
Abstract. Lung cancer is a major cause of cancer-related
mortality in both men and women. A 5-year survival of lung
cancer patients is only 15% with a negative correlation
between progressively advanced lung cancer stage and a 5-year
survival period. The only chance for cure is surgical resection
if done at the early stage of the disease. Therefore, an early
diagnosis and a better prediction of prognosis could decrease
mortality. An early diagnosis could provide the opportunity
for a therapeutic intervention early in the course of the disease.
Genetic alterations in the cancer genome include aneuploidy,
deletions and amplifications of chromosomal regions, loss
of heterozygosity (LOH), microsatellite alterations, point
mutations and aberrant promoter methylation. Of the
various types of genetic alterations (i.e. gene amplifications,
allele deletions, point mutations or deletions and methylation)
reported in different tumor types, aberrant promoter
methylation of genes is recent and is the focus of the
present review. Specifically, we will briefly review the role
of promoter methylation in various malignancies and then
focus on lung cancer diagnosis and promoter gene
methylation with emphasis on the methylation status of genes
of the innate host defense, namely the surfactant proteins A
and D.
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1. Lung cancer prevalence and current status

Lung cancer is a major cause of cancer-related mortality in
both men and women in industrialized countries and causes
more deaths than colorectal, breast and prostate cancer
combined (1,2). The overall annual incidence and mortality
rate of lung cancer has been estimated to be ~104 million
new cases per year and 921,000 deaths in the world, with the
highest rates currently observed in Europe and North America
(3,4). The incidence and mortality rates are higher for men
than for women. However, lung cancer mortality has increased
markedly among women since 1960, following an increased
prevalence of smoking (5). A high degree of correlation
between smoking and lung cancer has been observed.
Smoking accounts for 80% of the attributed risk among men
and for 45% of the cases among women (6).

The 5-year survival of lung cancer patients is only 15%,
which is much lower than the survival rate of colorectal (41%)
and breast (67%) cancers. This is largely due to the fact that
three quarters of lung cancer patients are diagnosed when
their disease has spread regionally or distantly (7). There are
studies on negative correlation between a 5-year survival
period and lung cancer stage (as per TNM classification,
where T is characteristic of primary tumor, N is regional
lymph node involvement and M is metastasis). A 5-year
survival period has been reported as high as 60-70% following
resection of stage I lung cancer, while a 5-year survival rate
of lung cancer as low as 8-13% has been observed if treatment
starts at stages III-IV (8). At present, the only chance of cure
is surgical resection at the early stage of the disease, with
better prognosis for small tumors compared to larger ones.
Thus, an early diagnosis of lung cancer and prediction of
patient's prognosis on the basis of clinical and genetic
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characteristics of tumor could potentially decrease lung
cancer mortality by enabling earlier and more appropriate
therapeutic intervention.

2. DNA methylation

DNA methylation mainly refers to methylation at cytosine
residues located in dinucleotide CpG sites. The specifics
relating to CpG dinucleotide location and methylation status
have been reviewed previously (9-15). In brief, the CpG
dinucleotide distribution in most of the genome is statistically
lower than the expected frequency. However, in some
genomic regions that mainly coincide with promoters or
regions involved in gene regulation, the frequency of CpG
dinucleotides is that of the expected value. These C+G rich
regions are termed CpG islands [reviewed in (16)]. In the
human genome, the pattern of CpG methylation varies during
development [reviewed in (11)]. For example, in the case of
germ line-specific genes and certain tissue-specific genes,
promoter regions are subject to methylation as part of normal
developmental processes [reviewed in (11,17)]. This ensures
that specific genes are expressed in specific tissues and at
specific times of development. Methylation of regulatory
regions is involved in genomic imprinting and X chromosome
inactivation in females [reviewed in (18)]. In a healthy
individual [reviewed in (11)] most CpG islands are unmethy-
lated and associated genes are expressed. However, if CpG
islands are located within genes expressed in a tissue-
specific manner, it is possible that the CpG islands remain
unmethylated while these genes are silent (11). The lone CpGs
found throughout the rest of DNA (i.e. not in CpG islands) are
mostly methylated (19).

