
Abstract. Perylenequinones that generate reactive oxygen
species (ROS) when illuminated with visible light have been
recommended as photodynamic chemotherapeutic agents.
One of these is calphostin C (CalC), the action of the photo-
activated derivative of which, CalCÊE, has been ascribed to its
ability to selectively and irreversibly inhibit protein kinase
Cs (PKCs). But recent results of experiments with neoplastic
rat fibroblasts and human breast and uterine cervix cancer
cells have revealed that the action of CalCÊE involves more
than PKC inhibition. Besides suppressing PKC activity,
CalCÊE rapidly causes endoplasmic reticulum (ER) stress in
breast cancer cells and the selective complete oxidation and
proteasomal destruction of the functionally essential nuclear
envelope protein lamin B1, in human cervical carcinoma
(HCC) cells and neoplastic rat fibroblasts. When these
lamin B1-lacking cells are placed in the dark, cytoplasmic
membrane-linked PKC activities suddenly rebound and
apoptogenesis is initiated as indicated by the immediate
release of cytochrome c from mitochondria and later on the
activation of caspases. Hence, CalCÊE is a photodynamic
cytocidal agent attacking multiple targets in cancer cells and it
would be worth determining, even for their best applicative

use, whether other perylenequinones also share the so far
unexpectedly complex deadly properties of the CalCÊE.
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1. Introduction

Perylenequinones are second-generation cell photosensitizers
which are easily purified, highly soluble, amenable to site-
directed chemical modifications, quickly inactivated in the
dark and rapidly cleared from tissues without a persisting tissue
photosensitivity. Therefore, the perylenequinones have been
recommended as photodynamic therapeutic agents (1-6).

Calphostin C (CalC; UCN-1028c) is one of these agents.
It is a dark red to brown, highly lipophilic, protein kinase C
(PKC)-inhibiting, perylenequinone metabolite from the
fungus Cladosporium cladosporioides (Fig. 1A) (7-12). It
has a high molecular extinction coefficient (Â), a wide UV-
visible absorption spectrum with peaks at 226 (Â 44,800), 269
(Â 29,550), 474 (Â 23,550), 553.9 (Â shoulder 11,900) and
582 nm (Â 12,000), and a high quantum yield of 1O2 generation
in aqueous solution (5,12,13). According to these properties
CalC absorbs enough near infrared light to be photoexcited
to CalCÊE for use for photodynamic tumor therapy (5).

