis indicated 
that P53WT activated microRNA (miR)‑26a and miR‑34a in 
OXA treatment and activated miR‑23a in hypoxia treatment. 
Cell proliferation experiments indicated that a high level of 
miR‑23a decreased OXA sensitivity and that a high level of 
miR‑26a or miR‑34a increased OXA sensitivity in HCT116 
cells. Additionally, it was demonstrated that miR‑26a, 
miR‑34a and miR‑23a affect cell apoptosis through regula‑
tion of MCL‑1, EZH2, BCL‑2, SMAD 4 and STAT3. Taken 
together, the present findings revealed the dual function of P53 
in regulating cellular chemo‑sensitivity and highlighted the 

role of P53‑miR interactions in the response of CRC cells to 
OXA chemotherapy under normoxic and hypoxic conditions.

Introduction

Colorectal cancer (CRC) is one of the most common malig‑
nant tumors worldwide. In China, the incidence and mortality 
of CRC are increasing every year (1). Surgical resection is the 
mainstay of potentially curative treatments for CRC; however, 
prognosis is generally poor due to locoregional recurrence 
with resection alone (2).

Cytotoxic chemotherapy is another mainstay of treatment 
for CRC patients. Oxaliplatin (OXA) is a third‑generation 
chemotherapy drug of the diamino‑cyclohexane platinum 
family (3,4). Due to potent in vitro cytotoxicity and in vivo 
antitumor activity, OXA‑containing regimens are effectively 
used as first‑line chemotherapy in CRC. However, de novo 
and acquired OXA resistance remains a major challenge in 
CRC treatment (5). The acquisition of OXA resistance in CRC 
is multi‑factorial and includes the following: cellular trans‑
port and detoxification systems (copper transporters, solute 
carrier transporters and ATP‑binding cassette transporters), 
OXA‑induced DNA adduct repair and alterations in key cell 
death‑related genes and/or tumor suppressors (p53, Bcl‑2 
family and MMP7) (6‑9).

Hypoxia is a common feature of the tumor microenvi‑
ronment that activates the expression of numerous genes 
associated with cell growth, angiogenesis, metastasis and 
drug resistance (10‑13). Cells adapting to hypoxia have been 
demonstrated to reduce the cytotoxicity of numerous drugs, 
such as OXA and 5‑fluorouracil (5‑FU) (14,15). Therefore, 
elucidating the underlying mechanisms of hypoxia‑induced 
drug resistance and developing more effective therapeutic 
regimens to overcome hypoxia‑induced drug resistance are 
clinical priorities.

Accumulating evidence has shown that microRNAs 
(miRs) play an important role in acquired drug resistance in 
colorectal carcinoma (CRC). miRs can act as hypoxia sensors 
and their levels are altered consistently in CRC cells  (16). 
Nijhuis et al (16) indicated that treatment with miR‑21 and 
miR‑30d antagonists sensitized hypoxic CRC cells to 5‑FU. 
Xu et al (17) indicated that hypoxia‑inducible transcription 
factor 1α (HIF‑1α)‑mediated suppression of miR‑338‑5p 
conferred OXA resistance in CRC cells.
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P53 is a stress‑inducible transcription factor that regu‑
lates numerous downstream genes, such as p21, Bax and 
GADD45, to exert regulatory functions in multiple signaling 
processes  (18,19). TP53 mutation occurs in ~40‑50% of 
CRC (20). The TP53 mutation status is closely related to the 
progression, drug resistance and outcome of CRC (21,22). 
However, the effect of TP53 mutation on drug resistance in 
CRC cells, particularly hypoxic CRC cells, and the role of 
miRs during this process remain to be elucidated.

The aim of the present study was to investigate how p53 
affects hypoxia‑induced OXA resistance by regulating miR 
expression in CRC.

Materials and methods

Cell lines and cell culture. Human CRC cell lines HCT116 
(TP53WT) and HT29 (TP53MT, c.818G>A (23), STR profiled) 
were purchased from Stem Cell Bank, Chinese Academy of 
Sciences. Cells were cultured in DMEM (HyClone; Cytiva) 
supplemented with 10% fetal bovine serum (Shanghai 
ExCell Biology, Inc.) and penicillin (100 U/ml)‑streptomycin 
(100 µg/ml) (Sangon Biotech Co., Ltd.) and were maintained 
in a humidified 37˚C incubator with 5% CO2. Cells were 
passaged when they reached ~80% confluency and were 
regularly tested with Mycoplasma Test Kit (Shanghai Yeasen 
Biotechnology Co., Ltd.) to ensure the absence of myco‑
plasma contamination.

