
Abstract. The polymorphism of CYP1A1*2A or CYP1A1*2B,
and the linkage of CYP1A1*2A, CYP1A1*2B, GSTM1 and
GSTT1 polymorphisms have been established as susceptible
genes or gene-gene interactions of tobacco-related lung
cancer. New candidate genes susceptible for lung cancer such
as NQO1 (NAD(P)H:quinine oxidoreductase), NAT2 (N-
acetyltransferase 2), and several others have been reported.
In the present review we focus on new candidate genes
susceptible for lung cancer, then examine all Japanese
references by meta-analysis on susceptible genes over the
past 20 years, and discuss whether new candidates and
changing trend in Japan could be caused by environmental
change.
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1. Introduction

Cytochrome P-450 (CYP) enzymes have been reported to
participate in chemical carcinogenesis and to form reactive
intermediates which can then covalently bind to DNA.
Formed DNA adducts show strong carcinogenic properties
(1-3). This process is called phase I chemical reaction for
carcinogenesis, whereas in phase II reaction DNA adducts
are detoxified by glutathione S-transferase (GST) or other
enzymes (1,3-5). Polymorphism of these CYPs shows
different activities of aryl hydrocarbon hydroxylase to form
DNA adducts (DNA-binding diolepoxide) (1-5). Benzo(a)
pyrene, one of the carcinogenic agents in cigarettes, as well
as other carcinogens are metabolized by CYP1A1, CYP1A2,
CYP2A6, CYP2E1 and CYP2D6 to form benzo(a)pyrene
DNA adducts (epoxide), resulting in very active carcinogens
(1-5). The polymorphism of CYP1A1 have been shown at
three sites, the Msp1 recognition site in intron (CYP1A1*2A:
MspI), the isoleucine-to-valine substitution site in the heme-
binding region of the enzyme (CYP1A1*2B: Ile/Val) and the
threonine-to-asparagine substitution site in exon 7 of the
enzyme (CYP1A1*4) (4-7). The distribution of gene poly-
morphism in both CYP1A1*2A and CYP1A1*2B was not the
same between Japanese and Caucasian populations (6-9).
Since the study of Kawajiri et al (10), the Japanese population
showed a type of CYP1A1 gene polymorphism significantly
susceptible to tobacco-related lung cancer (11-16). On the
other hand, Caucasians did not show significant distribution
of either type of gene polymorphism of CYP1A1 for non-
small cell lung cancer (8,9,17). This ethnic difference may
be considered due to the fact that the allelic frequency of
CYP1A1*2A(m2/m2) and CYP1A1*2B (Val/Val) among
Caucasians was about 10-fold less than among Japanese
(7,8). Recent reports, however, based on pooled analysis of
individual data of lung cancer cases and controls from the
International Collaborative Study on Genetic Susceptibility
to Environmental Carcinogenesis revealed significantly
higher cancer patients with CYP1A1*2A variant gene than
controls (6,7,18,19). Next, the associated variant genes
of CYP1A1*2A, CYP1A1*2B, GSTM1 and GSTT1 showed
the high risk (13,19,20), and the gene-gene interactions of
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CYP1A1*2A, CYP1A1*2B, GSTM1 and GSTT1 were clearly
demonstrated to pose significantly high risk in the non-
smoking persons of a large pooled studies by the detailed
polymorphism analysis of their genes (7,21). Moreover
NQO1, NAT2 and several other genes have been reported as
new susceptible genes of lung cancer (22-36). The present
review focuses on new candidates, then examines all
Japanese references by meta-analysis on susceptible genes
over the past 20 years, and finally discusses whether new
candidates and changing trend in Japan could be caused by
environmental change.

