
Abstract. Curcumin, a naturally occurring yellow pigment
isolated from turmeric, is a well known antioxidant with broad
spectrum of anti-tumor activities against many human cancer
cells. In this study, curcumin-induced cytotoxic effect of
mouse-rat hybrid retina ganglion cells (N18) were
investigated. For determining cell viability, the trypan blue
exclusion and flow cytometric analysis were used. The
curcumin-caused cell cycle arrest in N18 cells was examined
by flow cytometry. Curcumin affect on the production of
reactive oxygen species and Ca2+ and on the decrease of the
level of mitochondria membrane potential (Δæm) were also
examined by flow cytometry. Curcumin-induced apoptosis
was determined by DAPI staining and Western blotting was
used for examining the apoptotic signaling proteins. Cell
cycle analysis showed that G2/M phase arrest and sub-G1
occurs in N18 cells following 48 h exposure to curcumin.
Curcumin also caused a marked increase in apoptosis, as
characterized by DNA fragmentation (sub-G1 phase
formation) and DAPI staining, and dysfunction of
mitochondria, which was associated with the activation of
caspase-8, -9 and -3. Curcumin also promoted the levels of Fas
and FADD, Bax, cytochrome c release, but decreased the
levels of Bcl-2 causing changes of Δæm. Curcumin also
induced endoplasmic reticulum stress in N18 cells which was

based on the changes of GADD153 and GRP78 and caused
Ca2+ release. Curcumin induced apoptosis through the intrinsic
pathway and caspase-3-dependent and -independent pathways
in N18 cells.

Introduction

Apoptosis is a highly regulated mechanism in which the cells
undergo programmed cell death (1) and the two main apoptosis
pathways are the extrinsic and the intrinsic pathway (2). The
extrinsic pathway is initiated through the interaction of ligands
and surface receptors (3) including CD95/Fas/Apo1, tumor
necrosis factor receptor 1 (TNFR1), TNF receptor 2 (TNFR2)
and death receptors 3-6 (DR3-6) (1), and they deliver a death
signal from the extracellular microenvironment to the cyto-
plasm before leading to apoptosis. The intrinsic pathway is
initiated through stimuli such as DNA damage, hypoxia, cell
detachment, cellular distress and cytotoxic drugs, which act
inside the cell (1). Proteins associated with apoptosis can be
divided into the pro-apoptotic such as Bax and Bad anti-
apoptotic such as Bcl-2 and Bcl-xl (4,5) and if one of the
pro-apoptotic and anti-apoptotic proteins is overexpressed,
it will lead to the dysfunction of mitochondria of pro- and
anti-apoptotic proteins leading to cytochrome c release and
causing the activation of caspase-3 that leads to apoptosis
(6).

Curcumin (diferuloylmethane) is an antioxidant and anti-
inflammatory substance (7). It was reported that the dietary
treatment of 0.5-2% curcumin in mice inhibited the incidence
and size of colonic, small intestinal and gastric cancers
induced by azoxymethane (8,9). Curcumin inhibited
proliferation and caused cell cycle arrest in colon adeno-
carcinoma cell lines by a prostaglandin-independent pathway
(10). Curcumin inhibited the expression of oncogenes c-jun,
c-fos, and c-myc in animals and cell lines (11,12) and the
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activity of the AP-1 transcription factor in cells stimulated to
proliferate (13). Curcumin was found to be cytotoxic in rat
hepatocytes (14) and to stimulate oxidative damage caused
by quertecin in rat hepatocytes (15). Investigators also pointed
out that curcumin inhibited proteasomal activity (16), caused
the accumulation of cytosolic Ca2+ (17,18) and disrupt
protein disulfide bond formation (19). Curcumin also induced
apoptosis in some cells and may be associated with endo-
plasmic reticulum stress (19,20). However, there is no
available information to address the effects of curcumin on
mouse-rat hybrid retina ganglion N18 cells. Therefore, in this
study, we investigated the induction of cell cycle arrest and
apoptosis and the role of reactive oxygen species in mouse-
rat hybrid retina ganglion N18 cells and also show the
possible signaling pathways.

Materials and methods

Cell culture. Mouse-Rat Hybrid retina ganglion cell line (N18:
derived from retina ganglion cells hybrid with lymphoma
cells) was purchased from Japanese Collection of Research
Bioresources Bank. Cells are cultured in DMEM medium
supplemented with 10% FBS, 1% penicillin-streptomycin
(100 U/ml penicillin and 100 ng/ml streptomycin) and 1%
L-glutamine. All cells were cultured in a humidified atmos-
phere of 5% CO2 and 95% air at 37˚C. Cells were cultured
for several generations, and have been checked for viability
as described previously (21).

