
Abstract. High-risk types of HPV express the oncoproteins,
E6 and E7, that can inactivate TP53 and RB1, respectively,
and thus take control of both cell cycle and apoptosis. Herein,
the mRNA expression profiles of 24 G1/S checkpoint genes
were analysed in cancer and squamous intraepithelial lesions
(SIL) of the uterine cervix. In total 35 squamous cervical
carcinomas, 26 high-grade SIL (HSIL), 33 low-grade SIL
(LSIL) tissues, and 28 normal uterine cervix specimens as
controls were assessed by RT-PCR. Five genes were found to
be upregulated only in tumours, RBL2, E2F2, CDK6,
CCNE1 and MYC; eight in tumours and HSILs, E2F1, E2F3,
E2F5, CCND1, CDK2, CDKN1B, PCNA and POLA, and
five in tumours, HSILs and LSILs, TP53, E2F4, CDKN1A,
CDKN2A and DHFR. MDM2 was found to be upregulated in
SIL, while RBL1 was found to be downregulated in all three
groups of cases. TP73 exhibited lower levels in carcinomas;
however, its exon 13-containing isoforms were increased and
exon 2-containing isoforms were reduced in both cancer and
HSIL. Three genes, RB1, CDK4 and CDKN2D, did not exhibit
any significant alteration in gene expression. Hierarchical
clustering revealed that this set of G1/S checkpoint genes
was able to discriminate the total 122 samples into groups of
disease and non-disease with only 8 exceptions (6.6%). Our
data suggest that deregulation of G1/S phase transition in
cervical carcinogenesis is a progressive process. Certain
clusters of genes are activated very early in pre-cancerous
SILs while others are activated later, during malignant
transformation. The ability of this array of markers to
identify disease status suggests that it could be used for
diagnostic purposes.

Introduction

Cervical cancer is the second most common gynaecological
malignancy worldwide, with ~500,000 new cases and
274,000 deaths per annum. It is much more common in the
developing countries, where 83% of cases occur (1). Chronic
infection of keratinocytes of the uterine cervix by certain
types of human papillomavirus (HPV), classified as high-
risk, is well established as the causative agent of both invasive
cervical cancer and cervical intraepithelial neoplasia (2,3).
Despite the development of an HPV vaccine for certain
high-risk types (4-6) and the development of national HPV
vaccination policies, a large number of the female population,
remains at risk (7).

Carcinogenesis of the uterine cervix, from HPV infection
to viral persistence, to the development of precancerous
lesions, and finally invasive cancer, is a complex process that
remains to be elucidated. Cervical carcinoma develops
infrequently, even after infection with high-risk types of
HPV, and it typically occurs years to decades after the initial
infection (8). The cancer precursors, squamous intraepithelial
lesions (SILs) are also infected by high-risk HPV types but
do not exhibit such a proliferative or invasive phenotype as
tumours (9). Thus, the development of new biomarkers that
could accurately characterize each step of this process is
important for the better clinical management of women
suffering HPV infection.

Unlike the HPV-associated benign lesions, where the
viral genome is maintained episomally, the majority of HPV-
associated cancers contain viral DNA integrated into the
genome of the host cells (10,11). While most of the open
reading frames of the integrated viral DNA are lost or
interrupted, the HPV oncoproteins, E6 and E7, continue to be
expressed (10). Furthermore, the expression of both proteins
is upregulated upon integration, because the gene encoding
the viral transcriptional repressor E2 is generally lost and the
mRNA encoding E6 and E7 is stabilized (12,13). E6 and E7
proteins encoded by high-risk types of HPV interact with
TP53 and the retinoblastoma protein (RB1) respectively to
inactivate these tumour suppressors (14-16).

Progression through the cell cycle depends on the
coordinated synthesis, activation, and degradation of a
family of cyclins (CCNs) that act as catalytic subunits of
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cyclin-dependent kinases (CDKs). Different CCN/CDK
holoenzymes are activated at specific phases of the cell cycle
and exert their regulatory control by phosphorylating key
proteins, such as transcription factors, involved in cell cycle
progression (17). The activity of these kinases is directed in
part by inhibitors of CDKs (CDKNs). Two classes of CDKN
exist; the Cip/Kip family, which includes CDKN1A (p21),
CDKN1B (p27) and CDKN1C (p57), CDKNs that regulate
cell proliferation throughout the cell cycle; and the INK4
proteins, CDKN2B (p15), CDKN2A (p16), CDKN2C (p18)
and CDKN2D (p19), which are inhibitors of CDK4 and
CDK6 and are active only at G1 phase (18,19).