For OXA chemotherapy, OXA (MilliporeSigma) solu‑
tion was prepared with cell culture medium and the working 
concentration is 5, 10, 20, 40 and 60 µM. Cells were cultured 
in OXA for 24 h before other experiments were carried out. 
For the hypoxic culture, cells were cultured at 37˚C in a 
humidified O2 (1%)/CO2 (5%)/N2 (94%) incubator (Thermo 
Fisher Scientific, Inc.) for 24 h  (17). Echinomycin (1 nM; 
MedChemExpress) dissolved in dimethyl sulfoxide (DMSO; 
MilliporeSigma) was added to cell culture medium for 24 h to 
inactivate HIF‑1α (24).

Plasmid construction and cell transfection. For over- 
expressing P53WT, the full‑length CDS of human TP53WT gene 
was synthesized and cloned into pcDNA3.1‑neo vector. For 
knocking down P53, short hairpin (sh)RNA was synthesized 
and cloned into RNA interference vector pSilencer3.1‑neo. The 
sequences of TP53 siRNA and scrambled siRNA were CAC​
CAT​CCA​CTA​CAA​CTA​CAT (25) and GGA​TTTC​GAG​TCG​
TCT​TAA. Stable cell lines were selected by G418 (800 µg/ml; 
Thermo Fisher Scientific, Inc.).

For plasmid transfection, HCT116 and HT29 cells 
were seeded in six‑well plates 24 h prior to transfection in 
complete medium until they reached 40~60% confluency. 
Plasmid DNA was complexed with Lipofectamine 3000 
and P3000 (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's instructions. Transfection 
media was removed and replaced with new media at 7 h 
post‑transfection. miR‑23a, ‑26a, ‑34a, ‑133a, ‑107a, 
‑205 listed in Table  I and NC‑mimics were synthesized 
(Guangzhou RiboBio Co., Ltd.) and transfected into cells at 
a concentration of 10 nmol/ml with lipofectamine 3000. All 
the subsequent experimentations were carried out at 48 h 
post‑transfection.

Cellular growth inhibition assay. Normal or transfected cells 
(at a density of 5,000 per well) in 100 µl complete medium were 
seeded in one well of 96‑well plates. After culturing for 24 h, 
cells were treated with OXA and/or hypoxia for another 24 h, 
and 20 µl of the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltet‑
razolium bromide reagent (MTT; Beyotime Biotechnology) 
was added to each well and incubated at 37˚C for 4 h. After 
removing the medium, the blue formazan was dissolved with 
200 µl DMSO, and absorbance at 550 nm was measured. The 
cellular growth inhibition rate was defined as (1‑OD550 of the 
experimental group)/OD550 of the control group x100%.

Expression analysis of miRs and reverse transcription-
quantitative polymerase chain reactions (RT‑qPCR). Total 
RNA of the OXA or hypoxia treated HCT116 cells was 
isolated with RNAzol (Sigma‑Aldrich; Merck KGaA). A total 
of 31 miRs were selected and examined to analyze the effect 
of miRs on cellular chemoresistance (15 miRs) or cellular 
response to hypoxia (16 miRs).

RT‑qPCR was conducted to detect the enrichment of rele‑
vant miRs. RNA was reverse transcribed to cDNA using Mir‑X 
miRNA First‑Strand Synthesis kit according to the manufac‑
turer's instructionσ (Takara Biotechnology Co., Ltd.). Mir‑X TB 
Green RT‑qPCR kit (Takara Biotechnology Co., Ltd.) was used 
to conduct RT‑qPCR reaction according to the manufacturer's 
instruction. U6 snRNA expression was used as endogenous 
control. The 5' primer of U6 is CGC​TTC​GGC​AGC​ACA​TAT​
AC. PCR was performed on an ABI 7500 qPCR instrument 
(Applied Biosystems; Thermo Fisher Scientific, Inc.). The ther‑
mocycling conditions consisted of 10 sec at 95˚C followed by 
40 cycles at 95˚C for 5 sec and 60˚C for 35 sec. The abundance 
of miR was calculated using the formula of 2‑ΔΔCq (26). The 
primer sequences for amplification of miRs are listed in Table I.