CalCÊE is best known and used for its photodependent
strong ability to selectively inhibit most PKC isoforms (7-13).
However, it has recently been shown that CalCÊE mounts a
multi-target attack on ER (endoplasmic reticulum) glyco-
protein transport resulting in ER vacuolation, ER stress, and
a cluster of apoptogenic consequences [i.e., activation of c-
Jun N-terminal kinase and protein kinase R-like ER kinase
and upregulation of CCAAT/enhancer-binding protein homo-
logous transcription factor (CHOP/GADD153)] independently
of the inhibition of PKCs activity (4). But CalCÊE also rapidly
and selectively attacks the neoplastic cell nucleus (14).
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Figure 1. The photoactivation of CalC to CalCÊE sets off the rapid and complete destruction of the survival-essential lamin B1 at the nuclear envelope. (A)
The chemical structure of CalC fully justifies its lipophilicity and ability to enter cells and to be enriched in the cytoplasmic membranes (ER and Golgi
apparatus) and nuclear envelope. However, photoactivation is necessary for the biological effects of CalCÊE, like destruction of lamin B1, inhibition of PKCs
(IC50 = 50 nM), and apoptogenesis, to be made happen. If never exposed to light since the onset of the experiments, cell-permeating CalC is totally harmless
(14). (B) Lamins A/C and emerin were not changed by a 30-min exposure to CalCÊE followed by a 30-90-min incubation in the dark still in the presence of the
rapidly inactivated CalC; by neat contrast, lamin B1 was totally destroyed within 60 min by the same treatment; strikingly, lamin B1 was not altered by a
60-120-min direct exposure to CalC but no light (14). (C) On the left, the time-related progressive disappearance of 69-kDa lamin B1 holoprotein and the
transient appearance of 210- and 244-kDa predestruction bands recognized by the antilamin B1 antibody in the nuclear membrane fractions (NMFs) of
cells exposed for 30 min to CalCÊE and next incubated in the dark with no medium change; the 0-min band is from illuminated only control cells. Conversely,
NMF-associated 69-kDa lamin B1 did not wane and no anti-lamin B1 antibody-recognized 210- and 244-kDa bands obtained in the NMFs when cells were
exposed to CalC but no light. In either instance, equal sample loading was monitored by reprobing the immunoblots with the anti-emerin antibody. The
immunofluorescent pictures (B) and the immunoblots (c) are typical of five distinct experiments (14).
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One of first, if not its first, critical target of CalCÊE, is the
nuclear lamina (NL). This is the fibrous network that lines
the inner surface of the nuclear envelope (15-20). The lamina
consists basically of 3-D bundles of lamins A/C piled on top
of a sheet of parallel filaments of isoprenylated lamin B
filaments joined at 15-nm intervals along their length by short
(e.g., 5-nm), non-continuous cross-linkers (15-20). It anchors
the nuclear pores plus various other structural and functional
components to the nuclear envelope and its periphery (15-20).
It controls the transcription of some genes by sequestering
transcription factors such as c-Fos and ß-catenin and preventing
them from getting to their target genes (21). Isoprenylated
lamin B1 is permanently attached to the inner nuclear
membrane orienting and stabilizing the nucleus in the cell by
attaching it to the surrounding cytoskeleton and, for example,
preventing the nucleus from spinning (22). Lamin B is the
ancestral lamin that is expressed by all cells at all stages of
development and, unlike the more mobile lamins A/C, it is
essential for the structural integrity of the nuclear envelope and
normal nuclear functioning. Therefore, knocking down lamin
B1 and B2 proteins with RNAi apoptotically kills cells such
as human cervical carcinoma (HCC) HeLa S6 cells and F5
and FR (wt648) rat fibroblasts, while knocking down lamins
A/C displaces the associated emerin, but does not kill the
cells (23).

We have recently reported that loading polyomavirus-
transformed pyF111 rat fibroblasts as well as HCC C4-I cells,
in an in vitro model for late-stage invasive human cervical
cancer (24), with CalC and producing CalCÊE by illuminating
them with visible light for 30 min, rapidly and selectively
destroys lamin B1 (14). Despite the layering of bundles of
lamin A/C on the targeted lamin B1 (17), they are not
destroyed (Fig. 1B and C), nor are the lamin A/C-associated
emerin and the nucleoplasmic cyclin E affected (14). CalCÊE

is also apoptogenic (14,25). Surprisingly, apoptogenesis
does not start in neoplastic rat fibroblasts and HCC C4-I
cells until lamin B1 has been mostly destroyed and CalCÊE

turned off by transferring the lamin B1-depleted cells in a dark
incubator (14).

Here, we review the emerging case for a new multimodal
model for CalC photodynamic action consisting not just of
PKC inhibition and ER stress, but of light-induced selective
lamin B1 destruction and PKC inhibition followed, after
transfer to the dark, by rebounding cytoplasmic PKC-ßI and
PKC-‰ activities and the onset of apoptogenesis.

2. The light-induced events and their in-dark sequelae

CalCÊE rapidly enters the cytoplasm of cells and, like
hypericin (6), accumulates mainly in the Golgi apparatus
and the ER membranes triggering ER stress (4,5). It does not
enter the nucleus, although because of its high lipophilicity
it probably also collects in the ultimately ER-derived cell
nuclear envelope (18). During the first 30 min of illumination,
the nuclear envelope lamin B1 of the CalCÊE-loaded trans-
formed rat  fibroblasts or HCC C4-I cells undergoes a brisk,
progressive decline and totally disappears during the first
30 min of incubation in the dark (where CalCÊE is rapidly
inactivated to CalC) (14) (Fig. 1B and C). While the lamin
B1 is being destroyed, neither nuclear membrane lamins

A/C nor the protein emerin, the lamin A-associated binder of
transcription factors and part of the four-protein nuclear
motor (containing nuclear actin, emerin, lamin A, and nuclear
myosin) that moves chromosomes to reposition genes in
response to various signals (21,26), are affected (14). The
nucleoplasmic cyclin E is also untouched even though
within the first 10 min of illumination the aqueous peroxides
resulting from the cytoplasmic-located, short-range firing,
ephemeral reactive oxygen species (ROS, 1O2 and O2

_)

produced by the photoactivated CalCÊE significantly increase
their levels in the nucleus (14).