The RB1 protein is also an important negative regulator
of proliferation that, during the resting G0 state, is unphos-
phorylated and inhibits cell cycle progression. During G1 to
S phase transition, when it is hypophosphorylated, it binds
to the transcription factor, E2F, and prevents the tran-
scription of genes involved in the transition, such as poly-
merase A (POLA), dihydrofolate reductase (DHFR), MYC
and proliferating cell nuclear antigen (PCNA); and, when it
is phosphorylated by CCND1/CDK4/6, it permits cells to
traverse the G1/S checkpoint and proliferate (20). The Rb-like
RBL1 (p107) and RBL2 (p130), also known as pocket proteins,
display similar and distinct functions to RB1 in G1/S transition
control, but they contain a Cip/Kip like motif which enables
binding and inhibition of CDKs (20).

The E2F family of transcription factors plays an important
role in the control of the cell cycle and action of tumour
suppressor proteins. The E2F proteins contain conserved
domains, including a DNA-binding domain, a dimerization
domain which determines interaction with the differentiation-
regulated transcription factor proteins (DP), a transactivation
domain enriched in acidic amino acids, and a tumour
suppressor protein association domain which is embedded
within the transactivation domain. E2F1, E2F2 and E2F3
have an additional cyclin-binding domain, while E2F4 binds
preferentially to RBL1/RBL2 and E2F5 to RBL2 (21,22).

The TP53 protein regulates, as transcriptional factor, the
expression of CDKN1A, which acts as a universal inhibitor,
able to bind to and inhibit CDKs at all stages of the cell cycle.
When it is overexpressed, CDKN1A inhibits CCND1/CDK4/6
kinase activity and arrests cells in G1 (23). TP53 can be
induced in response to DNA damage and could be degraded
by the action of the MDM2 protein, while CDKN2D counter-
acts this effect (24). TP73, one of the two TP53 homologues,
can be divided similarly to p53 functional domains, into
amino-terminal transactivation, central DNA-binding domain
and homo-oligomerization domain. However, it harbours an
extended, compared with TP53, carboxy-terminal where two
additional domains exist, a secondary transactivation and a
sterile alpha motif (SAM) domain (25). It shares overlapping
functions with TP53 to some extent, such as CDKN1A and
MDM2 transcriptional activation, but has a unique role in
TP53-independent apoptosis through E2F1 (26). The various
TP73 isoforms, those with truncated carboxy-terminal (exon
13 lacking) and others with truncated amino-terminal (exon 2
lacking) have different transactivation efficacies and are able
to hetero-oligomerize with TP53 mutants to form tetramers
with variable ability to activate and antagonise for TP53-
responsive promoters (25).
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Table I. Oligonucleotide primer sequences.
–––––––––––––––––––––––––––––––––––––––––––––––––
Primers Sequence (5'-3') Fragment