DNA methylation acting via deregulated gene expression
has been recognized as a key component of aging (20,21) and
various diseases (22). Although, initially reported in cancer,
DNA methylation is now being appreciated as playing a role in
neurological, cardiovascular and immunological pathologies as
well. For example, there are studies of associations between
aberrant promoter methylation of certain genes and hyper-
tension (23), immunodeficiency syndromes (i.e. ICF, ATRX)
and autoimmunity diseases (i.e. systemic lupus erythematosus,
rheumatoid arthritis) (24,25) and neurological disorders (i.e.
Alzheimer’s disease) (22,26).

3. DNA methylation in malignancies other than lung
cancer

The cancer genome is characterized by a general decline in
methylated cytosine level (genomic hypomethylation)
accompanied by a local CpG island hypermethylation (27,28),
with both processes leading to dysregulated gene expression.
Genomic hypomethylation (29) and perhaps gene-specific
CpG island hypomethylation (30-32) may lead to cancer via
activation of proto-oncogenes, reactivation of transposable
elements, loss of gene imprinting and hyperactivation of other
genes (i.e. host defense genes, see below). On the other hand,
when CpG islands are hypermethylated, the activity of
regulatory proteins that promote transcription is restricted
due to tightly packed nucleosomes (33). This often leads to
suppression of gene expression of genes that affect tumor

suppression, DNA repair and chromatin condensation. Tumor
suppressor genes contain unmethylated CpG islands in their
promoters that become methylated in various malignancies.
Although, both of these processes (i.e. genomic hypomethy-
lation and gene-specific promoter hypomethylation or
hypermethylation) occur concurrently in cancer, thus far no
relationship has been found between global genomic
hypomethylation and local hypermethylation, indicating that
these processes may be independent of each other (34).

Hypermethylation. DNA hypermethylation is a well established
epigenetic alteration seen in various types of malignancies. A
growing number of genes are being recognized that harbor
dense methylation in normally unmethylated promoter CpG
islands, with some of them common across different types of
tumors. These include genes mainly involved in functions
such as cell-cycle control and apoptosis (p14, p15, p16, Rb,
DAPK), DNA repair (MGMT, hMLH1), adhesion and
metastasis (CDH1, CDH13), biotransformation (GSTP1) and
signal transduction (RARß and APC). For example, epigenetic
silencing of glutathione S transferase (GSTP1) is the most
common (>90%) genetic alteration reported in prostate cancer.
It can be used to accurately distinguish benign and malignant
prostate lesions (35). A similar prevalence of methylation
changes was shown for RARß gene. The methylation of RARß
correlates with more advanced pathological stage and allows
discrimination between neoplastic and non-neoplastic prostate
tissue (this included high-grade prostatic intraepithelial
neoplasias and benign prostate hyperplasia) (36). The
combination of methylation analysis with histological tests
resulted in detection of 97% of prostate adenocarcinoma cases
in comparison with only 64% when a histological test alone
was used (37). Furthermore, an analysis of the hypermethyl-
ation status of a panel of four genes, GSTP1, RARß, TIG1
and APC, could detect prostate carcinoma with 100%
specificity. Similarly, hypermethylation of 3 or more genes
from a panel of 5 genes (CDH13, HSPA2, MLH1, RASSF1A,
SOCS2) was observed in endometrial cancer, while 91% of
the controls showed hypermethylation of none or fewer than
3 genes (38). Hypermethylation of a gene panel consisting
of RARß1, p16, p14, RASSF1A, DAPK, and GSTP1 was
observed in breast cancer tissue compared to non-cancer
breast tissue (39).

