
Abstract. Cholangiocarcinoma (CCA) is a highly lethal
malignant tumor arising from the biliary tract epithelium.
Chronic inflammatory conditions, including primary sclerosing
cholangitis, liver fluke infestation, and hepatolithiasis, are
considered risk factors, but the cause is still unknown in most
cases. Recent advances in molecular pathogenesis have
highlighted the importance of epigenetic alterations, including
promoter hypermethylation and histone deacetylation, in the
process of cholangiocarcinogenesis. More recently, research
interest has been focusing on microRNA (mir), a major
subtype of non-coding RNA. Mir is highly conserved among
species and regulates the expression of specific target genes
by binding to the 3'-untranslated regions of messenger RNA.
The number of studies on a possible link between mir and
various cancers is growing. This review provides a compre-
hensive overview of the genes currently known to be hyper-
methylated in CCA and their putative roles in cholangio-
carcinogenesis. The epigenetic role of mir in the pathogenesis
of CCA is also discussed.
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1. Introduction

Cholangiocarcinoma (CCA) is a devastating neoplasm
originating from cholangiocytes, the epithelial cells that line
the biliary apparatus (1). It accounts for only 10-15% of

hepatobiliary neoplasm (2,3). Two-thirds of CCAs involve
the extrahepatic bile duct, whereas the remaining one-third
affects the intrahepatic biliary tree (1,4). The disease is
notoriously difficult to diagnose and is usually fatal because
of its typically late clinical presentation and the lack of
effective therapeutic modalities (1,4). Most patients have
unresectable disease at presentation, and the overall survival
rate, including resected patients, is poor, with less than 5% of
patients surviving 5 years (5). Although CCA is a relatively
rare tumor, interest in this disease is rising as the incidence
and mortality rates are increasing worldwide (2,3). CCA is
associated with chronic inflammatory conditions of the biliary
system, including hepatolithiasis, liver fluke infestation,
choledochal cysts, and primary sclerosing cholangitis (PSC)
(1,4). However, for most CCA cases, the cause is unknown,
and affected individuals have no history of exposure to, or
association with, such risk factors (1,4).

At present, little is known about the molecular mechanisms
in CCA. As for many other tumors, the development of CCA
must be understood as a multistep process, with the accumu-
lation of genetic and epigenetic alterations in regulatory genes,
leading to the activation of oncogenes and the inactivation or
loss of tumor suppressor genes (TSGs) (6). This review
discusses the epigenetic inactivation of different TSGs in
CCA. The limited data regarding microRNA (mir) regulation
of cholangiocarcinogenesis are also summarized.

2. Genetic alterations in CCA

The milieu of chronic biliary inflammation, along with
cholestasis, leads to the production of cytokines and reactive
oxygen species, and this causes protracted cellular stress and
irreversible DNA damage (1,2). As a result, cholangiocytes
attain cellular phenotypes that result in malignant transfor-
mation (1). The proposed pathways that participate in
cholangiocarcinogenesis include: self-sufficiency and
proliferation; apoptosis resistance; escape from senescence;
and tumor invasiveness and metastasis (1). Molecular
mechanisms responsible for bile duct carcinogenesis likely
include the interaction of genetic variants and somatic cell
alterations (1,4,6). The genetic changes in CCA include:
mutations of K-ras, p53, p16INK4a, and Smad4; loss of
heterozygosity (LOH) of APC; and allelic losses on 3p13-
p21 and 8q22 (7-11). Among the genetic abnormalities that
have been demonstrated in CCA, p53 mutations and activating
K-ras mutations are the most frequent (6). Nevertheless, the
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reported rates of genetic alterations in CCA vary widely
among studies (4,6). These variations are presumably due to
differences in the subsites of cancers, racial and geographical
variations in the study populations, and the use of different
assay techniques (4).