(bp)
–––––––––––––––––––––––––––––––––––––––––––––––––
E2F1-F GTGCAGATTGGAGGGTGG 154

E2F1-R GATGGATATGAGATGGGAGAGG

E2F2-F CCTTGGAGGCTACTGACAGC 143

E2F2-R CCACAGGTAGTCGTCCTGGT

E2F3-F CACGTACCCCGTAGGAAAAG 120

E2F3-R TCAGTGTGTGCATGACAACTC

E2F4-F TTTTATTCACTTGAACACTGTAC 113

E2F4-R CAGAGATTTAGAAAGATTTACAG

E2F5-F TTTAATATCCACAAACGTCCCC 134

E2F5-R GGCCACTGTTTTGATGACCT

RB1-F TGGGTGATTCCTAAGCCACTTGA 165

RB1-R GGACTCCCACTCTAGGGCCATT

RBL1-F TGTGGTGAGCCAAGGTTG 148

RBL1-R TGGGGTTTCTCCTTATTTCA

RBL2-F AGCAGCAGCCTTTAATGCAT 249

RBL2-R CTTGCAGTATTTCTAAAAGCTTTGC

POLA-F TTGCCCCTTAAATAGAAAGTGC 215

POLA-R TTTTGCTGCTGCCAAAGAC

B2M-F TCCAACATCAACATCTTGGT 122

B2M-R TCCCCCAAATTCTAAGCAGA

CCND1-F AAAGACAGTTTTTGGGTAATCTTTT 126

CCND1-R CCGGAGCATTTTGATACCAG

CCNE1-F ACAAAACAGGTTCATCAAAGGC 225

CCNE1-R GGTGCTACTTGACCCTAAGGG

CDK2-F TTCTTGAAGCCCCCAGC 152

CDK2-R CCCCTGTATTCCCAGAGTTG

CDK4-F CTTCTGGACACTGAGAGGGC 110

CDK4-R TGGGAGGGGAATGTCATTAA

CDK6-F CGGAGAACACCCTTGGTG 105

CDK6-R GAGCCTGTCCAGAAGACAGC

PCNA-F ACTCGCATTTAATGATGGTG 167

PCNA-R CTTCTTTCATGAAGCAGTGG

MYC-F GGAAAAGTAAGGAAAACGATTCC 333

MYC-R TAGGATTGAAATTCTGTGTAACTGC

DHFR-F ACCAACATGTGAAAAGCCCG 87

DHFR-R ACCTGCTACAGTGAGCTGCC

MDM2-F TGAAGGTTTCTCTTCCTGAAGC 180

MDM2-R AAGGTGGGAGTGATCAAAAGG

TP53-F TTTGGGTCTTTGAACCCTTG 117

TP53-R CCACAACAAAACACCAGTGC

CDKN1A-F ATTCAGCATTGTGGGAGGAG 131

CDKN1A-R TGGACTGTTTTCTCTCGGCT

CDKN1B-F GGATAAGTGAAATGGATACTACATC 228

CDKN1B-R AAAAAGAGGGGAAAACCTATTCTAC
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The transition of the cell cycle from G1 to S phase
requires both cyclin D-dependent Cdk4 and Cdk6, and cyclin
E/Cdk2 holoenzymes, and is regulated by the TP53/MDM2/
CDKN1A/CDKN2D and RB1/E2F/CCND1/CDK4/CDK6/
CDKN2A pathways (23,27). Inactivation of TP53 and pocket
proteins, RB1, RBL1 and RBL2, by the viral oncoproteins
of high-risk HPV types, E6 and E7, is a prerequisite for
oncogenesis but is not sufficient to convert normal cells into an
immortalized or malignant state (2). A number of secondary
factors, such as smoking, multiparity and oral contraceptives,
are thought to influence the likelihood that a high-risk type
HPV infection will persist and progress to cervical cancer,
possibly though genetic and epigenetic alterations, activation
of proto-oncogenes and loss of tumour suppressors as well as
immunological responses (28,29).

In order to investigate the potential contribution to human
cervical carcinogenesis of the genes implicated in G1/S phase
transition, and to identify possibly useful biomarkers for HPV
infection progression, the aim of this study was to determine
and analyse the transcriptional levels of RB1, RBL1, RBL2,
TP53, TP73 and its isoforms, MDM2, E2F1, E2F2, E2F3,
E2F4, E2F5, CCND1, CCNE1, CDK2, CDK4, CDK6,
CDKN1A, CDKN1B, CDKN2A, CDKN2D, DHFR, MYC,
PCNA, and POLA in cervical cancer, SIL and the normal
uterine cervix.

Materials and methods

Specimen collection. Thirty-five squamous cervical
carcinomas, staged between IA and IIB according to the
International Federation of Gynaecology and Obstetrics
(FIGO) and World Health Organization (WHO) systems; 26
high-grade SIL (HSIL) and 33 low-grade SIL (LSIL) tissues,
classified according to the Bethesda system; and 28 normal
uterine cervix specimens, were obtained from 122 women
aged 25-60 (40.6±7.9) years, at the Department of Obstetrics
and Gynaecology of the University Hospital of Heraklion,
Crete. Disease status was determined by cytological, colpo-
scopy and biopsy examination. All tissue samples were snap

frozen, stored at -80˚C and tested for HPV DNA, using the
GP5+/6+ primer set (30). The positive samples were further
investigated using specific primers, previously described (31),
for HPV-16, -18, -33 and -11, in multiplex PCR reactions
with ß2-microglobulin (B2M) as internal control. The
University of Crete ethics committee approved this study and
all the participants gave written informed consent.