Western blot analysis. Cells were lysed with lysis buffer 
(Beijing Solarbio Science & Technology Co., Ltd.) comple‑
mented with protease inhibitor cocktail (Sigma‑Aldrich; 
Merck KGaA). Cell lysates were centrifuged at 12,000 x g at 
4˚C for 20 min to remove cell debris and insoluble material. 
Protein concentration was quantitated using the Bradford 
protein assay kit (Beyotime Institute of Biotechnology). 
Equal amounts of lysate (25 µg) were loaded per lane and 
proteins resolved by 5‑10% SDS‑PAGE gel, semi‑dry trans‑
ferred to 0.45‑µm polyvinylidene fluoride membranes (EMD 
Millipore). The membranes were incubated in 5% skim milk 
in Tris‑buffered saline Tween‑20 (TBST; 10 mM Tris‑Base, 
150 mM NaCl, 0.05% Tween‑20; pH 7.4) for 1 h at room 
temperature, followed by incubation with primary antibody 
in 5% skim milk in TBST at 4˚C overnight. The membranes 
were then washed for 3x5 min in TBST, and then incubated 
in TBST‑diluted secondary antibodies for 45 min at room 
temperature, followed by another 3x5 min washes with TBST. 
Protein‑antibody binding was detected with ECL Western 
Blotting Substrate (Beijing Solarbio Science & Technology 
Co., Ltd.) followed by exposure of the membranes to X‑ray 
film (Kodak). Protein expression levels were determined 
semiquantitatively by densitometric analysis with the Quantity 
One software (version 4.6.2; Bio‑Rad Laboratories, Inc.). 
The following antibodies were used: anti‑p53 (1:1,000; cat. 
no. sc‑47698; Santa Cruz Biotechnology, Inc.), anti‑BCL‑2 
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(1:1,000; cat. no. 15071), anti‑MCL‑1 (1:1,000; cat. no. 39224), 
anti‑EZH2 (1:1,000; cat. no. 5246), anti‑STAT3 (1:1,000; cat. 
no. 9139), anti‑SMAD4 (1:1,000; cat. no. 46535; all from Cell 
Signaling Technology, Inc.), anti‑β‑ACTIN (1:2,000; cat. 
no. sc‑8432) and HRP‑conjugated secondary antibody (1:3,000; 
cat. no. sc‑2357; both from Santa Cruz Biotechnology, Inc.).

Statistical analysis. Statistical analysis was performed using 
SPSS software (version 19.0; IBM Corp.). Each experiment was 
repeated at least three times. Statistical significance was assessed 
by comparing the mean ± SD using an unpaired Student's t‑test or 
ANOVA test followed by Fisher's Least Significant Difference, 
Bonferroni or Sidak post‑hoc tests. *P<0.05 was considered to 
indicate a statistically significant difference.

Results

Hypoxia reduces OXA sensitivity in CRC cells. The response 
of HCT116 and HT29 cells to OXA was investigated under 
both normoxia and hypoxia. Both cell lines were treated 
with 5, 10, 20, 40 and 60 µM OXA and it was found that the 
cellular growth inhibition rates increased with the increase 
of drug concentration (Fig.  1A). Taking the 20  µM OXA 
treatment group as an example, the cellular growth inhibition 
rate of HCT116 cells was 56.6% under normoxic condition 
and 27.7% under hypoxic condition (Fig. 1B; P<0.01), while 
the cellular growth inhibition rate of HT29 cells was 35.7% 
under normoxic condition and 25.5% under hypoxic condition 
(Fig. 1B; P<0.05). The cellular growth change rate of HCT116 

Table I. miRs and primer sequences.

Chemoresistance‑related miRs	 Primer sequence (5'→3')	 (Refs.)

hsa‑miR‑149‑5p	 TCTGGCTCCGTGTCTTCACTCC	 (27)
hsa‑miR‑150‑5p	 TCTCCCAACCCTTGTACCAGTG	 (27)
hsa‑miR‑34a‑5p	 TGGCAGTGTCTTAGCTGGTTGTT	 (30,31)
hsa‑miR‑34c‑5p	 AGGCAGTGTAGTTAGCTGATT	 (36)
hsa‑miR‑519d‑3p	 CAAAGTGCCTCCCTTTAGAGT	 (36)
hsa‑miR‑204‑5p	 ACTCGTGGACTTCCCTTTGT	 (36)
hsa‑miR‑143‑3p	 TGAGATGAAGCACTGTAGCT	 (31,40)
hsa‑miR‑153‑3p	 TTGCATAGTCACAAAAGTGAT	 (31)
hsa‑miR‑27a‑3p	 TCACAGTGGCTAAGTTCCG	 (31)
hsa‑miR‑218‑5p	 TTGTGCTTGATCTAACCATGT	 (31)
hsa‑miR‑520a‑5p	 CTCCAGAGGGAAGTACTTTCT	 (31)
hsa‑miR‑503‑5p	 TAGCAGCGGGAACAGTTCTGCAG	 (46)
hsa‑miR‑195‑5p	 CTGACCTATGAATTGACAGCC	 (49)
hsa‑miR‑133a‑3p	 TTTGGTCCCCTTCAACCAGCT	 (50)
hsa‑miR‑26a‑5p	 TTCAAGTAATCCAGGATAGGCT	 (52,53)