3. Epigenetic alterations in CCA

Histone modifications. Histones are basic proteins that
complex with genomic DNA to form nucleosomes, the basic
units of the compacted structure of chromatin. Histones are
modified post-translationally by acetylation, methylation and
phosphorylation. Histone acetylation appears to be the major
regulator of histone function. Histones are acetylated on
lysine residues at their amino termini by histone acetyltrans-
ferases (HATs), and acetylated histones are deacetylated by
histone deacetylases (HDACs). The HDAC-mediated removal
of acetyl groups from lysine residues in the amino termini of
histones leads to chromatin condensation and transcriptional
inactivation of the involved DNA (12,13). This transcriptional
inactivation can contribute to suppression of TSG expression
and enhanced tumorigenesis (14). In fact, HDAC inhibitors
enhance the acetylation state of histones, leading to chromatin
decondensation and increased gene expression (15,16).
HDAC inhibitors can, therefore, reverse the aberrant epigenetic
state associated with cancer, and they have been shown to act
in synergy with DNA methylation inhibitors to inhibit tumor
growth (15,16). Nevertheless, there is only nominal
information on the etiologic roles of histone modifications in
cholangiocarcinogenesis.

DNA methylation. DNA methylation refers to the addition of
a methyl group to one of the four bases that constitute the
coding sequence of DNA (17,18). DNA methylation plays a
key role in chromatin structure, suppression of the activity of
endogenous parasitic sequences, and stable suppression of
gene expression (epigenetic silencing), a process normally
reserved for special situations, such as the inactive X-
chromosome and imprinted genes (19,20). DNA methy-
lation occurs via the covalent addition of a methyl group to
the 5-position of the cytosine ring within the context of a
cytosine nucleotide followed by a guanine nucleotide (CpG
dinucleotide or CpG site) (18). It has been estimated that
almost half of the human gene promoter regions contain
CpG-rich regions, called CpG islands (21,22). Promoter
hypermethylation of CpG islands results in downregulation
or silencing of gene transcription (Fig. 1); thus, the aberrant
promoter hypermethylation of TSGs is an alternative
mechanism of gene inactivation that contributes to the
carcinogenesis of human neoplasms, including CCA (4,6,22). 

Genes hypermethylated in CCA. Genes hypermethylated in
the promoter CpG islands in CCA are summarized in Table I.
Through epigenetic silencing, TSGs are involved in important
molecular pathways of cholangiocarcinogenesis, e.g., cell-
cycle regulation, apoptosis, DNA repair and cell adhesion
(23), and are herein briefly reviewed.

p16INK4A, also called cyclin-dependent kinase inhibitor
2A, is a TSG located at human chromosome 9p21 that
inhibits interaction with cyclin D1 (24). This TSG is frequently

inactivated in a variety of tumors by deletion, mutations and
promoter hypermethylation (6). In CCA, CpG island methy-
lation appears to be the main cause of p16INK4a inactivation
despite variable methylation frequencies (25-32). This
promoter region hypermethylation has been shown to be
associated with a poor clinical outcome. The DNA methylation
frequencies of other genes related to cell cycle regulation,
including p14ARF28,32, p15INK4b28, p7328, and ras association
domain family 1A (RASSF1A) (26,28,33,34), and their
chromosomal locations are shown in Table I.

Death-associated protein kinase (DAPK) gene is located
at chromosome 9q34.1, and its product is a proapoptotic
mediator of interferon-Á-induced programmed cell death
(4,35). The DNA methylation frequencies ranged from 3 to
32% in CCA (26,28,30). This promoter hypermethylation is
likely to be associated with poorly differentiated CCA and
with a poor prognosis (26,28). The DNA methylation
frequencies of other genes related to apoptosis, including
target of methylation-mediated silencing/apoptosis speck
like protein containing a caspase recruit domain (TMS1/
ASC) (36), semaphorin 3B (SEMA3B) (37), 14-3-3 (25), Runt-
related transcription factor 3 (RUNX3) (26), and checkpoint
with forkhead and ring finger domains (CHFR) (26), and
their chromosomal locations are shown in Table I.