RNA preparation and RT-PCR. Total RNA was extracted
from cervical epithelium tissues that were separated from
adjacent stromal tissue by microdissection, using the Trizol
reagent (Invitrogen Corp, Carlsbad, CA, USA) according to
the manufacturer's instructions. RNA quality was estimated
by agarose electrophoresis, while its concentration and purity
was determined by UV spectrophotometry. Using Thermo-
script reverse transcriptase (Invitrogen Corp.) cDNA was
prepared from 3 μg of total RNA followed by multiplex PCR
amplification with Platinum Taq DNA polymerase (Invitrogen
Corp.) and the appropriate primer sets (Table I). In each
multiplex PCR assay, the ß2-microglobulin (B2M) target
cDNA was amplified as reference. The RT-PCR products
were analyzed on 8% polyacrylamide gels (29:1 ratio
acrylamide/bis-acrylamide), in 0.5X Tris-Boric-EDTA (TBE)
buffer and silver-stained. The analysis was repeated 3 times
for each sample and marker, and the results were reproducible.
Integrated density (ID) of the bands was calculated by digital
imaging using the ImageJ 1.32j software (Wayne Rasband,
National Institutes of Health, USA, http://rsb.info.nih.
gov/ij/), as ID=[mean density-background]*pixels. These
measurements were used as a quantitative parameter for gene
expression.

Statistics. Descriptive statistics, calculations of mean,
standard deviation (SD), standard error (SE), Kolmogorov-
Smirnov goodness of fit and Levene median test, for the
examination of normality and equivalency of variances
respectively, were performed for each marker and group
examined. Evaluation of the power of this experimental
protocol to identify differences of gene expression was tested
by multiple comparison analysis of the reference gene B2M
expression from independent RT-PCR reactions of the same
sample. Student's t-test, 2-tailed, was executed and a 99%
confidence interval was determined between 0.82 and 1.20
(p<0.01). Thus, a ratio of average gene expression levels
between case and control group <0.82 was considered as
downregulation, while a ratio >1.20 was considered as
upregulation. Kruskal-Wallis one-way analysis of variance
on ranks, a nonparametric test, was used to compare the
expression levels of each marker between different groups.
Another nonparametric test, the Spearman rank order
correlation, was performed to investigate correlations of
expression among genes. Classification of samples according
to gene expression was performed by hierarchical clustering
using calculation of Euclidean distance. The 99% reference
range for the mean was constructed conservatively as mean
± 3xSD. A p-value <0.05 was considered statistically
significant. All statistical calculations were carried out by
the SigmaStat 3.00 (SPSS Inc., USA) software except
hierarchical clustering which was performed by SYSTAT 10
(SPSS Inc.).
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––
Primers Sequence (5'-3') Fragment

(bp)
–––––––––––––––––––––––––––––––––––––––––––––––––

CDKN2A-F CATCAGTCACCGAAGGTCCT 150

CDKN2A-R AATGGACATTTACGGTAGTGGG

CDKN2D-F GATCTGGGGTCACCCTCTC 207

CDKN2D-R CCAACACACCAAAAGGAGTG

TP73-exon2-F CACCACGTTTGAGCACCTC 94

TP73-exon2-R CGCCCACCACCTCATTATT

TP73-F GGACGTCTTCCACCTGGAG 216

TP73-R GTAGTCGGTGTTGGAGGGG

TP73-exon13-F TTTTAACAGGATTGGGGTG 91

TP73-exon13-R CTCAATGGTCAGGTTCTGC
–––––––––––––––––––––––––––––––––––––––––––––––––
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Table II. Statistically significant correlation coefficient (CC) values calculated for pairs of genes.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
A) CDK2 CDKN2D MYC 3CDKN1A CDKN2A MDM2 RBL2 CDK4
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
E2F4 0.728 0.602 0.634 0.679 0.134 0.527 0.372
CDK2 0.529 0.574 0.628 0.147 0.507 0.320
CDKN2D
MYC 0.618 0.595 0.325
CDKN1A 0.588 0.359 0.447 0.245
CDKN2A 0.509
MDM2 0.244 0.192
RBL2 0.222
CDK4
RBL1
PCNA
CDKN1B
CDK6
E2F2
RB1
CCNE1
DHFR
E2F5
E2F1
POLA
TP53
TP73
E2F3
TP73 exon13
CCND1
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

