Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review)
- Authors:
- Hong Qiu
- Chaowei Zhang
- Xiaochen Ma
- Ying Li
-
Affiliations: Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China - Published online on: March 19, 2025 https://doi.org/10.3892/or.2025.8887
- Article Number: 54
This article is mentioned in:
Abstract
DiNardo CD, Erba HP, Freeman SD and Wei AH: Acute myeloid leukaemia. Lancet. 401:2073–2086. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ferrara F: Unanswered questions in acute myeloid leukaemia. Lancet Oncol. 5:443–450. 2004. View Article : Google Scholar : PubMed/NCBI | |
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, et al: Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–2221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, et al: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 129:424–447. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shallis RM, Wang R, Davidoff A, Ma X and Zeidan AM: Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 36:70–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, et al: The 5th edition of the world health organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia. 36:1703–1719. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Chu X, Wang J, An L, Liu Y, Li L and Xu J: Clinical characteristics and optimal therapy of acute myeloid leukemia with myelodysplasia-related changes: A retrospective analysis of a cohort of Chinese patients. Turk J Haematol. 38:188–194. 2021.PubMed/NCBI | |
Sengsayadeth S, Gatwood KS, Boumendil A, Labopin M, Finke J, Ganser A, Stelljes M, Ehninger G, Beelen D, Niederwieser D, et al: Conditioning intensity in secondary AML with prior myelodysplastic syndrome/myeloproliferative disorders: An EBMT ALWP study. Blood Adv. 2:2127–2135. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boddu P, Kantarjian HM, Garcia-Manero G, Ravandi F, Verstovsek S, Jabbour E, Borthakur G, Konopleva M, Bhalla KN, Daver N, et al: Treated secondary acute myeloid leukemia: A distinct high-risk subset of AML with adverse prognosis. Blood Adv. 1:1312–1323. 2017. View Article : Google Scholar : PubMed/NCBI | |
Amaki K: French-American-British (FAB) classification of acute leukemia. Rinsho Ketsueki. 23:988–990. 1982.(In Japanese). PubMed/NCBI | |
Vardiman JW, Harris NL and Brunning RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 100:2292–2302. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A and Bloomfield CD: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 114:937–951. 2009. View Article : Google Scholar : PubMed/NCBI | |
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart RK, Erba HP, et al: Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 125:1367–1376. 2015. View Article : Google Scholar : PubMed/NCBI | |
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, et al: Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 140:2228–2247. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Kao YR, Sun D, Todorova TI, Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A and Steidl U: Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med. 25:103–110. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dillon LW, Ghannam J, Nosiri C, Gui G, Goswami M, Calvo KR, Lindblad KE, Oetjen KA, Wilkerson MD, Soltis AR, et al: Personalized single-cell proteogenomics to distinguish acute myeloid leukemia from non-malignant clonal hematopoiesis. Blood Cancer Discov. 2:319–325. 2021. View Article : Google Scholar : PubMed/NCBI | |
Østgård LS, Medeiros BC, Sengeløv H, Nørgaard M, Andersen MK, Dufva IH, Friis LS, Kjeldsen E, Marcher CW, Preiss B, et al: Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: A national population-based cohort study. J Clin Oncol. 33:3641–3649. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Jia M, Mao Y, Cai H, Jiang X, Cao X, Zhou D and Li J: Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia-related changes and de novo acute myeloid leukemia. Am J Clin Pathol. 157:691–700. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fang H, He R, Chiu A, Viswanatha DS, Ketterling RP, Patnaik MS and Reichard KK: Genetic factors in acute myeloid leukemia with myelodysplasia-related changes. Am J Clin Pathol. 153:656–663. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chinese Society of Hematology and Chinese Medical Association, . Chinese guidelines for diagnosis and treatment of myelodysplastic syndromes (2019). Zhonghua Xue Ye Xue Za Zhi. 40:89–97. 2019.(In Chinese). PubMed/NCBI | |