During the 30 min of illumination and CalCÊE activity in
the cytoplasm, cytoplasmic PKC-ßI and PKC-‰ activities
rapidly drop close to zero, as expected (Fig. 2A and B) (25,27).
There are no indications of incipient apoptogenesis such as
mitochondrial cytochrome c release or caspase-3 activation
(Fig. 2C and D) (14,27). However, after the cells are
transferred to the dark, while lamin B1 destruction continues
to completion, the photo-suppressed cytoplasmic particulate
fraction (CPF)-associated PKC-ßI and PKC-‰ activities
rebound within minutes (Fig. 2A and B) (25,27).

The prompt in-dark resumption of PKC activities in
the CPF is accompanied by the first sign of apoptogenesis
(28), the rapid-onset release of mitochondrial cytochrome c
(Fig. 2C). This release then slows down between 60 and
120 min and finally levels off between 120 and 240 min
(Fig. 2C). The cytochrome c release is followed by a steadily
increasing activity of executioner caspase-3 starting around
90 min (Fig. 2D) (25), and more than 90% of the cells are
killed by 3.5 h after shutting off the light (14,27).

Finally, it must be noted that none of these ultimately lethal
events, the destruction of lamin B1 or apoptogenesis, are
triggered by incubating the pyF111 cells with 75 nM unexcited
CalC in the dark. With CalC, but without CalCÊE, the cells
keep their normal lamin B1-supported nuclear envelopes,
continue proliferating normally and double their numbers
by 24 h in the dark (14,27).

3. The drivers of CalCÊE cytocidal actions

The early intranuclear accumulation of aqueous peroxides
derived from 1O2 and O2

_ produced by cytoplasm-located, lipo-

philic CalCÊE might be the cause of the so far inexplicably
selective oxidation of the nuclear envelope of lamin B1,
whereas the closely placed lamin A or lamin A-associated
protein emerin or the intranuclear cyclin E are simulta-
neously spared (14). The oxidized lamin B1, like any other
oxidized proteins (29), is in turn proteolyzed by a stimulated
proteasomal peptidyl-glutaminase-like protease (14). The
turned-on proteasome has an ongoing inertia. So, turning off
the light and with it CalCÊE at 30 min does not stop oxidized
lamin B1 proteolysis from going to completion in as many
minutes (Fig. 1C) (14).

Different PKCs have also been shown to be involved in
apoptogenesis as well as proliferation and other activities
(25,27,30,31). Therefore, as expected, when CalCÊE is driving
oxidized lamin B1 destruction, it silences PKC-ßI and PKC-‰

and any indication of impending apoptogenesis (Fig. 2A-D).
Thus, for example, as the activities of the PKC-‰ and PKC-ßI
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holoenzymes bound to the CPF drop virtually to zero by
30 min. During the first 30 min after CalCÊE is turned off in
the dark, the PKC-ßI and PKC-‰ activities in the CPF, to
which they translocate, surge very sharply upwards (Fig. 2A
and B) (27). This sudden and large rebound from PKC-ßI

and PKC-‰ inactivity is unexpected because of the alleged
irreversibility of PKC inhibition in C6 glioma cells by CalCÊE

(7). Gopalakrishna et al (8) reported that washing CalC out

of the glioma cells did not immediately restore PKC activity.
More precisely, re-establishment of PKC activity took 12 h
instead of the few minutes it took in the transformed rat
fibroblasts (24,27) and thus required the reloading of the
glioma cells with newly made PKCs. This might mean

either that the photoinactivation of PKCs by CalCÊE in the
pyF111 cells is in fact reversible or that these cells have a
store of inactive non-membrane-associated PKCs that are
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Figure 2. The very fast rebounding of the activities of the CPF-linked PKC-ßI and PKC-‰ from the CalCÊE–induced transient inhibition after transfer to