Human mutL homologue 1 (hMLH1) is a DNA mismatch
repair gene located at 3p21.3 (38). Genetic and epigenetic
alterations of hMLH1 have been reported in various cancers
(38,39). In CCA, DNA methylation frequencies of the
hMLH1 gene promoter varied from 0 to 46% (26,28,30,40,41).
Limpaiboon et al found an association between this promoter
hypermethylation and poorly differentiated CCA with
vascular invasion (41). O6-methylguanine-DNA methyl-
transferase (MGMT) gene is located at chromosome 10q26.
This gene is responsible for repairing alkylation DNA
damage (42). Koga et al found a high methylation frequency
of 49% in MGMT gene (30), whereas Yang et al reported a
33% methylation frequency of MGMT gene in CCA (28).
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Figure 1. (A) When CpG sites in the gene promoter are unmethylated, the
gene is transcribed to messenger RNA in most normal steady cells. (B)
However, CpG island hypermethylation of the gene promoter inhibits
transcription factor-DNA interactions, leading to inhibition of gene expression.
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This promoter hypermethylation can be associated with an
increased frequency of GC to AT transitions in oncogenes and
TSGs and with a poor prognosis (30).

Epithelial (E) cadherin gene is located at chromosome
16q22.1. The encoded protein is a calcium-dependent cell
adhesion molecule (43). Genetic and epigenetic alterations in
this gene lead to loss of function, permitting progression of
cancer by increasing proliferation, invasion and metastasis
(4,43). DNA methylation frequencies of this gene in CCA
range from 22 to 43% (25,26,28,30). Adenomatous polyposis
coli (APC) gene is located at 5q21-q22. APC is a TSG that
controls cell division, cell-cell interactions, and cell migration
and invasion (4). APC gene hypermethylation ranges from
27 to 46% in CCA (25,28). This gene hypermethylation is
associated with a worse clinical outcome in CCA patients
(25). The DNA methylation frequencies of other genes related
to cell adhesion, including tissue inhibitor of metallo-
proteinase (TIMP3) (25,28) and thrombospondin 1 (THBS1)
(25,37), and their chromosomal locations are shown in Table I.

The DNA methylation frequencies of retinoic acid
receptor-ß 2 (RARß2; function, cell growth and differentiation)
(28), glutathione S-transferase π 1 (GSTP1; function, drug/
xenobiotic metabolism) (28), fragile histone triad (FHIT;

function, purine metabolism) (33), Blunt protein (BLU;
function, unknown) (37) , methylated in tumor (MINT) 1, 12,
25, 31, 32 (function, unknown) (25), and their chromosomal
locations are shown in Table I.

Suppressor of the cytokine signaling 3 (SOCS3) gene is at
chromosome 17q25.3. The expression of this gene is induced
by various cytokines, including interleukin-6 (IL-6), IL-10,
and IFN-Á (44). SOCS3 can bind to and inhibit the activity of
janus kinases (JAKs), turning off signal transducers and
activators of transcription 3 (STAT3) signaling in response to
IL-6 (Fig. 2) (44). Sustained overexpression of IL-6 has an
integral role in CCA biology (45). Indeed, we demonstrated
that IL-6-mediated STAT3 signaling is sustained in human
CCA cells (46). More recently, we have shown that IL-6-
mediated sustained STAT3 activation in human CCA is likely
due to SOCS3 epigenetic silencing via hypermethylation of
CpG islands within its promoter region (47), contributing to
sustained IL-6/JAKs/STAT3 signaling in CCA cells. Thus,
the loss of this negative regulator of IL-6 in CCA may
contribute to cholangiocarcinogenesis. 