Trypan blue exclusion assay. N18 cells were trypsinized,
isolated and collected by centrifugation. An aliquot of
collected cells was mixed with trypan blue dye (Sigma) to
final concentration of 0.04% w/v), loaded onto a hemocyto-
meter, and counted under a microscope (21,22).

Viability determination. Cells were analyzed for percentage
of viable cells by flow cytometer. Cells at a density of 2x105

cells/well were plated onto 12-well plates and incubated at
37˚C for 24 h. Different concentrations of curcumin (0, 10,
30, 50, 75 and 100 μM) were added and cells incubated for
24, 48 and 72 h, and the floated cells were collected and
adherent cells were washed once with PBS, trypsinized, and
collected by centrifugation at 1000 x g for 5 min. The cells
(1x105 cells per sample) were centrifuged at 1000 x g for
5 min, cell pellets were dissolved with 0.5 ml of PBS
containing 100 μg/ml RNase and 5 μg/ml propidium iodide
and viable cells were determined by using a flow cytometer
(Beckman Coulter, Inc., Fullerton, CA, USA) (21,22).

Cell cycle analysis by flow cytometry. Cells were analyzed
for their cell cycle and sub-G1 (apoptosis) distribution by
flow cytometer. Cells at a density of 2x105 cells/well were
plated onto 12-well plates and incubated at 37˚C for 24 h.
Different concentrations of curcumin (0, 5, 10, 20, 30 and
50 μM) were added and cells incubated for 48 h, while the
adherent cells were washed once with PBS, trypsinized, and
collected by centrifugation at 1000 x g for 5 min. The cells
(1x105 cells per sample) were fixed in 2 ml of cold 70%
ethanol at -20˚C overnight before cells were centrifuged at
1000 x g for 5 min, and the cell pellets were incubated with

0.5 ml of PBS containing 100 μg/ml RNase and 5 μg/ml
propidium iodide at 37˚C for 30 min. Cell cycle and sub-G1
distributions were analyzed by measuring DNA content using
a flow cytometer (21,22).

Detection of reactive oxygen species, Ca2+ levels and mito-
chondrial membrane potential. Cells at a density of 2x105

cells/well were plated onto 12-well plates and treated with
30 μM of curcumin for 0, 3, 6, 12, 24, 48 and 72 h. Cells
were harvested, washed twice with PBS, and re-suspended in
the 500 μl of ROS indicator 2,7-dichlorodihydrofluorescein
diacetate (H2DCF-DA), 500 μl of calcium probe Indo 1/AM
and 500 μl of the mitochondrial membrane potential
indicator 3, 3'-dihexyloxacarbocyanine iodide (DiOC6) and
incubated at 37˚C for 30 min then to detect changes in ROS,
Ca2+ levels and mitochondrial membrane potential by using
flow cytometry as previously described (23).

Western blotting. Cells at a density of 2x106 cells/well were
plated onto 6-well plates and incubated at 37˚C for 24 h.
Curcumin (30 μM) was added and cells incubated for 0, 6,
12, 24 and 48 h. The cells were lysed and protein concen-
tration was determined using the BCA assay. Protein samples
were separated by SDS-PAGE (12%) and electro-
transferred onto PVDF membrane. The membrane was
incubated with specific primary antibodies. Mouse anti-
human Bax, Bcl-2, cytochrome c, Apaf-1, AIF, GADD153,
GRP78, Fas, FADD, caspase-8, -9 and -3 antibodies were
from Santa Cruz Bio-technology (Santa Cruz, CA, USA) and
ß-actin was from Sigma Chemical Co. (St. Louis, MO,
USA). Then cells were stained for secondary antibody. The
protein levels were normalized by ß-actin (22-23).

Statistical analysis. Student's t-test was used to analyze all
experimental data, with P<0.05 considered as the level of
significance between control and experimental groups.
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Figure 1. Curcumin effects on cell viability in N18 cells. Cells were cultured
with various concentrations of curcumin for 24, 48 and 72 h and were
collected by centrifugation. Then for percentage of total viable cells, they
were counted by PI-incorporation and flow cytometric analysis as described
in Materials and methods. Each point is mean ± SD of three experiments;
***P<0.001.
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Results

Curcumin induces cytotoxicity in N18 mouse-rat hybrid
retina ganglion cells. The effects of curcumin on N18 cells
were first evaluated by trypan blue exclusion and flow
cytometric assay. Both assays indicated that curcumin signifi-
cantly decreased the percentages of viable N18 cells and
these effects are time- and dose-dependent. As shown in
Fig. 1, the viable cells at 48 h after the treatment with
curcumin were decreased to 74.6 (30 μM), 23.4% (50 μM)
and 10.2% (70 μM) of the control. We noted that at a lower
concentration, 10 μM, curcumin had little effect on the
morphology of the treated cells.