B) RBL1 PCNA CDKN1B CDK6 E2F2 RB1 CCNE1 DHFR
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
E2F4 -0.793 0.757 0.759 0.460 0.557 0.337 0.424 0.765
CDK2 -0.744 0.688 0.693 0.485 0.491 0.316 0.452 0.734
CDKN2D
MYC -0.651 0.606 0.574 0.479 0.483 0.241 0.274 0.586
CDKN1A -0.624 0.578 0.600 0.437 0.375 0.231 0.292 0.642
CDKN2A -0.719 0.686 0.666 0.558 0.440 0.318 0.437 0.708
MDM2 -0.300
RBL2 -0.464 0.476 0.531 0.228 0.328 0.253 0.412 0.458
CDK4 -0.279 0.282 0.302 0.189 0.146 0.377
RBL1 -0.722 -0.755 -0.594 -0.589 -0.386 -0.504 -0.800
PCNA 0.812 0.463 0.511 0.397 0.445 0.722
CDKN1B 0.526 0.505 0.486 0.582 0.714
CDK6 0.391 0.272 0.386 0.557
E2F2 0.298 0.422 0.574
RB1 0.437 0.405
CCNE1 0.429
DHFR
E2F5
E2F1
POLA
TP53
TP73
E2F3
TP73 exon13
CCND1
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Results

Five genes, RBL2, E2F2, CDK6, CCNE1 and MYC, were
found to be upregulated only in cervical cancer, in 80, 80,
97, 74 and 74% of cases, respectively. Eight genes were
upregulated in both cancer and HSIL: E2F1 in 84 and 71%
of cervical carcinomas and HSILs, respectively; E2F3 in 81
and 74%, E2F5 in 86 and 81%, CCND1 in 77 and 52%,
CDK2 in 88 and 62%, CDKN1B in 86 and 77%, PCNA in 89
and 69%, and POLA in 62 and 52%. Only 5 out of the 24 tested
genes were found to be upregulated compared to the controls
in all three groups of cases, cervical cancer, HSIL and LSIL.
TP53 was upregulated in 80% of tumours, 69% of HSILs and
64% of LSILs; E2F4 in 89, 81 and 76%; CDKN1A in 82, 73
and 70%; CDKN2A in 86, 82 and 77%; and DHFR in 75, 70
and 62%, respectively. MDM2 exhibits a unique pattern of
upregulation in 88 and 73% of HSILs and LSILs, respectively.

RBL1 was found to be downregulated in 97, 88 and 73%
of tumours, HSILs and LSILs. TP73 exhibited lower levels in
60% of cervical cancers. However, TP73 exon 13-containing
isoforms were substantially increased in 73 and 69% of cancers
and HSILs, while exon 2-containing isoforms were reduced
in 97 and 73% of tumours and HSILs, respectively. Three
genes, RB1, CDK4 and CDKN2D, exhibited approximately
the same expression levels between cases and controls. All
the observed differences of gene expression were statistically

significant (p<0.05) as tested by Kruskal-Wallis one-way
analysis of variance on ranks. Representative examples of the
RT-PCR analysis mean ID with SD per gene and group are
shown in Fig. 1 and graphically in Fig. 2.