Again, the downstream consequences of aberrant IL-6
expression may be further hypermethylation of the promoter
regions of target genes in CCA (48). IL-6 has been shown to
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Table I. Promoter hypermethylation frequencies in various genes in cholangiocarcinoma.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene Location Function Incidence (%) Refs.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
p14ARF 9p21 Cell cycle regulation 25-38 (28,32)
p15INK4b 9p21 Cell cycle regulation 50 (28)
p16INK4a 9p21 Cell cycle regulation 18-83 (25,26,27,28,

29,30,31,32)
p73 1p36.3 Cell cycle regulation 36-49 (28)
RASSF1A 3p21.3 Cell cycle regulation 27-69 (26,28,33,34)
DAPK 9q34.1 Apoptosis 3-32 (26,28,30)
TMS1/ASC 16p11.2 Apoptosis 5 (36)
SEMA3B 3p21.3 Apoptosis 100 (37)
14X3X3 1p36.11 Apoptosis 60 (25)
RUNX3 1p36 Apoptosis 57 (26)
CHFR 12q24.33 Apoptosis 16 (26)
hMLH1 3p21.3 DNA repair 8-46 (26,28,30,40,41)
MGMT 10q26 DNA repair 33-49 (28,30)
RARb2 3p24.2 Cell growth and 14 (28)

differentiation
APC 5q21 Cell adhesion 27-46 (25,28)
E-cadherin 16q22.1 Cell adhesion 22-43 (25,26,28,30)
TIMP3 22q12.1 Cell adhesion 9 (25,28)
THBS1 15q15 Cell adhesion 11 (25,37)
GSTP1 11q13 Drug/xenobiotic 14 (28)

metabolism
FHIT 3q14.2 Purine metabolism 42 (33)
SOCS3 17q25.3 Cytokine signaling 88 (45)
MINT1 22q11 Unknown 41 (25)
MINT12 22q11 Unknown 51 (25)
MINT25 22q11 Unknown 15 (25)
MINT31 22q11 Unknown 1 (25)
MINT32 22q11 Unknown 35 (25)
BLU 3p21.3 Unknown 20 (37)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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regulate the enzyme activity of DNA methyltransferase
responsible for DNA hypermethylation (49). For instance,
the promoter methylation of epidermal growth factor receptor
(EGFR) gene was decreased, and, consequently, EGFR
gene and protein expressions were increased by IL-6 (48),
suggesting epigenetic regulation of EGFR by the inflated IL-6
expression seen in CCA.

Mir and CCA. Mir is encoded in the genome of many
species from plants to animals and is transcribed by RNA
polymerase II as long precursor transcripts, which are known
as primary mir (pri-mir) (50). Mature mir is generated from
pri-mir by sequential processing steps. The pri-mir is initially
recognized by the microprocessor complex in the nucleus,
whose core component is Drosha. The microprocessor
complex excises the stem-loop hairpin structure that contains
the mir, a 60-80 nucleotide intermediate termed precursor
mir (pre-mir). The pre-mir is recognized by exportin 5, which
transports it to the cytoplasm (51,52). Pre-mir is exported to
the cytoplasm by exportin 5. Further cytoplasmic processing
by Dicer performs a second cleavage to generate the double-
stranded 18-24 nucleotide-long mir duplex (53,54). One of
these two strands is incorporated into RNA-induced silencing
complex, RISC (55). Only one strand of the mir duplex
remains stably associated with RISC. This strand becomes
the mature mir. The mature mir guides the RISC complex to
the target mRNA, which is then cleaved or translationally
silenced. Thus, mature mir regulates the expression of specific
target genes by binding to the 3'-untranslated regions of
messenger RNA (56). The biogenesis of mir and the targeted
regulatory processes for gene expression are shown in Fig. 3.
It has been well established that multicellular eukaryotes
utilize mir to regulate biological processes such as embryonic
development, proliferation, differentiation and cell death (56).
Recent studies have shown that mir may provide new insight
in cancer research (57,58). Many mir genes are located in

fragile sites and cancer-associated genomic regions, and
studies have suggested that mir expression profiling can be
correlated with disease pathogenesis and prognosis, which
may ultimately be useful in cancer treatment (56,59).