Chemoresistance‑related miRs	 Primer sequence (5'→3')	 (Refs.)

hsa‑miR‑27a‑3p	 TCACAGTGGCTAAGTTCCG	 (28)
hsa‑miR‑34a‑5p	 TGGCAGTGTCTTAGCTGGTTGTT	 (29)
hsa‑miR‑210‑3p	 CTGTGCGTGTGACAGCGGCTGA	 (32‑35)
hsa‑miR‑107	 AGCAGCATTGTACAGGGCTATCA	 (37)
hsa‑miR‑205‑5p	 TCCTTCATTCCACCGGAGTCTG	 (38)
hsa‑miR‑338‑5p	 AACAATATCCTGGTGCTGAGTG	 (17)
hsa‑miR‑23a‑3p	 ATCACATTGCCAGGGATTTCC	 (39)
hsa‑miR‑224‑5p	 TCAAGTCACTAGTGGTTCCGTT	 (41)
hsa‑miR‑107	 AGCAGCATTGTACAGGGCTATCA	 (42)
hsa‑miR‑103a‑3p	 AGCAGCATTGTACAGGGCTATGA	 (42,43)
hsa‑miR‑19a‑3p	 TGTGCAAATCTATGCAAAAC	 (44)
hsa‑miR‑590‑5p	 GAGCTTATTCATAAAAGTGCA	 (45)
hsa‑miR‑675‑5p	 TGGTGCGGAGAGGGCCCACA	 (47,48)
hsa‑miR‑145‑5p	 GTCCAGTTTTCCCAGGAATC	 (51)
hsa‑miR‑27b‑3p	 TTCACAGTGGCTAAGTTCTG	 (51)
hsa‑miR‑26a‑5p	 TTCAAGTAATCCAGGATAGGCT	 (51)

miR, microRNA; hsa, Homo sapiens.

https://www.spandidos-publications.com/10.3892/or.2023.8656
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cells was 2.06 and of HT29 cells was 1.41 (Fig. 1C; P<0.05). 
These data suggested that HCT116 cells were more sensitive to 
OXA than HT29 cells under normoxic condition. Additionally, 
although hypoxia decreases the OXA sensitivity, it generated 
greater impact on HCT116 cells than HT29 cells.

TP53 status affects CRC cell drug sensitivity. TP53 status is the 
typical difference between HCT116 cells and HT29 cells. P53 
expression was detected after both cell lines were treated with 
OXA and hypoxia and it was found that the P53 expression level 
of HCT116 cells increased significantly and of HT29 cells did 
not change considerably (Fig. 2A and B). P53 was then knocked 
down and cell drug sensitivity to 20 µM OXA was measured 
(Fig. 3A). Under normoxic condition, the cellular growth inhibi‑
tion rate of HCT116 cells was 57.3% in the EV group and 40.8% 
in the shP53 group (Fig. 3B, left panel; P<0.01), while under 
hypoxic condition, the cellular growth inhibition rate of HCT116 
cells was 28.6% in the EV group and 38.4% in the shP53 group 
(Fig. 3B, left panel; P<0.05). These data suggested that P53WT 
plays different roles in HCT116 cell drug sensitivity, enhancing 
drug sensitivity under normoxic conditions but reducing drug 
sensitivity under hypoxic conditions. However, knocking down 
TP53 did not change HT29 cell response to OXA under either 
normoxia or hypoxia (Fig. 3B, right panel). The growth inhibi‑
tion change rate also reflected this phenomenon (Fig. 3C).