The Spearman correlation coefficient (CC) that is calculated
with this test quantifies the strength of the association between
the variables and varies between -1 and +1. A CC near +1
indicates there is a strong positive relationship between the
two variables, with both increasing together. A CC near -1
indicates there is a strong negative relationship between the
two variables, with one always decreasing as the other
increases. A CC of 0 indicates no relationship between the
two variables. Spearman rank order correlation test was
performed and significant correlations (p<0.0001) between
pairs of tested genes were observed (Table II). The highest
positive CC significant values were calculated for the pairs;
PCNA-CDKN1B (CC: 0.812), DHFR-E2F1 (CC: 0.784),
RBL1-TP73 exon 2 (CC: 0.782), E2F4-DHFR (CC: 0.765),
E2F4-CDKN1B (CC: 0.759), and E2F4-PCNA (CC: 0.757).
The lowest significant negative CC values were calculated
for the pairs; RBL1-DHFR (CC: -0.800), E2F4-RBL1 (CC:
-0.793), RBL1-E2F1 (CC: -0.767), RBL1-CCND1 (CC:
-0.767), RBL1-CDKN1B (CC: -0.755), and RBL1-TP53
(CC: -0.751).

Nearly all the cervical carcinomas (94.3%) were found to
be HPV positive, while the vast majority of HSILs and LSILs
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Table II. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
C) E2F5 E2F1 POLA TP53 TP73 E2F3 TP73 exon13      CCND1      TP73 exon2
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
E2F4 0.647 0.747 0.698 0.676 -0.475 0.602 0.677 0.723 -0.726
CDK2 0.576 0.619 0.613 0.678 -0.440 0.568 0.625 0.702 -0.657
CDKN2D
MYC 0.511 0.552 0.526 0.529 -0.463 0.535 0.485 0.542 -0.568
CDKN1A 0.505 0.551 0.563 0.551 -0.353 0.532 0.487 0.533 -0.540
CDKN2A 0.528 0.658 0.559 0.620 -0.406 0.557 0.501 0.572 -0.598
MDM2 0.228
RBL2 0.404 0.450 0.410 0.476 -0.261 0.458 0.337 0.418 -0.405
CDK4 0.387 0.289 0.321 0.430 -0.334 0.213 0.366 0.381 -0.364
RBL1 -0.660 -0.767 -0.703 -0.751 0.549 -0.662 -0.677 -0.767 0.782
PCNA 0.604 0.600 0.667 0.668 -0.515 0.604 0.680 0.683 -0.687
CDKN1B 0.615 0.667 0.682 0.647 -0.509 0.613 0.664 0.647 -0.674
CDK6 0.412 0.552 0.418 0.471 -0.353 0.461 0.478 0.485 -0.469
E2F2 0.495 0.548 0.537 0.525 -0.428 0.422 0.538 0.484 -0.460
RB1 0.234 0.378 0.324 0.379 -0.383 0.317 0.339 0.290 -0.367
CCNE1 0.391 0.377 0.471 0.521 -0.422 0.422 0.447 0.407 -0.464
DHFR 0.712 0.784 0.684 0.716 -0.534 0.555 0.687 0.743 -0.682
E2F5 0.674 0.653 0.650 -0.498 0.483 0.546 0.667 -0.603
E2F1 0.666 0.578 -0.475 0.499 0.583 0.719 -0.644
POLA 0.675 -0.509 0.506 0.706 0.709 -0.646
TP53 -0.650 0.590 0.622 0.700 -0.670
TP73 -0.512 -0.497 -0.504 0.630
E2F3 0.508 0.510 -0.593
TP73 exon13 0.592 -0.620
CCND1 -0.721
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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(88.5 and 84.5%, respectively) also harbour the virus. In
contrast, all the normal uterine cervix specimens tested were
found to be HPV free. The results of genotyping of the HPV
positive cases (Table III) shows the predominant presence of
HPV-16 in the affected patients. No association were found
between gene expression and HPV types.

Hierarchical clustering was performed using calculation
of Euclidean distance (Fig. 3). The 122 examined cervical
tissue samples were separated into three major clusters (Fig. 3,
right panel, sample clustering), normal cervix, LSIL, and
cervical cancer together with HSIL. However, the latter cluster

is clearly separated into two sub-clusters, discriminating HSIL
from cancer cases. Only 8 out of 122 samples were incorrectly
clustered (6.6%). The 24 tested genes were also separated
into three clusters (Fig. 3, lower panel, gene clustering).
Classification of samples according to gene expression was
performed by hierarchical clustering using calculation of
Euclidean distance, and a permuted data matrix was designed
(Fig. 3). The first contains TP73 exon 2-containing transcripts,
RBL1 and TP73 that are expressed in low levels. The second
contains POLA, CCND1, CDK2, E2F4, CDK6, MDM2,
B2M (reference), CDKN2D, MYC, CDKN1A, RBL2, E2F2,
TP73 exon 13-containing transcripts, CCNE1, and CDKN2A,
genes with moderate expression. Finally, the third cluster
contains CDK4, E2F3, E2F5, E2F1, RB1 PCNA, CDKN1B,
TP53 and DHFR that are expressed in high levels.