2. Conventional susceptible genes of tobacco-related lung
cancer

Kawajiri et al (10) were the first to demonstrate a strong
association of the CYP1A1*2A genotype with the risk of lung
cancer. In particular, in patients with squamous cell
carcinoma the frequency of CYP1A1*2A (m2/m2) was 30.4%,
while in healthy controls it was 10.6%. Subsequent studies
(#2,4-7 in Table I) confirmed their study (10). Hayashi et al
(#3 in Table I) also demonstrated an association of the
CYP1A1*2B (Val/Val) with the risk of lung cancer, especially
strong association in squamous cell carcinoma. This asso-
ciation was confirmed in three subsequent studies (#4,6,7 in
Table I).

The significant association of these genes had not been
reported in Caucasians people before the recent pooled
analysis reports (7,8,18,19). There was an ethnic difference
in the frequency of CYP1A1 gene polymorphism in lung
cancer, and the reason was considered due to the fact that
the homozygous rare allele (CYP1A1*2A or CYP1A1*2B) in
Caucasians occurs approximately ten times less frequently
than in Japanese (6-9). However, recent studies based on
pooled analysis of individual data of lung cancer cases
and controls from the International Collaborative Study
on Genetic Susceptibility to Environmental Carcinogenesis
revealed significant data of the higher frequency of
CYP1A1*2A rare genotype in lung cancer compared with that
in controls (7,8,18,19). The recent studies on lung cancer in
Asian peoples naturally supported the significant data of the
Kawajiri et al originals (37-39). The polymorphism of
CYP1A1 has been considered to involve in the phase I
chemical reaction for carcinogenesis related with tobacco-
related lung cancer.

The next conventional susceptible gene group is
glutathione S-transferase that can detoxify formed DNA
adducts in phase II reaction as mentioned above (1,3-5).
Five classes of soluble glutathione-S-transferase (GSTs),
alpha (A), mu (M), pi (P), theta (T) and zeta (Z), have been
reported (5,40). GSTM1 is involved in degradation of active
metabolites of polycyclic aromatic hydrocarbons (41), and
GSTT1 in detoxification of small hydrocarbons such as mono-
halometanes and ethylene oxide in tobacco smoke (42).
Null-type polymorphisms of GSTM1 and GSTT1 have been
shown to cause deletion of glutathione S-transferase activity
in the phase II chemical reaction which involves in tobacco-
related lung cancer. It was reported not only in Caucasians
(24,43,44) but also in Asian people (13,14,45,46), although
GSTT1 is still inconsistent (46,47).

Nakachi et al (13) found that the linkage of CYP1A1 variants
(m2/m2 or Val/Val) and GST M1 null genotype showed a
high susceptibility to lung cancer (nos. 3-5 in Table I). Since
then positive reports were published (17,19-21,39). In a
community-based study in Greece (47) the subjects carrying
simultaneously three specific genotype combination of
CYP1A1, GSTM1 and GSTT1 deviated from the common
genotype in more than one gene, were over-represented in
lung cancer patients. Hung et al (19) demonstrated the odds
ratio (OR) of the combination of CYP1A1*2B variant gene and
GSTM1 null genotype was 4.67 (95% CI 2.00-10.9) compared
with the concurrent presence of the CYP1A1 wild-type and
GSTM1 non-null genotype in a pooled analysis of 14 case-
control studies on lung cancer in Caucasian non-smokers.
Recently Vineis et al (7) showed definite evidence of the
gene-gene interactions of the polymorphisms of CYP1A1,
GSTM1 and GSTT1 in a large pooled analysis of reported
studies. Their significant data were observed in the non-
smokers with OR of 3.71 (1.70-8.07), 3.99 (0.49-32.20), 4.51
(0.72-28.35) and 16.19 (1.90-137.65) for the combination of
GSTM1-GSTT1 double deletions with CYP1A1*1, CYP1A1*2A,
CYP1A1*2B and CYP1A1*4, respectively (P=0.13) (reference
CYP1A1 *1 and no deletion) (7). Non-smokers represent a
population at the low level of exposure to carcino-gens such as
environmental tobacco smoke (ETS) and they were often
overlooked because of the small number of cases (19). The
association with smoking was notably higher for squamous
cell carcinomas than for adenocarcinoma (7,18). Afore-
mentioned Greek study showed strong positive association in
heavy smokers (47). Thus, the gene-environment interactions
in cases with these specific genotype combination have been
reported.