P53 affects expression of miRs after OXA and hypoxia treat-
ment. P53‑miR interaction plays pivotal role in regulating CRC 
cell drug sensitivity (31). To directly reveal how P53 and miRs 

affect chemoresistance under hypoxia, 31 miRs that have been 
demonstrated to be correlated with chemoresistance or hypoxia 
in CRC were selected. By using RT‑qPCR, the expression of 
miRs after HCT116 cells were treated with OXA or hypoxia was 
analyzed, and it was found that the expression level of miR‑143, 
26a, 34a, 133a, 149 and 195 were significantly increased after 
HCT116 cells were treated with OXA (Fig. 4A), while miR‑23a, 
27a, 107, 19a, 145, 205, 210 and 590 were significantly increased 
after HCT116 cells were treated with hypoxia (Fig.  4B). 
However, after TP53 was knocked down, the expression levels 
of miR‑26a, 34a, 133a, 23a, 107 and 205 were decreased 
accordingly (Fig. 4C and D), indicating that these miRs were 
P53‑induced miRs or interact with P53.

miRs affect HCT116 cell OXA sensitivity depending on P53WT. 
The effects of these P53‑related miRs were analyzed by 
overexpressing them in HCT116 cells. Cellular growth inhibi‑
tion assay showed that miR‑23a decreased OXA sensitivity, 
whereas miR‑26a and miR‑34a increased OXA sensitivity. 
However, miR‑133a, 107 and 205 did not affect cell drug 
sensitivity (Fig. 5).

Then the association between miRs and P53 status was 
analyzed. The expression levels of miRs in HT29 cells 
(TP53MT) were first detected and it was identified that OXA‑ or 
hypoxia‑treatment did not upregulate miR‑26a, 34a and 23a 
(Fig. 6A). However, transfection of miR‑23a decreased cellular 
growth inhibition rate and transfection of miR‑26a and 34a 
increased cellular growth inhibition rate, which was similar as 
they were functioning in HCT116 cells (Fig. 6B). Notably, after 
introducing exogenous P53WT to HT29 cells (Fig. 6C), it was 
revealed that miR‑26a, 34a and 23a can be induced by OXA or 
hypoxia treatment (Fig. 6D). These data suggested that the effect 
of these 3 miRs on CRC cell drug sensitivity depends on P53WT.

Hypoxia suppresses the expression of miR‑26a and miR‑34a. 
It can be observed from the aforementioned experiments that 
miR‑23a, 26a and 34a are all driven by P53. However, it was 
strange that with hypoxia upregulating the level of P53, it 
only induced the expression of miR‑23a instead of affecting 
the level of miR‑26a and miR‑34a. To address this issue, the 
level of miR‑26a and miR‑34a was examined after CRC cells 
were treated with hypoxia for 2, 8, 16, 24 and 48 h. It was 
demonstrated that hypoxia significantly suppressed the expres‑
sion levels of these two miRs in both HCT116 and HT29 cells 
(Fig. 7A and B). However, administration of HIF‑1α inhibitor 
echinomycin reversed the inhibition effect of hypoxia on miRs 
in HCT116 cells but not in HT29 cells (Fig. 7A and B). These 
data suggested that hypoxia and P53WT synergistically altered 
expression of miRs.

miRs regulate cellular apoptosis‑related factors and modu-
late drug sensitivity. The possible molecular mechanism of 
how miR‑23a, 26a and 34a modulate OXA sensitivity was 
further investigated. According to previous studies, miR‑26a 
and 34a may activate BCL‑2, MCL‑1, EZH2, SMAD 4 and 
STAT3 (54‑58). In the present study, it was also demonstrated 
that miR‑26a could decrease the expression levels of MCL‑1, 
EZH2 and BCL‑2 (Fig. 8A) and miR‑34a could decrease the 
expression levels of SMAD4, STAT3 and BCL‑2 (Fig. 8B). 
However, high level of miR‑23a could reverse the OXA‑induced 

Figure 1. Hypoxia reduces OXA sensitivity in CRC cells. HCT116 and HT29 
cells were treated with 5, 10, 20, 40 and 60 µM OXA for 24 h and the cell 
proliferation under normoxia and hypoxia was measured. (A) Cellular growth 
inhibition rates. Black dotted box: 20 µM OXA treatment group. (B) The 
cellular growth inhibition rates of HCT116 and HT29 cells in the 20 µM 
OXA treatment group were shown separately. It was clear that HCT116 cells 
were more sensitive to OXA than HT29 cells under normoxic condition. 
(C) Growth inhibition change rate indicated that hypoxia generated a greater 
impact on the OXA sensitivity of HCT116 cells than HT29 cells. *P<0.05 
and **P<0.01. Dotted boxes, a moderate dose of 20 µM OXA was selected 
as a standard dose and used in the following experiments. OXA, oxaliplatin; 
CRC, colorectal cancer; Nor, normoxia; Hyp, hypoxia. 
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suppression of MCL‑1 and BCL‑2 (Fig.  8C). These data 
possibly explain why P53WT‑induced miRs promote OXA 
sensitivity under normoxic conditions but hypoxia enhances 
OXA resistance in CRC cells.