Hellström-Lindberg E, Tobiasson M and Greenberg P: Myelodysplastic syndromes: Moving towards personalized management. Haematologica. 105:1765–1779. 2020. View Article : Google Scholar : PubMed/NCBI | |
Woods BA and Levine RL: The role of mutations in epigenetic regulators in myeloid malignancies. Immunol Rev. 263:22–35. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamashita M, Dellorusso PV, Olson OC and Passegué E: Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer. 20:365–382. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mishra SK, Millman SE and Zhang L: Metabolism in acute myeloid leukemia: Mechanistic insights and therapeutic targets. Blood. 141:1119–1135. 2023. View Article : Google Scholar : PubMed/NCBI | |
Montalban-Bravo G, Kanagal-Shamanna R, Class CA, Sasaki K, Ravandi F, Cortes JE, Daver N, Takahashi K, Short NJ, DiNardo CD, et al: Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 95:612–622. 2020. View Article : Google Scholar : PubMed/NCBI | |
Haase D, Germing U, Schanz J, Pfeilstöcker M, Nösslinger T, Hildebrandt B, Kundgen A, Lübbert M, Kunzmann R, Giagounidis AA, et al: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: Evidence from a core dataset of 2124 patients. Blood. 110:4385–4395. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, Hedlund A, Hast R, Schlegelberger B, Porwit A, et al: TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 29:1971–1979. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pitel BA, Sharma N, Zepeda-Mendoza C, Smadbeck JB, Pearce KE, Cook JM, Vasmatzis G, Sachs Z, Kanagal-Shamanna R, Viswanatha D, et al: Myeloid malignancies with 5q and 7q deletions are associated with extreme genomic complexity, biallelic TP53 variants, and very poor prognosis. Blood Cancer J. 11:182021. View Article : Google Scholar : PubMed/NCBI | |
Cordoba I, González-Porras JR, Nomdedeu B, Luño E, de Paz R, Such E, Tormo M, Vallespi T, Collado R, Xicoy B, et al: Better prognosis for patients with del(7q) than for patients with monosomy 7 in myelodysplastic syndrome. Cancer. 118:127–133. 2012. View Article : Google Scholar : PubMed/NCBI | |
Inaba T, Honda H and Matsui H: The enigma of monosomy 7. Blood. 131:2891–2898. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, Takubo K, Suda T, Nakamura T, Wolff L, et al: Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 24:305–317. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, Tiffen JC, Kober C; Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium; Green AR, ; et al: Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. 46:33–38. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, Getz G, Steensma DP, Ritz J, Soiffer R, et al: Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 32:2691–2698. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, Grauman PV, Hu ZH, Spellman SR, Lee SJ, et al: Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 376:536–547. 2017. View Article : Google Scholar : PubMed/NCBI | |
Haase D, Stevenson KE, Neuberg D, Maciejewski JP, Nazha A, Sekeres MA, Ebert BL, Garcia-Manero G, Haferlach C, Haferlach T, et al: TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia. 33:1747–1758. 2019. View Article : Google Scholar : PubMed/NCBI | |
Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, Yoshizato T, Shiozawa Y, Saiki R, Malcovati L, et al: Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 26:1549–1556. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bernard E, Nannya Y, Yoshizato T, Hasserjian RP, Saiki R, Shiozawa Y, Devlin SM, Tuechler H, Sarian A, Malcovati L, et al: TP53 state dictates genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Blood. 134:6752019. View Article : Google Scholar | |
Yu J, Du Y, Jalil A, Ahmed Z, Mori S, Patel R, Varela JC and Chang CC: Mutational profiling of myeloid neoplasms associated genes may aid the diagnosis of acute myeloid leukemia with myelodysplasia-related changes. Leuk Res. 110:1067012021. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Eladl E, Zarif M, Capo-Chichi JM, Schuh A, Atenafu E, Minden M and Chang H: Molecular characterization of AML-MRC reveals TP53 mutation as an adverse prognostic factor irrespective of MRC-defining criteria, TP53 allelic state, or TP53 variant allele frequency. Cancer Med. 12:6511–6522. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ and Birnbaum D: Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 5:122012. View Article : Google Scholar : PubMed/NCBI | |
Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A, Wichmann M, et al: Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 29:2499–2506. 2011. View Article : Google Scholar : PubMed/NCBI | |
Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A, Kawabata KC, Togami K, Nagase R, Horikawa S, et al: SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 29:847–857. 2015. View Article : Google Scholar : PubMed/NCBI | |
Prats-Martín C, Burillo-Sanz S, Morales-Camacho RM, Pérez-López O, Suito M, Vargas MT, Caballero-Velázquez T, Carrillo-Cruz E, González J, Bernal R and Pérez-Simón JA: ASXL1 mutation as a surrogate marker in acute myeloid leukemia with myelodysplasia-related changes and normal karyotype. Cancer Med. 9:3637–3646. 2020. View Article : Google Scholar : PubMed/NCBI | |
Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M, et al: Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 106:3925–3929. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N and Kurokawa M: A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 97:726–734. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC, Yao M, Wu SJ, Tseng MH and Tien HF: RUNX1 gene mutation in primary myelodysplastic syndrome-the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol. 139:405–414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhou F, Cai X, Chao H, Zhang R and Chen S: Mutational landscape of patients with acute myeloid leukemia or myelodysplastic syndromes in the context of RUNX1 mutation. Hematology. 25:211–218. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kaisrlikova M, Vesela J, Kundrat D, Votavova H, Merkerova MD, Krejcik Z, Divoky V, Jedlicka M, Fric J, Klema J, et al: RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: A study on patients with lower-risk MDS. Leukemia. 36:1898–1906. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, et al: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 23:166–175. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tsai SC, Shih LY, Liang ST, Huang YJ, Kuo MC, Huang CF, Shih YS, Lin TH, Chiu MC and Liang DC: Biological activities of RUNX1 mutants predict secondary acute leukemia transformation from chronic myelomonocytic leukemia and myelodysplastic syndromes. Clin Cancer Res. 21:3541–3551. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, et al: AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: Prognostic implication and interaction with other gene alterations. Blood. 114:5352–5361. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W, Haferlach T and Schnittger S: Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia. 24:1528–1532. 2010. View Article : Google Scholar : PubMed/NCBI | |
Savage KI, Gorski JJ, Barros EM, Irwin GW, Manti L, Powell AJ, Pellagatti A, Lukashchuk N, McCance DJ, McCluggage WG, et al: Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol Cell. 54:445–459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dalton WB, Helmenstine E, Walsh N, Gondek LP, Kelkar DS, Read A, Natrajan R, Christenson ES, Roman B, Das S, et al: Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J Clin Invest. 129:4708–4723. 2019. View Article : Google Scholar : PubMed/NCBI | |
Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C, et al: Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 365:1384–1395. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, et al: Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 478:64–69. 2011. View Article : Google Scholar : PubMed/NCBI | |
Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, Bowen DT, Campbell PJ, Ebert BL, Fenaux P, et al: SF3B1-mutant MDS as a distinct disease subtype: A proposal from the international working group for the prognosis of MDS. Blood. 136:157–170. 2020. View Article : Google Scholar : PubMed/NCBI | |
Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, Berthon C, Adès L, Fenaux P, Beyne-Rauzy O, et al: Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 31:2428–2436. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ganguly BB and Kadam NN: Mutations of myelodysplastic syndromes (MDS): An update. Mutat Res Rev Mutat Res. 769:47–62. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, Wlodarski MW, Kölking B, Wichmann M, Görlich K, et al: Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 119:3578–3584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Kar SA, Jerez A, Przychodzen B, Bupathi M, Guinta K, Afable MG, et al: Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 119:3203–3210. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harada H and Harada Y: Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer Sci. 106:329–336. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu SJ, Tang JL, Lin CT, Kuo YY, Li LY, Tseng MH, Huang CF, Lai YJ, Lee FY, Liu MC, et al: Clinical implications of U2AF1 mutation in patients with myelodysplastic syndrome and its stability during disease progression. Am J Hematol. 88:E277–E282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park SM, Ou J, Chamberlain L, Simone TM, Yang H, Virbasius CM, Ali AM, Zhu LJ, Mukherjee S, Raza A and Green MR: U2AF35(S34F) promotes transformation by directing aberrant ATG7 Pre-mRNA 3′ end formation. Mol Cell. 62:479–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan K, Steeples V, et al: U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 21:640–650. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, Kim S, Shao J, Carver A, Saez B, et al: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun. 8:140602017. View Article : Google Scholar : PubMed/NCBI | |
Raddatz G, Gao Q, Bender S, Jaenisch R and Lyko F: Dnmt3a protects active chromosome domains against cancer-associated hypomethylation. PLoS Genet. 8:e10031462012. View Article : Google Scholar : PubMed/NCBI | |
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, et al: DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 363:2424–2433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thol F, Winschel C, Lüdeking A, Yun H, Friesen I, Damm F, Wagner K, Krauter J, Heuser M and Ganser A: Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica. 96:1870–1873. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, et al: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 468:839–843. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, et al: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 20:11–24. 2011. View Article : Google Scholar : PubMed/NCBI | |
Seethy AA, Pethusamy K, Kushwaha T, Kumar G, Talukdar J, Chaubey R, Sundaram UD, Mahapatra M, Saxena R, Dhar R, et al: Alterations of the expression of TET2 and DNA 5-hmC predict poor prognosis in myelodysplastic neoplasms. BMC Cancer. 23:10352023. View Article : Google Scholar : PubMed/NCBI | |
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, et al: Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 120:2454–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, et al: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 18:553–567. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M, Göhring G, Schumann C, Bug G, Ottmann O, et al: IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 95:1668–1674. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zarnegar-Lumley S, Alonzo TA, Gerbing RB, Othus M, Sun Z, Ries RE, Wang J, Leonti A, Kutny MA, Ostronoff F, et al: Characteristics and prognostic impact of IDH mutations in AML: A COG, SWOG, and ECOG analysis. Blood Adv. 7:5941–5953. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jaiswal S and Ebert BL: Clonal hematopoiesis in human aging and disease. Science. 366:eaan46732019. View Article : Google Scholar : PubMed/NCBI | |
Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, Morrison CG and Passegué E: Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 7:174–185. 2010. View Article : Google Scholar : PubMed/NCBI | |
Medina EA, Delma CR and Yang FC: ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol. 15:1272022. View Article : Google Scholar : PubMed/NCBI | |
Issa JP: Epigenetic changes in the myelodysplastic syndrome. Hematol Oncol Clin North Am. 24:317–330. 2010. View Article : Google Scholar : PubMed/NCBI | |
Claus R and Lübbert M: Epigenetic targets in hematopoietic malignancies. Oncogene. 22:6489–6496. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brakensiek K, Länger F, Schlegelberger B, Kreipe H and Lehmann U: Hypermethylation of the suppressor of cytokine signalling-1 (SOCS-1) in myelodysplastic syndrome. Br J Haematol. 130:209–217. 2005. View Article : Google Scholar : PubMed/NCBI | |
Christiansen DH, Andersen MK and Pedersen-Bjergaard J: Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 17:1813–1819. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stintzing S, Kemmerling R, Kiesslich T, Alinger B, Ocker M and Neureiter D: Myelodysplastic syndrome and histone deacetylase inhibitors: ‘To be or not to be acetylated’? J Biomed Biotechnol. 2011:2141432011.PubMed/NCBI | |