Hypomethylation. Genomic hypomethylation refers to loss of
methylation at CpG sites located in intergenic and intronic
DNA regions (global hypomethylation), as well as in
promoters of specific genes (gene-specific hypomethylation).
Global hypomethylation mainly affects repeat sequences
and transposable elements. It often leads to cancer via
chromosomal instability due to aberrant transcription and
recombination, while localized hypomethylation often leads
to increased expression of proto-oncogenes, growth factors,
and genes, the protein products of which are involved in
cancer cell proliferation, invasion and metastasis (40). There
is substantial evidence of association of hypomethylation
(whether at genome level or individual loci) with cancer. For
example, satellite DNAs (juxta centromeric Sat2 and
centromeric Sat·) were found hypomethylated in ovarian
samples with a direct correlation between stage of tumors and
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degree of hypomethylation (41,42). Similarly repeat sequences
Sat2, Sat· and SatR-1 were found to be hypomethylated in
breast cancer (43,44). Hypomethylation at L1, a younger
subfamily of autonomous long interspersed nuclear elements,
which are a type of non-LTR retrotransposons, was reported
in hepatocellular carcinoma (45), tumors of bladder, head
and neck (46) and various benign and malignant ovarian
carcinomas (47). Evaluation of the methylation status of
LINE-1 repetitive sequences in genomic DNA derived from
microdissected samples from several human normal and
neoplastic tissues revealed a greater percentage of hypo-
methylation at LINE-1 repetitive sequences in several cancer
tissues including breast, colon, lung, head and neck, bladder,
esophagus, liver, prostate and stomach than their normal
tissue counterparts (46). Similarly, hypomethylation of tumor
genes, such as urokinase type plasminogen activator (uPA),
heparanase and S100A4 led to their increased expression in
cancer cells. uPA (48,49) and heparanase (50) belong to a
category of proteases produced by tumor cells that degrade
extracellular matrix, while S100A4 is a calcium binding
protein that regulates production of matrix-degrading enzymes.
These enzymes are responsible for remodeling of the
extracellular matrix and for an increase in tumor cell
proliferation and motility (51). In summary, the available data
indicate that a) a derangement of CpG methylation in the
promoter of a variety of genes has been shown to associate
with numerous cancers, including lung cancer and b)
methylation markers of various genes have been shown to be
useful in tissue-specific cancer diagnosis.

4. Lung cancer and DNA methylation

Lung cancer is a disease where both, environment and genetics
play a role (6,52-56). There are two main types of lung
carcinomas: non-small cell lung carcinoma (NSCLC) and
small cell lung carcinoma (SCLC) (57). SCLC is most often
a centrally located tumor arising from bronchial epithelium.
NSCLC constitute the majority of all lung cancers (~85-90%)
and are sub-classified into three main histological types: the
squamous cell, which is linked to smoking and for the most
part is found near the bronchus, the adenocarcinoma found in
the outer lungs and the large cell carcinoma that can originate
anywhere in the lung. Squamous cell cancer has at least one
of three differentiating features that include individual cell
keratinization, spherical keratinization, or intercellular
cytoplasmic bridges. Adenocarcinomas are malignant tumors
with tubular, acinar, or papillary growth patterns, and/or mucus
production. Large cell carcinoma is characterized by large
nuclei, prominent nucleoli, abundant cytoplasm and well
defined cell borders.

Most lung cancers start in the lining of the bronchi.
Carcinogenesis, starting from a normal cell to an invasive
carcinoma, is a multistep process (58). Lung carcinoma is
preceded by a premalignant lesion, such as hyperplasia,
metaplasia, or dysplasia of the bronchial epithelium. The
transition of a premalignant lesion to lung cancer is often
accompanied by several genetic events (some of them are
common between SCLC and NSCLC), such as alterations in
the expression of proto-oncogenes and tumor suppressor genes
(58) and perhaps of other genes (32). These changes include

aneuploidy, deletions and amplifications of chromosomal
regions, loss of heterozygosity (LOH), microsatellite
alterations, point mutations and aberrant promoter methy-
lation. Of interest, several of these genetic changes (i.e.
aberrant promoter methylation, chromosome deletions,
aneuploidy, altered expression of oncogenes, tumor suppressor
genes, and other) occur during the premalignant stage that
leads to malignant tumor cells and as such these changes may
be useful markers in early detection of lung cancer (59-64).
This indicates that several of the molecular, genetic and
epigenetic changes that lead to malignant tumor cells occur
early in the process, and as such these changes may be useful
markers in early diagnosis of cancer. In fact, there is a
considerable effort to use these genetic alterations as molecular
biomarkers for early cancer diagnosis by applying different
approaches. An ideal tumor marker should be highly sensitive,
tumor-specific, easy to handle, and inexpensive.