Discussion

Since OXA is a major antitumor drug for CRC chemotherapy, 
finding useful biomarkers and potential molecular mechanisms 

Figure 2. Western blot analysis of P53 protein expression levels in HCT116 and HT29 cells treated with OXA or hypoxia. (A) After treated with 20 µM OXA, 
the P53 level of HCT116 cells increased significantly and of HT29 cells did not change considerably. Upper panel, western blot band; histograms, the relative 
band density. (B) After treated with hypoxia, the P53 level of HCT116 cells increased significantly and of HT29 cells did not change considerably. Upper 
panel, western blot band; histograms, the relative band density. **P<0.01. Nor, normoxia; Hyp, hypoxia. OXA, oxaliplatin; Nor, normoxia; Hyp, hypoxia; NS, 
not significant. 

Figure 3. P53WT affects HCT116 cell drug sensitivity. (A) Western blotting results showed the knocking down efficacy of P53. (B) Knocking down P53 
enhanced HCT116 cell drug sensitivity under normoxic condition but reduced cell drug sensitivity under hypoxic condition. However, knocking down P53 did 
not change HT29 cell response to OXA under either normoxia or hypoxia. (C) Cellular growth inhibition rate also reflected that knocking down P53 affects the 
response of HCT116 cells to OXA under hypoxia. *P<0.05 and **P<0.01. OXA, oxaliplatin; NS, not significant; Nor, normoxia; Hyp, hypoxia.

https://www.spandidos-publications.com/10.3892/or.2023.8656
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of OXA resistance is significant for adjusting the treatment 
regimen for patients with CRC. The hypoxic tumor microen‑
vironment has a pivotal influence on behavior of tumor cells. 
Impaired drug penetration into hypoxic regions of tumors 
and adaptive cellular response to hypoxia are considered to 
account for the reduction of cytotoxicity of numerous drugs in 
multiple cancer types (59‑61).

In the present study, the OXA sensitivity of HCT116 and 
HT29 cells was firstly examined. The cell proliferation inhibition 
results clearly showed that hypoxia affects the OXA sensitivity 
of both cell lines. Notably, hypoxia caused a greater impact on 
HCT116 cells than on HT29 cells. Since the major difference 
between these two cell lines is the TP53 genotype (HCT116 
is TP53WT and HT29 is TP53MT), it was hypothesized that P53 
may play a key role in hypoxia‑induced OXA resistance. To 
test this hypothesis, the P53 expression level was determined 
after HCT116 and HT29 cells were treated with 20 µM OXA or 
hypoxia and it was found that the P53WT level in HCT116 cells was 
significantly increased, while the P53MT level in HT29 cells did 
not change considerably. P53 was then knocked down and drug 
sensitivity was examined. Surprisingly, it was found that P53 had 
dual effects on regulating the OXA sensitivity of HCT116 cells: 
It promoted OXA sensitivity under normoxic conditions and 
reduced OXA sensitivity under hypoxic conditions.

Figure 4. Reverse transcription‑quantitative PCR is applied to detect miR expression level changes in HCT116 cells treated with OXA or hypoxia and to find 
the P53‑related miRs in P53‑knocked down HCT116 cells. (A) The expression level of miR‑143, 26a, 34a, 133a, 149 and 195 increased significantly after 
HCT116 cells were treated with 20 µM OXA for 24 h. (B) The expression level of miR‑23a, 27a, 107, 19a, 145, 205, 210 and 590 increased significantly after 
HCT116 cells were treated with hypoxia for 24 h. (C) With P53WT knocked down, the expression levels of miR‑26a, 34a and 133a (in bold type) were decreased 
in the OXA treatment group. (D) With P53WT knocked down, the expression levels of miR‑23a, 107 and 205 (in bold type) were decreased in the hypoxia 
treatment group. *P<0.05 and **P<0.01. OXA, oxaliplatin; miR, microRNA; NS, not significant; Nor, normoxia; Hyp, hypoxia. 