Gill H, Leung AY and Kwong YL: Molecular and cellular mechanisms of myelodysplastic syndrome: Implications on targeted therapy. Int J Mol Sci. 17:4402016. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Xia S, Zhang R, Li Y, Famulare CA, Fan H, Wu R, Wang M, Zhu AC, Elf SE, et al: Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Mol Cell. 81:3833–3847.e3811. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sundaravel S, Duggan R, Bhagat T, Ebenezer DL, Liu H, Yu Y, Bartenstein M, Unnikrishnan M, Karmakar S, Liu TC, et al: Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes. Proc Natl Acad Sci USA. 112:E6359–E6368. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lujambio A and Lowe SW: The microcosmos of cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI | |
O'Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB and Baltimore D: MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA. 107:14235–14240. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Huang Y, Li H, Zhang X, Cheng P, Deng D, Peng Z, Luo J, Zhao W, Lai Y and Liu Z: Over-expression of miR-196b-5p is significantly associated with the progression of myelodysplastic syndrome. Int J Hematol. 105:777–783. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miller PG, Al-Shahrour F, Hartwell KA, Chu LP, Järås M, Puram RV, Puissant A, Callahan KP, Ashton J, McConkey ME, et al: In vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell. 24:45–58. 2013. View Article : Google Scholar : PubMed/NCBI | |
Burger JA and Peled A: CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia. 23:43–52. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dührsen U and Hossfeld DK: Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol. 73:53–70. 1996. View Article : Google Scholar : PubMed/NCBI | |
Behrmann L, Wellbrock J and Fiedler W: Acute myeloid leukemia and the bone marrow niche-take a closer look. Front Oncol. 8:4442018. View Article : Google Scholar : PubMed/NCBI | |
Sha C, Jia G, Jingjing Z, Yapeng H, Zhi L and Guanghui X: miR-486 is involved in the pathogenesis of acute myeloid leukemia by regulating JAK-STAT signaling. Naunyn Schmiedebergs Arch Pharmacol. 394:177–187. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fattizzo B, Giannotta JA and Barcellini W: Mesenchymal stem cells in aplastic anemia and myelodysplastic syndromes: The ‘Seed and Soil’ crosstalk. Int J Mol Sci. 21:54382020. View Article : Google Scholar : PubMed/NCBI | |
Bhagat TD, Chen S, Bartenstein M, Barlowe AT, Von Ahrens D, Choudhary GS, Tivnan P, Amin E, Marcondes AM, Sanders MA, et al: Epigenetically aberrant stroma in MDS propagates disease via Wnt/β-catenin activation. Cancer Res. 77:4846–4857. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, Khiabanian H, Lee A, Murty VV, Friedman R, et al: Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature. 506:240–244. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuek V, Hughes AM, Kotecha RS and Cheung LC: Therapeutic targeting of the leukaemia microenvironment. Int J Mol Sci. 22:68882021. View Article : Google Scholar : PubMed/NCBI | |
Fiedler W, Graeven U, Ergün S, Verago S, Kilic N, Stockschläder M and Hossfeld DK: Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 89:1870–1875. 1997. View Article : Google Scholar : PubMed/NCBI | |
Cancilla D, Rettig MP and DiPersio JF: Targeting CXCR4 in AML and ALL. Front Oncol. 10:16722020. View Article : Google Scholar : PubMed/NCBI | |
Barbier V, Erbani J, Fiveash C, Davies JM, Tay J, Tallack MR, Lowe J, Magnani JL, Pattabiraman DR, Perkins AC, et al: Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat Commun. 11:20422020. View Article : Google Scholar : PubMed/NCBI | |
Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV, Anastasiades A, Tsigalou C, Bourikas G, Karadimitris A and Tsatalas C: Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 23:510–518. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tay C, Tanaka A and Sakaguchi S: Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 41:450–465. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ehrchen JM, Sunderkötter C, Foell D, Vogl T and Roth J: The endogenous toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 86:557–566. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gañán-Gómez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, Bohannan ZS, Verma A, Steidl U and Garcia-Manero G: Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 29:1458–1469. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C and Sohn C: PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat. 40:294–297. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, Engblom C, Pfirschke C, Siwicki M, Gungabeesoon J, et al: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 49:1148–1161.e1147. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI | |
Woan KV and Miller JS: Harnessing natural killer cell antitumor immunity: From the bench to bedside. Cancer Immunol Res. 7:1742–1747. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Casas SB, Ernst G, Traboulsi AA, Hashi N, et al: Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood. 132:1792–1804. 2018. View Article : Google Scholar : PubMed/NCBI | |
Janowska-Wieczorek A, Marquez-Curtis LA, Gan K, Larratt L and Woods A: TNF-α stimulates matrix metalloproteinase expression in myelodysplastic syndromes (MDS):: Therapeutic potential for inhibitors of TNF-α and MMPs. Blood. 106:962A. 2005. View Article : Google Scholar | |
Bruno S, Mancini M, De Santis S, Monaldi C, Cavo M and Soverini S: The role of hypoxic bone marrow microenvironment in acute myeloid leukemia and future therapeutic opportunities. Int J Mol Sci. 22:68572021. View Article : Google Scholar : PubMed/NCBI | |
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA and Martelli AM: Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 1863:449–463. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, et al: Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 7:110–120. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yang L, Yang Z, Tang Y, Tao Y, Zhan Q, Lei L, Jing Y, Jiang X, Jin H, et al: Glycolytic enzyme PKM2 mediates autophagic activation to promote cell survival in NPM1-mutated leukemia. Int J Biol Sci. 15:882–894. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dunn WG, McLoughlin MA and Vassiliou GS: Clonal hematopoiesis and hematological malignancy. J Clin Invest. 134:e1800652024. View Article : Google Scholar : PubMed/NCBI | |
Bowman RL, Busque L and Levine RL: Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 22:157–170. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson AC, Morita M, Nakauchi H and Yamazaki S: Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity. Exp Hematol. 63:12–16.e11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A, et al: BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 551:384–388. 2017. View Article : Google Scholar : PubMed/NCBI | |
Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C, Miller CA, Niu B, McLellan MD, Dees ND, et al: Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 27:1275–1282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mortera-Blanco T, Dimitriou M, Woll PS, Karimi M, Elvarsdottir E, Conte S, Tobiasson M, Jansson M, Douagi I, Moarii M, et al: SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood. 130:881–890. 2017. View Article : Google Scholar : PubMed/NCBI | |
Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, Przychodzen B, Nagata Y, Meggendorfer M, Sanada M, et al: Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 49:204–212. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seymour JF, Döhner H, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, et al: Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens. BMC Cancer. 17:8522017. View Article : Google Scholar : PubMed/NCBI | |
Abdallah M, Xie Z, Ready A, Manogna D, Mendler JH and Loh KP: Management of acute myeloid leukemia (AML) in older patients. Curr Oncol Rep. 22:1032020. View Article : Google Scholar : PubMed/NCBI | |
LeBlanc TW and Erba HP: Shifting paradigms in the treatment of older adults with AML. Semin Hematol. 56:110–117. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kronfol MM, Jahr FM, Dozmorov MG, Phansalkar PS, Xie LY, Aberg KA, McRae M, Price ET, Slattum PW, Gerk PM and McClay JL: DNA methylation and histone acetylation changes to cytochrome P450 2E1 regulation in normal aging and impact on rates of drug metabolism in the liver. Geroscience. 42:819–832. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bose P and Grant S: Rational combinations of targeted agents in AML. J Clin Med. 4:634–664. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sotiropoulou IM, Manetas-Stavrakakis N, Kourek C, Xanthopoulos A, Magouliotis D, Giamouzis G, Skoularigis J and Briasoulis A: Prevention of anthracyclines and HER2 inhibitor-induced cardiotoxicity: A systematic review and meta-analysis. Cancers (Basel). 16:24192024. View Article : Google Scholar : PubMed/NCBI | |