While previous efforts, to identify tumor markers, used
screening for mutations, LOH, and microsatellite alterations,
more recent strategies concentrate on aberrant promoter
methylation (65). This is mainly because of the following
reasons: i) Aberrant promoter methylation of specific genes
has been shown to be an early event in the pathogenesis of
lung cancer. For example, in a rat model of lung carcinogenesis
(59), 94% of adenocarcinomas induced by a tobacco-specific
carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone
were hypermethylated at the p16 gene promoter; most
importantly, this methylation change was frequently detected
in precursor lesions to the tumors, adenomas and hyperplastic
lesions. The timing for p16 methylation was recapitulated in
human squamous cell carcinoma (SCC) (59), where the p16
gene was coordinately methylated in 75% of carcinoma in situ
lesions adjacent to SCCs harboring this change. Moreover, the
frequency of this event increased during disease progression
from basal cell hyperplasia (17%) to squamous metaplasia
(24%) to carcinoma in situ (50%) lesions. Similarly, aberrant
methylation of the p16 and/or O6-methyl-guanine-DNA
methyltransferase promoter was observed in DNA from
sputum in 100% of patients with squamous cell lung carcinoma
up to 3 years before clinical diagnosis (66). Collectively, these
observations indicate that assessment of the prevalence of
these methylation markers could be useful for prediction of a
lifetime risk of developing lung cancer; ii) The methylation
pattern of some genes correlates with clinicopathological
characteristics of lung cancer patients. For example, lung
cancer patients with methylated RASSF1A had an overall
shorter survival than patients who had unmethylated
RASSF1A (67). Similarly, a direct correlation has been
reported between methylation of the APC and DAPK genes
with poor survival rate in NSCLC patients (68,69); iii) it is
relatively easy to detect the methylation status quantitatively
from a variety of samples ranging from, tumor sample to
sputum to blood, of lung cancer patients (70). However, to
date the penetrance of DNA methylation at any single locus
has not been high enough to provide great clinical sensitivity.

A major focus of research in cancer diagnosis is to create
a panel of methylation markers (rather than study methylation
in a single gene) that could be used to detect cancer with high
sensitivity and specificity. The first step in developing a panel
of DNA methylation biomarkers is to identify patterns of
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tumor methylation signatures (71). One approach is a genome-
wide screening (72,73), where, after identifying patterns or
signatures of genomic changes in cancer tissues or cancer cell
lines, candidate genes and/or regions can be selected to be
included in the biomarker panel. Another one is the candidate
gene approach, where selected tumor associated genes (such
as tumor suppressor genes, proto-oncogenes, genes expressing
cell cycle proteins, proteins involved in DNA repair, apoptosis,
or host defense and other) are screened in samples of cancer
tissue for their aberrant methylation. Using the candidate gene
approach several genes have been described to be inactivated
by promoter methylation in lung cancer, as previously
reviewed (74,75). A recent study exemplified the candidate
gene approach along with high throughput technologies (76).
Aberrant methylation was studied at 1536 specific CpG sites
in 371 genes selected based on their biological relevance in
lung cancers and normal lung tissues. The selected genes
included tumor suppressor genes and oncogenes, genes that
are indirectly involved in cancer development (i.e. DNA repair
genes), metastasis-inhibitor genes, genes regulated by various
signaling pathways, and/or responsible for altered cell
growth, differentiation and apoptosis, genes considered to be
targets for oncogenic transformation, genes of innate host
defense including lung surfactant protein genes, imprinted
genes and previously reported differentially methylated genes
(29,75,77).

Among the genes identified with this high throughput
approach that showed an altered methylation pattern in lung
cancer compared to normal lung tissue were the surfactant
protein (SP) genes, SP-A and SP-D. These genes, in addition
to their role in surfactant-related functions, have been shown
to play important roles in the innate host defense of the lung
and/or regulation of inflammatory processes. Since infections
and ensuing inflammatory processes have been implicated in
cancer pathogenesis (78-80), the surfactant proteins, given
their physiological relevance in lung health, are good candidate
genes for study in lung cancer and their methylation signatures
may serve as valuable markers in lung cancer detection.

