
Abstract. PTEN, p-Akt and p27kip1 are known to be altered in
prostate cancer. The aim of the present study was to
determine the addition of molecular markers to a classical
histopathological approach to enhance the sensitivity in
detection of malignant or premalignant lesions within
prostatic biopsies. Forty-two fine needle biopsies from
malignant, tumor adjacent and benign areas were obtained
from 14 patients scheduled for a prostatic biopsy. Biomarker
expression was determined by immunohistochemistry and
correlated to different localizations. We observed a reduction
of Akt signaling proteins in cancer tissue compared to benign
controls with significantly lower expression of p27kip1

(P=0.0024), PTEN (P=0.0045) and p-Akt (P=0.028). A patho-
logist histopathologically classified the tumor adjacent tissue
obtained from areas distinctly apart from the primary tumor
as benign in all cases. In these regions we observed an
intermediate expression of Akt signaling proteins without
significant difference in relation to the findings in the
malignant samples. The expression of Akt signaling proteins
is reduced in prostate cancer compared to normal prostate
tissue. The intermediate expression of these proteins in tumor
adjacent tissue warrants further investigations into the role of
Akt signaling in the carcinogenesis and early detection of
prostate cancer. There seems to be a marked difference
between the molecular and histopathological characterization
of prostate tissue. Molecular markers might further augment
the histopathological diagnosis suggesting the need for earlier
repeated prostate biopsy in case of microscopic malignancy.

Introduction

Patterns of diagnosis and treatment of prostate cancer have
changed dramatically in the past years. Whereas the histo-
pathological heterogeneity of prostate cancer is well-known
(1-3), the molecular mechanisms of prostate carcinogenesis
remain poorly understood. Disturbances of proliferation and
apoptosis are fundamental events in early carcinogenesis and
might be useful in characterizing tissue that is histologically
normal but at high risk for neoplastic growth. Genetically
altered but phenotypically normal looking cells in the vicinity
of a cancer focus are referred to as field effects. Identification
of these effects could play an essential role in research and
clinical practice. In Western countries millions of prostate
biopsies are performed annually with the great majority being
negative for cancer. Benign prostatic tissue is sampled very
commonly due to the lack of imaging tools that fail to detect
the cancerous tissue. Therefore, biomarkers identifying
high risk non-cancer tissue in prostate needle biopsies
could be very useful for classifying patients with negative
biopsies according to their need for close follow-up or early
re-biopsy.

This study examined the expression of Akt pathway
proteins PTEN, p-Akt and p27kip1 in benign, adjacent benign
and prostate cancer tissue in biopsy cores.

PTEN, p-Akt, p27kip1 are important check points of cell
cycle control, tumor growth and differentiation in prostate
cancer (4). The PTEN tumor suppressor gene is one of the
most frequently deleted genes in various human cancers,
including prostate cancer (5,6). The main function of PTEN
relies on its phosphatase activity and subsequent antagonism
of the PI3K/Akt pathway (7,8). Loss of PTEN function results
in accumulation of PIP3 and activation of its downstream
effectors, including Akt (9-11). As a serine/threonine protein
kinase, Akt functions by phosphorylating key intermediate
signaling molecules, leading to an increase in cell metabolism,
cell growth and cell survival (12). Furthermore, Akt activation
seems to be important for the progression of prostate cancer
to an androgen-independent state (13). The p27kip1 protein
regulates cell cycle progression from the G1-phase to S-phase
by its inhibitory interaction with the cyclin E/cdk2 complex.
Loss of p27kip1 expression has been shown to be a negative
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prognostic marker in various carcinomas as well as in
prostatic carcinoma (14). Low levels of p27kip1 may be as
much a result of CDKN1B alterations as of (15) PTEN loss,
because its function is mediated by the Akt signaling
pathway (16).

Materials and methods

Patients. The study included 14 patients subjected to prostate
needle biopsies who had been diagnosed with prostate cancer
between 2002 and 2006 at Tübingen University Hospital.
The age range was 53-74 (median 64.5) years. The Ethics
Committee of the institution approved the study. The
proportion of tumor cells within the needle biopsy ranged
from <25% to >75%.

Procedures. Representative tissue biopsies from patients with
prostate cancer were selected, for this purpose one tumor
biopsy cylinder, one adjacent, but benign cylinder and one
benign distant biopsy cylinder was chosen for the study.
Thus, glass slides contained 42 samples including 14 benign,
14 ‘adjacent’ benign and 14 primary tumor tissue samples.
Expression of PTEN, p-Akt and p27kip1 was determined by
immunohistochemistry. The biopsy containing slides were
deparaffinized, rehydrated and immersed in 3% hydrogen
peroxide solution to block endogenous peroxidase activity.
Antigen retrieval was accomplished by microwave heating
specimens in a 0.01 citrate buffer for 15 min. Biomarker
expression was immunohistochemically detected by commer-
cially available antibodies (PTEN and p27kip1 monoclonal
mouse, p-Akt polyclonal Cell Signaling Technology, Inc.,
Beverly, MA, USA). The optimal dilutions were: PTEN and
p27kip1, 1:200; and p-Akt, 1:150. After 12 h of incubation
(PTEN, 2 h) the sections were washed in TBS and incubated
with a secondary biotinylated antibody (Vectastatin Elite
ABC Kit, Vecto Laboratories, Inc., Burlingame, CA, USA) for
60 min. The DAB system (Vector) was used for visualization
according to the manufacturer's instructions. Sections were
briefly rinsed in tap water, counterstained with Mayer's
hematoxylin solution and then mounted. For negative
control, the primary antibody was replaced by non-immune
serum. All biopsy staining were assessed by two independent
investigators (A.S.M. and J.H.) in a blinded manner so that
neither of them knew the origin of the biopsies. The staining
reaction was classified according to a semi-quantitative IHC
reference scale ranging from 0 to 3 as previously described
(17-19).