To date, the data concerning mir regulation of cholangio-
carcinogenesis is sparse. Meng et al showed that mir-141
was overexpressed in human CCA cells (60). Inhibiting
mir-141 effectively increased the expression of CLOCK,
which regulates circadian rhythms and can act as a tumor
suppressor in CCA. They also found overexpression of
mir-200b and its target, the protein tyrosine phosphatase non-
receptor type 12, the dysregulation of which may contribute
to tumor cell survival and carcinogenesis. Similarly, the
expression of mir-21 was overexpressed in CCA, which blocks
tumor suppressor gene PTEN (phosphatase and tensin
homolog deleted on chromosome 10) expression (61).

Again, enforced IL-6 overexpression in human CCA cell
lines significantly increased let-7a expression (62). Let-7a is
likely to contribute to survival effects attributable to the inflated
IL-6. A putative target of let-7a is the neurofibromatosis 2
(NF2) gene (62), which is a negative regulator of STAT3 (63).
Thus, overexpression of IL-6 in CCA and subsequent up-
regulation of let-7a decrease NF2 expression, thereby
removing the negative regulation of STAT3, which may be
linked to constitutive activation of STAT3, the pivotal
transcription factor implicated in a number of cancers,
including CCA.

Conversely, other mir species have been identified as
being downregulated in CCA cells compared to non-malignant
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Figure 2. Interleukin 6 (IL-6) binds to its cognate receptor (IL-6R), leading
to activation of janus kinases (JAKs). Following phosphorylation (activation)
of signal transducers and activators of transcription 3 (STAT3) by JAKs, it
dimerizes and translocates into the nucleus, where the STAT3 dimer binds
to the promoter region of suppressor of the cytokine signaling 3 (SOCS3)
gene. SOCS3 can bind to and inhibit the activity of janus kinases (JAKs),
turning off STAT3 signaling in response to IL-6.

Figure 3. MicroRNA (mir) is encoded in the genome and is transcribed by
RNA polymerase II as long precursor transcripts, which are known as
primary miRNA (pri-mir). The pri-mir is initially recognized by the
microprocessor complex in the nucleus, whose core component is Drosha.
The microprocessor complex excises the stem-loop hairpin structure that
contains the pri-mir, a 60-80 nucleotide intermediate termed precursor mir
(pre-mir). The pre-mir is recognized by exportin 5, which transports it to the
cytoplasm. Further cytoplasmic processing by Dicer performs a second
cleavage to generate a double-stranded 18-24 nucleotide-long mir duplex.
One of these two strands is incorporated into RNA-induced silencing complex,
RISC. Only one strand of the mir duplex remains stably associated with RISC.
This strand becomes the mature mir. The mature mir guides the RISC
complex to the target mRNA, which is then cleaved or translationally silenced.
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cholangiocytes. In terms of carcinogenesis, these types of mir
are considered as TSG. Mir-29b expression was suppressed
in a CCA cell line, and enforced miR-29b expression
effectively reduced the target molecule, myeloid cell
leukemia 1, an anti-apoptotic protein of the Bcl-2 family
(64), possibly leading to apoptotic resistance of CCA.
Interestingly, mir-370, whose expression was substantially
reduced in CCA cells, was shown to be under epigenetic
regulation by DNA hypermethylation (65).

Other epigenetic mechanisms and CCA. More recently,
Sasaki et al revealed that p16INK4a promoter hypermethylation
was related to aberrant expression of enhancer of zeste
Drosophila homologue 2 (EZH2), a component of the
polycomb family of gene-silencing proteins, in cholangio-
carcinogenesis in hepatolithiasis (66). There is a mechanism
in which modifications of histones mark a gene for hyper-
methylation by the binding of methyltransferase enhancers
such as EZH2 to histones (67).

4. Conclusions

DNA methylation and histone modifications are the hallmarks
of epigenetic gene regulation. Mir is a recently discovered
category of non-coding RNAs with important regulatory
functions. Aberrancies in both the epigenetic and the miRNA
regulation of genes have been documented in CCA. A deeper
understanding of the association of epigenetic mechanisms
with CCA could lead to new therapeutic avenues.
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