5. SP-A and SP-D in lung cancer

An essential for life function is carried out by the lung, namely
the oxygen and carbon dioxide exchange, where the delicate
gas-exchanging alveolar epithelium that lines the terminal
lung airspaces allows for efficient diffusion of oxygen and
carbon dioxide between inspired air and the pulmonary
circulation. The lung via inspired air is virtually in direct
contact with the external environment and therefore it is
exposed daily to thousands of insults (i.e. bacteria, viruses,
allergens, particulate matter, ozone and other) and yet under
normal circumstances remains well functioning. A delicate
network comprising of various immune cells (i.e. macrophages,
neutrophils and other) and molecules of innate host defense
together maintain a normal functioning lung via their ability to
mount an appropriate inflammatory response to help get rid
of foreign insulting agents. Inflammation under normal
circumstances is self-limiting and it subsides as soon as
foreign material is removed. However, an inappropriate
response (whether less than optimum or more than optimum)
can have a negative impact on lung structure and function. A

suboptimal inflammatory response may lead to persistence or
continuous presence of an infection or foreign matter in the
lung, while an overzealous inflammation may take the form
of chronic inflammation. Either scenario of deranged host
defense results in cellular and/or tissue damage that may
ultimately lead to lung cancer or other pulmonary diseases.
The relationship between inflammation and lung cancer is
not new. It was first proposed by Virchow in 1868, when he
first observed leukocytes in neoplastic tissue (81). Since then
several cancer types have been shown to associate with
inflammation. Also, there is a growing body of evidence that
many malignancies are initiated by infections (78-80).
According to an estimate >15% of malignancies can be
attributed to infections (79).

Molecules of innate immunity and host defense in the lung
include the surfactant proteins (SP-) A or SP-A and SP-D.
SP-A is a major protein component (by weight) of the
lipoprotein complex called surfactant, which is essential in
preventing, at low lung volumes, alveolar collapse via its
ability to lower surface tension at the air-liquid interface in
the terminal airspaces or alveoli. SP-D co-purifies with
surfactant. SP-A and SP-D are hydrophillic proteins [reviewed
in (82-85)] and have been shown to play a role in surfactant-
related functions of the lung (i.e. surfactant homeostasis,
structure, inhibition of surfactant secretion and other) as well
as in host defense and/or the regulation of inflammatory
processes in the lung. Both have been implicated in diverse
activities of pulmonary host defense and regulation of
inflammation via their effects on immune cells in the presence
or absence of a pathogenic insult (86-93), production of
reactive oxygen and nitrogen intermediates (94,95), clearance
of apoptotic cells (96-98) and other. Furthermore, both SP-A
and SP-D have been shown to provide a link between innate
and adaptive immunity (99,100), via their effects on dendritic
cells.

Study of the SP-A-/- mice has provided in vivo support of
the role of SP-A in innate host defense. These mice lack
tubular myelin, a structural form of surfactant, and although
they are able to survive with no apparent pathology in a sterile
environment (101) and respond similarly to wild-type mice
following exercise or hyperoxic conditions (102), their
pulmonary immune responses are insufficient during immune
challenge (103,104). SP-D-/- mice on the other hand although
early in life appear healthy with no differences in the
biophysical function of surfactant, later in life exhibit quite a
complex phenotype. Even in the absence of any apparent
insult, the SP-D-/- mice display phenotypic abnormalities in
alveolar macrophages and type II epithelial cells, and increased
lipid pools, indicating that SP-D has an important role in
surfactant homeostasis (101,105,106). Metalloproteinases
are also elevated in their lungs. SP-D-/- lungs develop an
emphysema-like phenotype (105). Therefore, collectively,
given their role in infection and inflammation, alterations in
the level or activity of lung collectins (SP-A and SP-D) may
lead to pathogenesis of various diseases, including lung cancer.

In human, SP-D is a single gene locus, whereas the SP-A
locus consists of two functional genes, SP-A1 and SP-A2 with
several intragenic haplotypes or variants identified for each
SP-A gene (107,108). The in vitro expressed products of the
SP-A1 and SP-A2 genes have been shown to exhibit different
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levels of activity in terms of their ability to modulate cytokine
production by a macrophage-like cell line (109-111), enhance
phagocytosis of bacteria by alveolar macrophages (112-114),
inhibit secretion of surfactant by epithelial type II cells
(115) and bind to carbohydrates (116). Given the observed
differences in activity between SP-A1 and SP-A2, it is
possible that the overall functional activity of SP-A in the lung
depends on the relative functional content of each SP-A1 and
SP-A2 product and that derangement in SP-A1 and/or SP-A2
expression or functional ability compromises lung health. In
a recent study, we showed that the SP-A1 to total SP-A ratio,
in samples of bronchoalveolar lavage from different
individuals, differs as a function of lung health status and age
(117). Moreover, both SP-A1 and SP-A2 genes have been
identified with extensive genetic variability (107) that
affects function and/or structure (110,112-116) or regulation
(118-121). This extensive genetic variability may serve as
‘tag’ to identify individuals at disease risk and also provide
insight into the underlying mechanisms of a given lung
disease.