Doval D, Sharma SK, Kumar M, Khandelwal V and Choudhary D: Cytarabine ears-A side effect of cytarabine therapy. J Oncol Pharm Pract. 26:471–473. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gardin C, Pautas C, Fournier E, Itzykson R, Lemasle E, Bourhis JH, Adès L, Marolleau JP, Malfuson JV, Gastaud L, et al: Added prognostic value of secondary AML-like gene mutations in ELN intermediate-risk older AML: ALFA-1200 study results. Blood Adv. 4:1942–1949. 2020. View Article : Google Scholar : PubMed/NCBI | |
Russell NH: Improving outcomes for elderly patients with AML. Lancet Oncol. 13:1065–1066. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brandwein JM, Geddes M, Kassis J, Kew AK, Leber B, Nevill T, Sabloff M, Sandhu I, Schuh AC, Storring JM and Ashkenas J: Treatment of older patients with acute myeloid leukemia (AML): A Canadian consensus. Am J Blood Res. 3:141–164. 2013.PubMed/NCBI | |
Zhao D, Zarif M, Eladl E, Capo-Chichi JM, Smith AC, Atenafu EG, Tierens A, Minden MD, Schuh A and Chang H: NPM1-mutated AML-MRC diagnosed on the basis of history of MDS or MDS/MPN frequently harbours secondary-type mutations and confers inferior outcome compared to AML with mutated NPM1. Leuk Res. 118:1068692022. View Article : Google Scholar : PubMed/NCBI | |
Cruijsen M, Lübbert M, Wijermans P and Huls G: Clinical Results of Hypomethylating agents in AML treatment. J Clin Med. 4:1–17. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stomper J and Lübbert M: Can we predict responsiveness to hypomethylating agents in AML? Semin Hematol. 56:118–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sadeghi M, Khodakarami A, Ahmadi A, Navashenaq JG, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Akbari AA and Jadidi-Niaragh F: The prognostic and therapeutic potentials of CTLA-4 in hematological malignancies. Expert Opin Ther Targets. 26:1057–1071. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Yu Z, Huang J, Chen Y, Huang S, Yao D, Xu L, Lu Y, Chen S and Li Y: Increased PD-1+Tim-3+ exhausted T cells in bone marrow may influence the clinical outcome of patients with AML. Biomark Res. 8:62020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhou F, He L, Wang X, Song L, Wang H, Sun S, Guo Z, Ma K, Xu J and Cui C: AML cell-derived exosomes suppress the activation and cytotoxicity of NK cells in AML via PD-1/PD-L1 pathway. Cell Biol Int. 48:1588–1598. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hwang HS, Han AR, Lee JY, Park GS, Min WS and Kim HJ: Enhanced anti-leukemic effects through induction of immunomodulating microenvironment by blocking CXCR4 and PD-L1 in an AML mouse model. Immunol Invest. 48:96–105. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kotsiafti A, Giannakas K, Christoforou P and Liapis K: Progress toward better treatment of therapy-related AML. Cancers (Basel). 15:16582023. View Article : Google Scholar : PubMed/NCBI | |
Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K and Burnett AK: Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: Results of the United Kingdom MRC AML-15 trial. Blood. 120:2826–2835. 2012. View Article : Google Scholar : PubMed/NCBI | |
Canaani J: Management of AML beyond ‘3 + 7’ in 2019. Clin Hematol Int. 1:10–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alfayez M, Kantarjian H, Kadia T, Ravandi-Kashani F and Daver N: CPX-351 (vyxeos) in AML. Leuk Lymphoma. 61:288–297. 2020. View Article : Google Scholar : PubMed/NCBI | |
National Comprehensive Cancer Network (NCCN), . NCCN Guidelines Version 2.2024: Acute myeloid leukemia. NCCN; Plymouth Meeting, PA: 2024 | |
Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, et al: CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 36:2684–2692. 2018. View Article : Google Scholar : PubMed/NCBI | |
Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, Janoria KG, Gieser G, Bateman DA, Przepiorka D, et al: FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 25:2685–2690. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Tardi P, Sadowski N, Xie S, Heller D and Mayer L: Pharmacokinetics, drug metabolism, and tissue distribution of CPX-351 in animals. Nanomedicine. 30:1022752020. View Article : Google Scholar : PubMed/NCBI | |