Statistical analysis. Score values nested into the three
respective groups benign, adjacent and tumor showed
unequal variance. Score values were therefore dichotomized
into high expression with a score >8 and low expression with
a score value <9. A global Pearson Chi-square test was
used to analyze the overall difference in the frequency of the
dichotomized score values between groups. A significant
global test with P<0.05 was followed by a post-hoc analysis
using the Pearson Chi-square test comparing each group
with the other two groups. Post-hoc P-values were corrected
for multiple comparisons using the Bonferroni-Holm
correction.

Results

Fig. 1A shows the score values for the three different
sample types belonging to each patient. Score values
belonging to one patient are connected and presented in the
same color. The score values nested into groups do not
show equal variance. For all three different markers benign
tissue samples do not reach score values <9. Fig. 1B shows
mosaic plots for the frequency of high (score >8) or low
(score <9) expression within the three groups. For p27kip1

(n=40, x2=12.0, P=0.0025), PTEN (n=41, x2=11.7, P=0.0029)
and p-Akt (n=41, x2=7.4, P=0.025) significant trends
pointing at decreased frequencies of higher expression
values of these tumor suppressors were found in the tumor
tissue samples. Post-hoc analysis only showed significant
differences for the benign tissue compared to the tumor
tissue for p27kip1 (n=28, x2=11.3, P=0.0024), PTEN (n=29,
x2=10.1, P=0.0045) and p-Akt (n=29, x2=6.8, P=0.028), but
no differences for the adjacent group to the benign group
for any of the markers.
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Figure 1. (A) Score values for the three different sample types belonging to
each patient. Score values belonging to one patient are connected and
presented in the same colour. (B) Mosaic plots for the frequency of high
[(light grey) score >8] or low [(dark grey) score <9] expression within the
three groups. Benign, 0; adjacent, 1 and tumor, 2.
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Discussion

As early stage prostate cancer is curable a timely diagnosis is
essential. Furthermore, accurate detection of prostate cancer
is critical for the appropriate management of patients. In most
cases, a prostate biopsy is the initial means of making a
diagnosis.

A major current problem in prostate cancer is to predict
the behaviour of early and potentially localised disease
(15). Some cases may remain dormant for many years
without progressing, while others will progress rapidly.
Therefore it is important to identify the patients who need
to be treated and separate them from those who can be
managed by active surveillance, for example in elderly or
comorbid patients, thus sparing the latter of the adverse
consequences of unnecessary treatment (20,21). If tests are to
be developed that will allow the prediction of clinical
behaviour of patients diagnosed with prostate cancer, for
example, following prostate-specific antigen (PSA)
screening, it  must be possible to perform the test on
biological specimens obtained from the patients at the time
of diagnosis, which would usually only include trans-rectal
ultrasound (TRUS)-guided needle biopsy specimens, blood
or urine.

Over the past several years we have appreciated that the
utility of the needle cores goes well beyond the presence or
absence of cancer. These needle cores also contribute to risk
assessment in patients found to have cancer. Accurate grading
is important to clinical decision-making. However, a general
problem is that the main growth or expression pattern of the
tumor tissue may not be present in the needle biopsy, especially
in small tumors. This is mostly due to a lack of representative
tumor areas in the biopsy, that can be caused by a very
heterogeneous and clustered growth of prostate cancer
throughout the gland (22).

To gain insight into the molecular mechanisms of
carcinogenesis and tumor markers to predict a definitive
prognosis and to find cellular functions suitable for therapeutic
interference is the focus of many current investigations.
Thus, more data are available on Akt expression in prostate
cancer. The mechanism by which Akt signaling facilitates
tumorigenesis and progression is multifactorial. However,
inhibition of apoptosis and facilitation of cell cycle entry
appear to be of great importance, as suggested by mounting
evidence in prostate cancer and other malignancies. Loss of
p27kip1 protein expression in radical prostatectomy specimens
has been shown to be an adverse prognostic factor in
patients with clinically localized prostate cancer (14,23-27),
and in those undergoing salvage prostatectomy after radiation
therapy failure (28). In a previous study, we were able to
demonstrate altered expression of p27kip1 in histologically
benign tissue areas in whole mounted prostate cancer
specimens (18). We concluded that, in adjacent benign
tissue of whole prostate specimens, p-Akt and p27kip1 act
similarly to that in cancerous tissue. These areas are part of
the tumor mass, extending the histologically maligned
region. In a study from 1999 our group postulated a
significant correlation of decreased p27kip1 expression with
prostate cancer progression (29). Several studies confirmed
these findings (14,30). Because of this, loss of p27kip1 has
been suggested as a component of molecular staging (27,31).

Whang et al (32) and Latini et al (33) postulated that
PTEN alterations appear to be a late event, possibly
influencing metastatic potential and progression to androgen
independence rather than tumorigenesis. Moreover, PTEN
mutations are more commonly found in metastatic compared
to localized prostate cancers (32,34-40). A role for PTEN
mutations in resistance to chemotherapy is also proposed (41).
Gene therapy approaches using transfected wild-type PTEN
are being developed (42). PTEN clearly plays an important
role in the progression of prostate cancer.

Despite the small number of patients in our study, this is
the first study on these proteins and a possible alteration in
benign tissue in prostate needle biopsies. Further investigation
in Akt pathway will show its implication in the prognosis and
therapy of prostate cancer and the possible diagnostic use in
biopsy specimen. Further plans call for a multivariate model in
a larger prospective study set comprised of various biomarkers
and clinical variables to predict outcomes following negative
biopsies.
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