6. Methylation signatures in SPs

Although the study of methylation signatures of SPs in lung
cancer is recent, the role of SPs in lung cancer has been under
investigation for >10 years. Several studies based on different
approaches including, reverse transcriptase PCR, immunoblot
analysis, ELISA and immunohistochemical analysis have
been carried out to study alterations of SP-A in lung cancer
(122-128), while there is a single study (129) that has
reported usefulness of SP-D as a diagnostic marker for lung
cancer. Immunohistochemical detection of SP-A in lungs
(130) and pleural effusions (131) has been reported to be
useful for differential diagnosis of lung cancer from metastatic
carcinomas to lung and pleural mesotheliomas.

Various genetic variants and/or epigenetic changes of SPs
may under certain micro-environmental conditions, alter
surfactant protein expression and/or function and these
changes in turn may modulate susceptibility to lung cancer.
Studies carried out by our group and others support this
postulate. We have shown an association of lung cancer
susceptibility with different SP-A variants (132) and a high
resolution comparative genomic hybridization (CGH) analysis
of a cDNA microarray showed deletion of the SP-A gene to
be one of the most common genomic changes in primary lung
cancer (133). The latter genomic aberrations were found to
be associated with tumor progression and a history of
smoking and were proposed as useful biomarkers in the
identification of poor prognoses in patients with NSCLC
(134). Recently, using a high-throughput technology
platform, consisting of miniaturized bead-based array, we
studied the methylation level of 1536 specific CpG sites in
a panel of 371 genes (76). The panel included the lung
surfactant protein genes, SP-A1, and SP-D, as well as the
two hydrophobic surfactant protein genes, SP-B and SP-C,
along with other genes documented to be involved in cancer
and shown to be differentially methylated (29,75,77) in cell
lines, normal tissues, or lung biopsy cancer samples. This
study led to identification of a panel of 55 methylation
markers that included surfactant protein (SP-) methylation

markers. With these markers, lung adenocarcinomas could be
distinguished from normal lung tissues with high specificity
(76).

With regard to SP gene methylation, a total of 4 groups
were obtained, when the collective DNA methylation profile
was assessed, by clustering analysis, for 11 CpG sites of
lung surfactant proteins (SP-A1, SP-B, SP-C and SP-D) in
23 adenocarcinoma tissues and 23 matched non-cancerous
lung tissues obtained from the same patient (32). The
percentage of cancer samples increased from group 1 to
group 4, while the overall level of methylation for the SP
markers tested decreased as one moved from group 1 to
group 4. This indicated an inverse association of the collective
level of methylation of the 11 SP CpG sites with lung
adenocarcinoma. A similar pattern was observed in the case
of squamous cell carcinoma compared to matched control
tissues obtained from the same patient, although the clustering
was not as tightly defined. A further comparison of the
methylation levels of each CpG site in cancerous and non-
cancerous samples revealed that from the 11 CpG markers
analyzed, only 4 CpG sites (namely SP-A1_370, SP-
A1_1080, SP-D_1170, and SP-D_1370) differed significantly
between cancerous and non-cancerous samples in both
adenocarcinoma and squamous cell cancer cohorts, indicating
that these 4 CpG sites can serve as potential biomarkers for
lung cancer diagnosis. Of interest, a better group separation
was obtained when the methylation content of all 11 SP CpG
sites were included in the analysis compared to that obtained
with only the four CpG sites that showed significant
differences between cancer and non-cancer tissues. Therefore,
at this point, we can not exclude the possibility that inclusion
of small changes in methylation of certain genes may help
improve the specificity of methylation panels of genes
identified with significant CpG changes.