Curcumin treatment alters the distribution of cell cycles and
induced apoptosis. To determine whether or not curcumin
exerted its cytotoxic effect via the induction of cell cycle arrest,
we examined the distribution of cell cycles of N18 cells, by
flow cytometry, after their exposure to curcumin. As shown
in Fig. 2A and B, curcumin induced an altered cell cycle
distribution in a dose-dependent manner. The percentages of
cells at G0/G1 phase at 48 h after the treatment with curcumin
were increased from low doses of curcumin (5 and 10 μM),
the increased doses led to a decrease in the G0/G1 phase.
Percentages of cells at S phase were slightly decreased by
curcumin treatment. It should be noted that while there was
no change in the percentage of cells at G2/M at lower doses
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Figure 2. Curcumin effects on the cell cycle arrest and sub-G1 (apoptosis) of N18 cells, and the representative profiles (A) and percentage of each phase and
apoptosis (B) on SCC-4 cells. Cells were treated with various concentrations of curcumin for 48 h and the cells were harvested and analyzed for cell cycle and
the sub-G1 group (A) and phase distribution (B) by flow cytometry, as described in Materials and methods. Data represent mean ± SD of three experiments;
*P<0.05.
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(5 and 10 μM), the percentage of cells at G2/M was markedly
increased after more than 10 μM of curcumin.

The percentages of cells at G2/M phase at 48 h after the
treatment with curcumin were increased, from 20.4% in the
control to 40.8%. Sub-G1 was increased after 48 h treatment
of curcumin to >20 μM. Thus, curcumin treatment
significantly reduced cells in S phase, leading to the
accumulation of cells at G2/M and increased sub-G1 phase.
These results suggested that curcumin can induce cell cycle
arrest at G1 and G2/M phases and produces sub-G1 in a
dose-dependent manner in N18 cells. This induction of cell
cycle arrest at G2/M is consistent with previous studies on
other cancer cells.

Curcumin-induced apoptosis examined by DAPI staining. To
determine whether cytotoxic effect of curcumin was due to
apoptotic induction, morphological features such as
membrane blebbing were observed in N18 cells treated with
10, 25 and 30 μM curcumin for 48 h by fluorescence micro-
scope as shown in Fig. 3. The fluorescence microscopy
indicated that DAPI staining assays revealed apoptotic cells
in curcumin-treated N18 cells compared with intact control
cells and this effect was dose-dependent.

Curcumin induces production of reactive oxygen species and
Ca2+ and decreases the levels of mitochondria membrane
potential (Δæm) in N18 cells. In order to examine whether or
not curcumin induced apoptosis which is associated with

ROS production, we examined the levels of ROS in N18 cells
after exposure to 30 μM curcumin for various time periods.
The results indicated that curcumin induced ROS production
quite early at 1 h time-dependently (Fig. 4A) up to 24 h of
treatment, and the ROS levels were still high when compared
to the control. Curcumin increased Ca2+ levels time-
dependently (Fig. 4B) up to 24 h of treatment. Mito-
chondrial membrane potential (Δæm) was reduced by curcumin
in a time-dependent manner (Fig. 4C).

Curcumin affectes the levels of associated proteins in apoptosis
of N18 cells. To confirm whether the cytotoxic effect of
curcumin on N18 cells, as noted in flow cytometric assays,
was due to apoptosis, N18 cells were cultured for 0, 6, 12, 24
and 48 h in the presence of the DMSO vehicle alone or with
30 μM curcumin. Cells were harvested from each treatment
and cell lysates were prepared for Western blot analysis of
Bax, Bcl-2, cytochrome c, Apaf-1, AIF, GADD153, GRP78,
Fas, FADD, caspase-8, -9 and -3 proteins expression. The
results from Western blotting are shown in Fig. 5A-E.
Curcumin promoted the levels of Bax (Fig. 5A), cytochrome c,
Apaf-1 and AIF (Fig. 5B), GADD153 and GRP78 (Fig. 5C),
Fas and FADD (Fig. 5D), but decreased Bcl-2 (Fig. 5A).
However, curcumin promoted the active form of caspase-8,
-9 and -3 (Fig. 5E). PARP-1 cleavage and a reduction in the
level of pro-caspase-3 or the production of active form of
caspase-3, both as a result of caspase activity, are indicators
of apoptosis (24,25). As shown in Fig. 5E, a reduction in
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Figure 3. Curcumin-induced apoptosis in N18 cells examined by DAPI staining. N18 cells were treated with various concentrations of curcumin for 48 h and
apoptosis was determined by DAPI staining and photographed by fluoresce microscopy (x200) as described in Materials and methods. 
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Figure 4. Curcumin induces production of reactive oxygen species (ROS) and Ca2+ and decreases the levels of mitochondria membrane potential (Δæm) in
N18 cells. Cells were treated with 30 μM curcumin for various time periods before cells were collected, stained by 2,7-dichlorodihydrofluorescein diacetate
for ROS levels determined, stained by Indo 1/AM for Ca2+ levels determined and stained with DiOC6 for Δæm levels determined as described in Materials and
methods. Data represent mean ± SD of three experiments; *P<0.05, **P<0.01, ***P<0.001.
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pro-caspase-8, -9 and -3 were seen in N18 cells in response
to curcumin treatment. In addition, the PARP-1 cleavage
fragment (Fig. 5B) was observed in N18 cells following
exposure to curcumin. Collectively, these data are consistent
with curcumin-induced apoptosis associated with the activation
(via cleavage) of caspase-3.