Discussion

Deregulation of G1 to S phase transition in cervical carcino-
genesis appears to be a progressive process. Initially, after
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Figure 1. Gene expression analysis. Representative examples of the
electrophoresis analysis of RT-PCR products (left panel) and mean ID ± SD
observed in each group. CA, cervical carcinoma; N, normal cervix.

Figure 2. Multiple scatter plot with error bars. Mean ID observed per gene
and group is presented. The error bars represent ± x3SD

Table III. Detection of HPV DNA and integration status.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Specimens HPV-16 HPV-18 HPV-33 HPV-11 Other HPV Total HPV

(%) (%) (%) (%) type (%) positive (%)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Cervical 19/35 5/35 3/35 0/35 6/35 33/35
cancer (54.3) (14.3) (8.6) (0.0) (17.1) (94.3)

HSIL 13/26 3/26 1/26 0/26 6/26 23/26
(50.0) (11.5) (3.9) (0.0) (23.1) (88.5)

LSIL 15/33 4/33 2/33 0/33 7/33 28/33
(45.5) (12.1) (6.1) (0.0) (21.2) (84.5)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Figure 3. Permuted data matrix. Hierarchical clustering of tested samples and genes. Right panel, sample clustering; lower panel, gene clustering.
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high-risk HPV infection, expression of TP53, MDM2, E2F4,
CDKN1A, CDKN2A and DHFR is markedly elevated in LSIL.
For RBL1 a decrease in transcription levels was observed in
the same set of samples. These alterations that were observed
in the majority of LSIL cervical biopsies, when compared with
normal cervical tissues, with limited inter-individual variation,
affect both TP53 and RB1 pathways.

The TP53 upregulation is probably triggered by episomal
HPV presence and then both MDM2 and CDKN1A are also
upregulated under the transcriptional activity of TP53 (23).
CDKN1A has a major inhibitory effect on the G1/S checkpoint
of the cell cycle. The CDKN2A promoter responds to stress
signals, limiting cell proliferation and modulating oncogene-
induced apoptosis (24). The increase in DHFR levels, which
converts dihydrofolate into tetrahydrofolate, a methyl group
shuttle required for the de novo synthesis of purines, necessary
for DNA replication, in LSIL suggests deregulation of E2F
transcriptional activity (32). RBL1 regulates cell proliferation
via phosphorylation-sensitive interactions with E2F tran-
scription factors, and predominantly with E2F4. The
combination of RBL1 downregulation and E2F4 upregulation
deregulates the ratio of RBL1-E2F4 to RBL2-E2F4 complexes
and may alter the transcriptional activity of E2F4 (33,34).
Furthermore, the E2F4 and E2F1 transcription factors have
opposing roles in cell cycle progression. While E2F1 is an
activator of cell cycle progression, E2F4 functions as a
transcriptional repressor (35). Thus, overexpression of E2F4
alone deregulates the balance between different activities
of E2F factors and might compensate for aggressive cell
proliferation.

The findings on gene expression profiles of HSIL cervical
biopsies introduce a second group of upregulated genes
together with the previously described. This group of
genes comprises of E2F1, E2F3, E2F5, CCND1, CDK2,
CDKN1B, PCNA and POLA. The TP73 expression remains
at the same levels with LSIL and normal cervix. However, its
exon 13 containing isoforms are increased while its exon 2
containing isoforms are reduced in HSIL.