Figure 5. miR23a, 26a, 34a, 133a, 107 and 205 are overexpressed in HCT116 
cells. miR‑23a decreased cell growth inhibition, whereas miR‑26a and 
miR‑34a increased cell growth inhibition. However, miR‑133a, 107 and 205 
did not affect cell growth inhibition. **P<0.01. miR, microRNA; OXA, oxali‑
platin; NS, not significant; NC, negative control. 
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miRs are critical transcriptional mediators and epigenetic 
regulators in multiple biological activities, including tumori‑
genesis, angiogenesis, cell senescence, metabolism and drug 
resistance (62‑66). There is a great number of miRs in cells and 
thousands of human genes are miR targets. Compared with 
transcriptional regulation, miR regulation is fast and flexible, 
and miRs may regulate cellular behaviors without affecting 
basic biological activities. Previous studies have indicated 
that there are numerous P53‑dependent miRs (67,68). Most 
of these miRs have P53 response elements in their promoter 
region, such as miR‑145, ‑34s, ‑202, ‑1204, ‑1206, ‑10b and 
‑23b (69‑72). This suggests that although P53 is upregulated 
by OXA and hypoxia, it may activate different miR groups 
under these two stimuli, which can explain the distinct effects 
of P53 on OXA sensitivity under normoxic and hypoxic condi‑
tions. By referring to previous research findings, 31 OXA‑ or 
hypoxia‑induced miRs were selected. Since numerous of these 

miRs are P53 dependent (Table I) (73‑76), they are probably 
involved in the regulation of resistance by P53. RT‑qPCR 
results indicated that among these miRs, 6 miRs were induced 
by OXA, and 8miRs were induced by hypoxia. The following 
P53 deprivation experiments indicated that miR‑26a‑5p, 
miR‑34a‑5p and miR‑133a‑3p levels were associated with P53 
in OXA treatment conditions, while miR‑23a‑3p, miR‑107 and 
miR‑205‑5p were altered in hypoxia treatment conditions. 
Further miR overexpression experiments indicated that among 
the aforementioned six miRs, only miR‑23a‑3p (decreases 
OXA resistance), miR‑26a‑5p (increases OXA sensitivity) and 
miR‑34a‑5p (increases OXA sensitivity) were involved in the 
OXA response. These three miRs were then introduced into 
TP53MT HT29 cells, and a similar phenomenon was observed. 
P53WT restoration experiments in HT29 cells clearly indi‑
cated that miR‑26a‑5p, miR‑34a‑5p and miR‑23a‑3p are P53 
dependent. Taking these data together, it could be concluded 

Figure 6. miRs affect colorectal cancer cell drug sensitivity depending on P53WT. (A) Reverse transcription‑quantitative PCR results indicated that OXA or 
hypoxia did not promote the expression level of miR‑26a, 34a and 23a in HT29 cells. (B) The effect of miRs on HT29 cell drug sensitivity was measured by 
cell growth inhibition assay. The results indicated that miR‑23a decreased cell growth inhibition, whereas miR‑26a and 34a increased cell growth inhibition. 
(C) P53WT was introduced in to HT29 cell and confirmed by western blotting. (D) After introducing exogenous P53WT to HT29 cells, miR‑26a, 34a and 23a 
could be induced by OXA or hypoxia treatment. *P<0.05 and **P<0.01. miR, microRNA; NS, not significant; Nor, normoxia; Hyp, hypoxia; EV, empty vector. 
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that in P53WT HCT116 cells, P53WT protein plays two roles in 
regulating cell sensitivity to OXA: Under normoxic condi‑
tions, OXA stimulates P53WT expression and therefore induces 
miR‑26a‑5p and miR‑34a‑5p, which renders cells sensitive to 
OXA; by contrast, under hypoxic condition, although P53WT 
is also upregulated, it induces miR‑23a and decreases cell 
sensitivity to OXA.