Chiche E, Rahmé R, Bertoli S, Dumas PY, Micol JB, Hicheri Y, Pasquier F, Peterlin P, Chevallier P and Thomas X: Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: A multicentric French cohort. Blood Adv. 5:176–184. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tolcher AW and Mayer LD: Improving combination cancer therapy: The CombiPlex® development platform. Future Oncol. 14:1317–1332. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hellström-Lindberg ES and Kröger N: Clinical decision-making and treatment of myelodysplastic syndromes. Blood. 142:2268–2281. 2023. View Article : Google Scholar : PubMed/NCBI | |
Koenig KL, Sahasrabudhe KD, Sigmund AM and Bhatnagar B: AML with myelodysplasia-related changes: Development, challenges, and treatment advances. Genes (Basel). 11:8452020. View Article : Google Scholar : PubMed/NCBI | |
Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, et al: International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 126:291–299. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Jia JS, Gong LZ, Lu SY, Zhu HH, Huang XJ and Jiang H: Efficacy and safety of decitabine in combination with G-CSF, low-dose cytarabine and aclarubicin in MDS-EB and AML-MRC. Zhonghua Xue Ye Xue Za Zhi. 39:734–738. 2018.(In Chinese). PubMed/NCBI | |
Assi R, Kantarjian H, Ravandi F and Daver N: Immune therapies in acute myeloid leukemia: A focus on monoclonal antibodies and immune checkpoint inhibitors. Curr Opin Hematol. 25:136–145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuan XL, Wu YB, Song XL, Chen Y, Lu Y, Lai XY, Shi JM, Liu LZ, Zhao YM, Yu J, et al: Efficacy and prognostic factors of allogeneic hematopoietic stem cell transplantation in the treatment of secondary acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi. 45:41–47. 2024.PubMed/NCBI | |
Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, et al: Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 4:362–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, Konopleva M, Döhner H, Letai A, Fenaux P, et al: Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 383:617–629. 2020. View Article : Google Scholar : PubMed/NCBI | |
Waclawiczek A, Leppä AM, Renders S, Stumpf K, Reyneri C, Betz B, Janssen M, Shahswar R, Donato E, Karpova D, et al: Combinatorial bcl2 family expression in acute myeloid leukemia stem cells predicts clinical response to Azacitidine/Venetoclax. Cancer Discov. 13:1408–1427. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wan CL, Liu YQ, Liu FT, Huang YH, Cao HY, Huang SM, Tan KW, Ge SS, Wang M, Liu MJ, et al: Venetoclax with hypomethylating agents versus intensive chemotherapy in newly diagnosed acute myeloid leukemia with myelodysplasia related changes: A propensity score-matched analysis based on international consensus classification. Blood Cancer J. 14:1442024. View Article : Google Scholar : PubMed/NCBI | |
Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SGT, Liu K, Iyer SP, Bearss D and Bhalla KN: Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia. 28:2155–2164. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sugino N, Kawahara M, Tatsumi G, Kanai A, Matsui H, Yamamoto R, Nagai Y, Fujii S, Shimazu Y, Hishizawa M, et al: A novel LSD1 inhibitor NCD38 ameliorates MDS-related leukemia with complex karyotype by attenuating leukemia programs via activating super-enhancers. Leukemia. 31:2303–2314. 2017. View Article : Google Scholar : PubMed/NCBI | |
List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, Powell B, Greenberg P, Thomas D, Stone R, et al: Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 355:1456–1465. 2006. View Article : Google Scholar : PubMed/NCBI | |
List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, Rimsza L, Heaton R, Knight R and Zeldis JB: Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 352:549–557. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nimer SD: Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol. 24:2576–2582. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brune MM, Stüssi G, Lundberg P, Vela V, Heim D, Manz MG, Haralambieva E, Pabst T, Banz Y, Bargetzi M, et al: Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 100:1169–1179. 2021. View Article : Google Scholar : PubMed/NCBI | |
Daver N, Konopleva M, Maiti A, Kadia TM, DiNardo CD, Loghavi S, Pemmaraju N, Jabbour EJ, Montalban-Bravo G, Tang G, et al: Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML. Blood. 138:371–374. 2021. View Article : Google Scholar |