E2F1, E2F3, and E2F5 overexpression counteracts the
E2F4 upregulation effects in LSIL, and promotes transcrip-
tional activation of the cell cycle progression S phase genes,
such as PCNA and POLA (35,36). CCND1 is one of the
main components of G1/S checkpoint and its upregulation
contributes to malignancy (37). Furthermore, CCND1
transcription is regulated by E2F (38). CDK2 is a component
of the CCNE1/CDK2 complex that along with the CCND1/
CDK4/6 complex are master regulators of progression
through G1 phase of the cell cycle (39). CDK2 upregulation
promotes G1 to S phase transition (40). CDKN1B, which is
another major inhibitor of the G1/S checkpoint, is possibly
overexpressed as a compensatory cellular mechanism to regain
normal cell cycle control. Even though TP73 expression is
unaltered, the increase of exon 13-containing isoforms together
with the decrease of exon 2-containing isoforms suggest that
the majority of TP73 isoforms in HSIL cannot surrogate
TP53 functions (23,41,42). Our data show that deregulation
of G1/S phase transition is much more severe in HSIL than in
LSIL. It is characteristic that, according to gene expression
levels, HSIL samples are classified as a subgroup in the same
cluster with cervical tumours in hierarchical clustering.

Sequentially, in cervical cancer a third group of genes
were found to be upregulated; RBL2, E2F2, CDK6, CCNE1,
TP73 and MYC. These alterations in the background of that
previously described, with the exception of MDM2, which in
turn exhibits normal expression levels, reveal a completely
uncontrolled G1/S phase transition. The MDM2 expression
levels in cervical cancer might be the outcome of rapid
degradation of TP53 through its binding with E6 viral onco-
protein, since MDM2 transcription is controlled by TP53 in a
feedback regulation mechanism. The TP73 downregulation
effect is further contributing to the disease phenotype together
with its isoform equilibrium imbalance.

In interpreting our gene expression data, it is assumed that
protein levels in these tissue samples reflect the expression of
their corresponding mRNAs. Thus, we generally assume that
samples with high mRNA content for a particular gene are
likely to have elevated levels for the corresponding protein.
We acknowledge that this need not be the case, as post-
transcriptional, translational and protein degradation controls
probably have a significant influence. However, the limited
amounts of biopsy material available have precluded analysis
at the protein level.

Spearman rank order correlation test provided additional
evidence for the complex relationships between the examined
genes. The statistically significant Spearman CC values
(p<0.0001) calculated for each pair of genes are depicted in
Table II. The positive or negative relationships observed
between the tested genes are in agreement with the above
described observations.

Hierarchical clustering of gene expression was able to
classify the cervical tissue samples according to disease status,
with few discrepancies (6.6%). Thus, this array of G1/S
checkpoint markers could be used for diagnostic purposes.
The examined genes were clustered in three groups of low,
TP73 exon 2, RBL1 and TP73; moderate, POLA, CCND1,
CDK2, E2F4, CDK6, MDM2, B2M, CDKN2D, MYC,
CDKN1A, RBL2, E2F2, TP73 exon 13, CCNE1, and
CDKN2A; and high, CDK4, E2F3, E2F5, E2F1, RB1 PCNA,
CDKN1B, TP53 and DHFR, expression.

Previous studies have recognized the diagnostic significance
of immunohistochemical analysis for CDKN2A alone (43-46)
or in combination with other proteins, such as CDKN1A,
CDKN1B, CCNE, CDKN2D and TP53 (47-50), for the early
detection of reactive changes from LSIL to HSIL and cervical
cancer. In this study, we identified CDKN1A as an early
responsive gene to neoplasia.

In conclusion, our data outline important steps in carcino-
genesis of the uterine cervix. Deregulation of G1/S phase
transition takes place sequentially. Different genes are tran-
scriptionally activated in low- and high-grade pre-cancerous
lesions, and cancer. The first group of early responsive genes,
comprised TP53, MDM2, E2F4, CDKN1A, CDKN2A and
DHFR, are activated in LSIL. The second group, comprised
E2F1, E2F3, E2F5, CCND1, CDK2, CDKN1B, PCNA and
POLA, are activated in HSIL. The third group of late
responsive or cancer-related genes comprised RBL2, E2F2,
CDK6, CCNE1, TP73 and MYC, which are upregulated only
in squamous cervical carcinomas. RBL1 was found to be
downregulated in all three groups of cases and TP73 exhibited
deregulation of isoform equilibrium. Hierarchical clustering
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can discriminate the cervical tissue biopsies according to
disease status, which suggests a possible diagnostic
importance.
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