Hypoxia activates HIF signaling pathways in cancer cells, 
which can transactivate a wide variety of transcripts including 
miR transcripts  (77). To further confirm that miR‑26a‑5p 
and miR‑34a‑3p are specifically induced by hypoxia, echino‑
mycin was used to inactivate HIF‑1α, and it was found that 

miR‑26a‑5p and miR‑34a‑3p could not be sustained without 
HIF‑1α in both HCT116 and HT29 cells. These data indicated 
that although P53WT can be used to regulate these two miRs 
under hypoxic conditions, HIF‑1α is necessary for their stable 
expression.

miRs regulate drug sensitivity through modulation of 
numerous cellular apoptosis‑ and gene transcription‑related 
factors. For example, Zhou et al (78) reported that miR‑26a 
inhibits bladder cancer cell proliferation through inhibition of 
EZH2; Li et al (79) showed that knocking down EZH2 promotes 
OXA‑induced cell cytotoxicity in OXA‑resistant HT29 cells; 
Gao et al (55) reported that miR‑26a inhibits breast cancer cell 
proliferation through repression of MCL‑1; Yang et al (56) 
reported that miR‑26a decreases Bcl‑2 expression and that 
suppression of miR‑26a causes cisplatin resistance in human 
non‑small cell lung cancer. These findings supported our state‑
ment that P53WT‑induced miR‑26a overexpression promotes 
OXA sensitivity in HCT116 cells. Similarly, miR‑34a may 
promote OXA sensitivity through interactions with SMAD4, 
STAT3 and BCL‑2  (58,80‑82). The underlying molecular 
mechanisms for the association between P53WT‑induced 
miR‑23a overexpression and hypoxia‑mediated acquired OXA 

Figure 9. Schematic of the molecular mechanisms of p53‑miRs cross‑talking 
regulating OXA chemosensitivity in hypoxia: OXA and low O2 as two stress 
conditions drive P53 to modulate different miR groups and thus activate 
distinct cellular signaling pathways. miR, microRNA; OXA, oxaliplatin. 

Figure 7. Hypoxia suppresses expression of miR‑26a and miR‑34a. Expression levels of miR‑26a and miR‑34a in hypoxia‑treated HCT116 and HT29 cells 
were analyzed by reverse transcription‑quantitative PCR. (A and B) The results indicated that hypoxia significantly suppressed the expression of miR‑26a and 
miR‑34a in both (A) HCT116 and (B) HT29 cells. However, administration of echinomycin reversed the hypoxic inhibition effect in (A) HCT116 but not in 
(B) HT29 cells. miR, microRNA; Nor, normoxia; Hyp, hypoxia. 

Figure 8. miRs regulate cell apoptotic factors and modulate drug sensitivity. 
(A) miR‑26a decreased the expression levels of MCL‑1, EZH2 and BCL‑2 
and (B) miR‑34a decreased the expression levels of SMAD4, STAT3 and 
BCL‑2. (C) However, overexpressing miR‑23a may reverse the inhibition of 
MCL‑1 and BCL‑2 that were induced by miR‑23a/34a. These data possibly 
explain how P53WT‑induced miRs promote drug sensitivity and why hypoxia 
enhances drug resistance in CRC cells. miR, microRNA; OXA, oxaliplatin; 
NC, negative control.
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resistance were also investigated. Western blot results clearly 
showed that OXA suppressed the expression of the tumor 
antiapoptotic molecules MCL‑1 and BCL‑2. However, admin‑
istration of miR‑23a mimics restored their levels. Numerous 
studies have reported the oncogenic and promoting drug resis‑
tance property of miR‑23a in cancers (83‑86). Jin et al (39) 
reported that hypoxia led to an upregulation of miR‑23a in 
CRC cells. Xu  et al  (87) found that sinomenine exerts an 
antitumor effect by downregulating miR‑23a, and transfec‑
tion of miR‑23a‑3p increased the level of BCL‑2 in PC3 cells. 
Zhang et al (88) also revealed that miR‑23a‑3p inhibited the 
expression of BAX, promoted the expression of BCL‑2 and 
inhibited the apoptosis of U937 cells. These investigations 
were in line with the present findings.

In summary, in the present study, the role of P53 in 
OXA‑induced cellular apoptosis in CRC was investigated 
and it was identified that under normoxic conditions, P53 
may promote cell apoptosis through activation of miR‑26a 
and miR‑34a, whereas under hypoxic conditions, P53 may 
induce OXA resistance through the activation of miR‑23a. The 
present findings revealed the dual function of P53 in regulating 
cell apoptosis and highlighted the role of P53‑miR interac‑
tions in the response of CRC cells to OXA under normoxic 
and hypoxic conditions (Fig. 9). These findings may provide 
deep insight into the molecular mechanism of antitumor drug 
resistance and a novel idea to overcome drug resistance in 
clinical cancer treatment. However, to deeply understand the 
crosstalk between P53 and the miR group, the identification 
of more research targets, particularly through data mining and 
bioinformatics analysis, is still needed.
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