Discussion

Curcumin has been demonstrated to induce cell cycle arrest
and apoptosis in many types of cancer cells (19,20) and it has
been suggested as a possible anti-cancer agent. The proposed
mechanisms of its anti-cancer properties include direct
cytotoxicity (16-18), immune modulatory effects (26) and
normalization of carcinogen induced cell proliferation (27,28).
The present study showed that curcumin also exerts a strong
growth inhibitory activity against the mouse-rat hybrid retina

ganglion N18 cells. Flow cytometric analysis showed that
N18 cells treated with different concentrations of curcumin
for up to 48 h predominantly accumulated in the G2/M phase
of the cell cycle in a dose- and time-dependent manner, and
with subsequent accumulation in the sub-G1 phase of cell
cycle (Fig. 2A and B), suggesting the sequential events of
cell cycle arrest followed by apoptosis. Apoptosis induced by
curcumin was also confirmed by the observed changes in
nuclear morphology by DAPI staining method (Fig. 3).

Apoptosis is a genetically regulated biological process
with two major pathways: the extrinsic pathway involved in
death-receptor and the intrinsic pathway involved in mito-
chondria apoptosome-mediated apoptosis (2). Bcl-2 family
proteins such as Bax and Bcl-2 have a central role in
controlling the mitochondrial pathway. The pro-apoptotic
proteins and anti-apoptotic proteins of the Bcl-2 family may
turn on and off apoptosis because of the formation of
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Figure 5. Curcumin affects the levels of associated proteins in apoptosis of
N18 cell. Cells were treated with curcumin at 30 μM for various time
periods before cells were harvest for total proteins which were prepared and
determined, as described in Materials and methods. The associated protein
expressions (A: Bax and Bcl-2; B: cytochrome c, Apaf-1 and AIF; C:
GADD153 and GRP78; D: Fas and FADD and E: caspase-8, -9 and -3) were
estimated by Western blotting, as described in Materials and methods.
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heterodimers among these proteins (29-31). The balance
between the expression levels of the protein units (e.g. Bcl-2
and Bax) is critical for cell survival or death. In N18 cells
treated with curcumin, the level of Bax was increased and
Bcl-2 was decreased leading to decrease of the Δæm (Fig. 4C)
suggesting that curcumin induced apoptosis through
mitochondria-dependent pathway. In addition, human colon
cancer cells lacking Bax also resist curcumin-induced
apoptosis (32).

Many chemotherapeutic and chemopreventive agents have
been shown to cause apoptotic cell death through caspase-
dependent pathway (33). Caspase-3 is an executioner caspase,
which upon activation can systematically dismantle cells
through cleaving PARP then lead to DNA fragmentation.
Increased active form of caspase-3 was observed in curcumin-
treated N18 cells (Fig. 5E). Caspase-3 plays an effector
caspase that can be activated by different stimuli such as a
mitochondrial pathway involving caspase-9 or a death
receptor pathway involving caspase-8 (34,35). In the present
study, curcumin treatment increased the active form of
caspase-8 and -9 (Fig. 5E). Fig. 5 also showed that curcumin
promoted Fas and FADD, caspase-8, -9 and -3 expression,
cytochrome c levels. Fas plays an initial role for extrinsic
pathway of apoptosis and it acts as a death-receptor for
triggering apoptosis (2). These results suggest involvement of
both mitochondrial and death receptor pathways in curcumin-

induced apoptosis. The other important finding is that
curcumin promoted the levels of GADD153 and GRP78
which are the hallmark of ER stress (36,37) before leading to
Ca2+ release. Therefore, we may also suggest that curcumin
induced apoptosis in N18 cells also through the ER stress
signaling pathway.

In summary, this study shows that curcumin is a potent
growth inhibitor of cultured N18 cells. We characterized the
molecular mechanisms underlying curcumin-induced apoptosis
in N18 cells. The growth inhibition is related to the G2/M
phase cell cycle arrest and the induction of apoptosis is
associated with up-regulation of Bax and down-regulation of
Bcl-2 (Fig. 6). The results provide the molecular basis for
curcumin to act as an anti-tumor agent in cancer therapy.
These findings should be helpful for the clinical application
of curcumin in the future.
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