A preliminary analysis of the impact of individual CpG
methylation on gene expression revealed an inverse correlation
(32) between the methylation content and mRNA expression
for one of the SP-D CpGs (SP-D_1170). This CpG showed
significant changes in methylation between cancer and normal
lung tissue. An association between the methylation content
of an SP-A1 CpG (SP-A1_1468 that did not show significant
differences between cancer and normal tissue) and mRNA
expression was also shown. These preliminary observations
indicate that methylation of a given CpG site may be one of
the mechanisms that regulates SP-A1 and SP-D expression.
However, the details of the mechanisms via which an
overexpression of SP-A and/or SP-D (presumably a result of
promoter hypomethylation) may contribute to lung cancer
development are currently unknown.

It is possible that SP-A and SP-D contribute to deranged
immunity in cancer via their role on dendritic cell maturation
(99,100). Dendritic cells in lung tumor infiltrates appear to be
largely defective regarding their ability to stimulate T-cells
(135). The effect of SP-A and SP-D on dendritic cell
maturation and/or activity appears to be in opposite direction
(99,100) indicating that together SP-A and SP-D provide
under normal conditions the necessary balance required for a
healthy immune lung response. Although hypomethylation at
both SP-A1 and SP-D CpG sites was observed in lung cancer
(32) and an association was shown between hypomethylation
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of certain CpG sites and SP expression, there is no information
available to indicate whether the changes in expression are
similar between SP-A1 and SP-D. Also information is lacking
with regards to the role of SP-A2 CpG methylation in lung
cancer. It is currently unknown whether any SP-A2 CpG sites
are hyper- or hypomethylated and whether these associate
with lung cancer. Moreover, as discussed above, SP-A1 and
SP-A2 exhibit differences in their ability to modulate
macrophage function with regards to proinflammatory
cytokine production (92,109-111) and bacterial phagocytosis
(112-114). Since the level of SP-A1 and SP-A2 differences
on macrophage function depends on SP-A protein concen-
tration and functional integrity, an altered SP-A expression or
SP-A dysfunction, as it occurs after SP-A is exposed to
ozone, may adversely affect macrophage host defense
function. This may lead to an overall deranged lung host
defense and perhaps lung cancer. Thus, although deranged
SP-A and SP-D expression may adversely affect lung
immunity via their effects on dendritic cells, macrophages, or
other cells, our current knowledge is limited to further
comment on this.

7. Summary and expert opinion

The available data are consistent with a potential
contribution of SP-A in lung cancer. We postulate that a
hyperactivity of SP-A via increased expression as it may
occur via hypomethylation (32), or a decrease of SP-A
activity as it may occur via SP-A dysfunction due, for
example, to oxidation (109,111,112), or lack of SP-A as it
may occur by SP-A gene deletion (133) may contribute to
lung cancer pathogenesis. An excessive SP-A activity may
lead to an exuberant and sustained inflammatory reaction
that may have dire consequences on lung tissue integrity.
On the other hand, reduced SP-A activity or lack of SP-A
activity may compromise the innate host defense ability of
the lung to maintain a healthy lung status. In either case,
where SP-A (and/or SP-D) over-functions or under-
functions, the host defense ability of the lung is compromised
and with time and/or in the presence of various macro- or
micro-environmental insults, this may contribute to lung
carcinogenesis.

Although the role of innate host defense molecules, such
as SP-A and SP-D, in cancer is still in its early stages, the
available literature argues for an inclusion of SP-A and SP-D
in future studies, where panels of methylation markers for
early lung cancer diagnosis are being considered. The SP-
example, discussed here, provides support for the role of
inflammation in cancer development and as such there should
be consideration of inclusion in panels of diagnostic markers
of lung cancer, not only of SPs but also other innate host
defense molecules.

In the pursuit of identifying the best panel(s) that would
be appropriate for a given type of lung cancer, it is likely to
encounter several challenges. These may not only relate to
decisions as to which genes to include but may also relate to
decisions as to what percent of methylation change should
favor inclusion of a given gene. For example, small non-
statistically significant changes along with larger statistically
significant changes may provide higher level of specificity.

Since environmental insults have been shown to contribute to
lung cancer development, inclusion of genes responsive to
such insults may also be warranted. Moreover, as we may
move towards ‘individualized medicine’ selection of a panel of
markers for diagnostic use, may require prior understanding
of the individual's life style. Such a knowledge may help
determine which gene-environment interactions are more
relevant to that individual and consequently choose a panel
most appropriate for that individual. Finally, we expect that as
our knowledge on the subject increases many more factors and
considerations are likely to enter the design and selection of
diagnostic methylation marker panels.
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