the dark concurs with the brisk onset of apoptogenic events. (A and B) Exposure to CalCÊE elicited within 30 min the virtually total inhibition of
immunoprecipitable PKC-ßI- and PKC-‰-specific activities linked to the CPF. However, soon after CalCÊE was inactivated to CalC by transfer to a dark
incubator, the CPF-linked immunoprecipitable PKC-ßI- and PKC-‰-specific activities promptly rebounded. SEMs, not shown, were within ± 12% the
corresponding mean values (25,27 and previously unpublished). (C) A massive release of cytochrome c from mitochondria into the cytosol occurred soon
after CalCÊE was inactivated to CalC by transfer to a dark incubator, and was concomitant with the rebounding CPF-linked PKC-ßI- and PKC-‰ activities, but
preceded the activation of executioner caspase-3. Every point on the curves is the mean value ± SEM of three distinct experiments, each carried out in
triplicate (25). (D) The activation of apoptotic caspase-3 in CalCÊE-exposed pyF111 cells occurred well downstream of the total waning of NMF-associated
lamin B1. The levels of caspase-3 activity in both the nuclear and cytoplasmic fraction remained unchanged for up to 90 min (30-min exposure to CalCÊE +
60-min incubation with dark-inactivated CalC) prior to surging during the following 180 min of staying in the dark. Points on the curves are means from
3-5 independent experiments. SEMs (data not shown) were within ± 11% of the mean values (14).
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thus inaccessible to lipophilic CalCÊE and its ROS photo-
products, but can be recruited to cytoplasmic membranes
and there swiftly activated when CalCÊE disappears.

4. Conclusions

It is generally believed that CalCÊE owes its ability to act
as a potential photodynamic chemotherapeutic agent by
selectively and irreversibly preventing growth factor- or tumor
promoter-stimulated PKCs from driving the proliferation of
neoplastic cells (32,33). Since it is highly lipophilic, CalC
probably collects in cell membranes where the photoexcited
CalCÊE can fire 1O2 and O2

_ onto PKCs that have been recruited
there. The bombardment of a membrane-associated PKC
with 1O2 and O2 from CalCÊE prevents diacylglycerol (DAG)
released from the membrane's phospholipids by a receptor-
activated phospholipase C or a tumor-promoting phorbol
ester from binding to the irreversibly altered DAG/phorbol
ester kinase binding site in its C1 domain, which normally
would activate the enzyme by causing its pseudosubstrate
domain to lift away from, and stop blocking, the catalytic
domain (8,33-36).

But such a PKC-blocking-only mechanism appears be
only half or even less of the story for at least the neoplastic
rat fibroblasts and HCC C4-I cells. Instead, CalCÊE is a
multiple attacking cytocidal agent with at least two of its
targets being equally lethal. When photoexcited in the
cytoplasm, the CalCÊE-generated 1O2 and O2

_ and their
hydroperoxide derivatives selectively oxidize and thereby
target the nuclear membrane indispensible lamin B1 for
seemingly total destruction (14). As expected, at the same
time CalCÊE inhibits cytoplasmic PKC-ßI and PKC-‰. But
contrary to expectations (8,35), turning off the light
promptly unleashes PKC-ßI and PKC-‰ activities in the
CPF, which coincides with the release of mitochondrial
cytochrome c (27) that starts the apoptogenic caspase
cascade (28).

A possible CalCÊE-inhibitable mechanism by which the
surging PKCs might trigger cytochrome c release and apopto-
genesis is suggested by Chan et al (36). They have shown that
treating rat rostral ventrolateral medulla cells with Escherichia
coli lipopolysaccharide causes the translocation of cytosolic
PKC (including PKC-ßI and PKC-‰)/Bax complexes to cell
membranes, where Bax is released and next translocated to
mitochondria. There, Bax forms complexes with ANT
(adenine nucleotide translocase) or VDAC (voltage-dependent
anion protein) that cause the opening of the mitochondrial
permeability transition pore, the release of the apoptogenic
cytochrome c into the cytoplasm, and the activation of the
apoptogenic caspases.

Clearly other perylenequinones should now be studied
to see if this remarkable multimodal lethal capability of
CalCÊE for neoplastic cells is shared by all the members of
this family of photodynamic therapeutic agents.
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