3. New candidates of susceptible genes

The phase I chemical metabolites by CYP1A2, CYP2E1, and
other CYPs may be involved in the increase in adeno-
carcinoma with the decrease in squamous cell carcinoma
in lung cancer (23). CYP1A2 can catalyze the N-oxidation
of several amines including heterocyclic amines in tobacco
smoke or consuming well cooked meat or fish (5,23),
and A/A genotype of CYP1A2*1F and G/G genotype of
CYP1A2*1C increase the CYP1A2 activity with the asso-
ciation of lung adenocarcinoma (23).

CYP2E1 Rsa1/Pst1 polymorphism was shown to be a
decreased risk factor for the developing lung cancer among
Asians (48). On the other hand, CYP2E1 c1/c1 genotype was
associated with a significant increased risk for lung cancer
in smokers with alcohol drinking (49). The induction of
CYP2E1 is influenced by alcohol metabolism and this effect
participates in the metabolic activation of various carcino-
gens such as N-nitrosodimethylamine (5,50). High consump-
tion of alcohol beverage was known to be associated with
increased lung cancer risk, whereas modest consumption
was inversely associated with risk (51-53). CYP2E1*1D
might involve in the development of alcohol and nicotine
dependence (54).

N-acetyltransferases 2 (NAT2) and Sulfotransferase
(SULT) 1A1 are included in phase II chemical reaction. NAT 2
participates in the detoxification of aromatic amines and is
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involved in N-acetylation (deactivation) and O-acetylation
(activation) of a variety of polycyclic aromatic hydrocarbons
(23). The slow genotype (23) and the fast genotype (25)
among the polymorphisms of NAT2 were shown to be related

with risk of lung cancer. Vineis et al (24) reported that NAT2
slow genotype showed a higher odds ratio, though not signi-
ficant, in subjects exposed to ETS in European Prospective
Investigation into Cancer and Nutrition. SULT 1A1 has been
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Table I. Reports on gene polymorphism of susceptible genes for lung cancer in Japan.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Author(s)
No. (year) Subjects Summary Refs.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 Kawajiri et al, 68 lung cancer/104 healthy controls CYP1A1*2A (OR 3.09) (23.5%/10.6% m2/m2) 10

(1990) 23 squamous cell carcinoma/104 healthy CYP1A1*2A (OR 4.64) (30.4%/10.6% m2/m2)

controls

2 Nakachi et al, 91 lung cancer/375 healthy controls CYP1A1*2A (26.4%/10.6% m2/m2, p<0.001) 11

(1991) (matcheda 45/135) (OR 7.31 lower-dose smokers, 1.13 *higher-dose smokers)

60 adenocarcinoma/375 healthy controls CYP1A1*2A (13.3%/10.6% m2/m2, not significant)

3 Hayashi et al, 212 lung cancer/358 healthy controls CYP1A1*2B and GSTM1 null (OR 5.83; 12.3%/4.7% Val/Val) 12

(1992) 67 squamous cell carcinoma/ CYP1A1*2B and GSTM1 null (OR 9.07; 14.9%/4.7% Val/Val)

358 healthy controls

96 adenocarcinoma/358 healthy controls

4 Nakachi et al, 85 squamous cell carcinoma/matcheda CYP1A1*2A and GSTM1 null (OR 16.0 lower-dose smokers; 13

(1993) 170 healthy controls 20.0 higher-dose smokers)

CYP1A1*2B and GSTM1 null lower-dose smokers; 27.3 heavy)

5 Kihara et al, 97 male lung cancer (61 squamous and CYP1A1*2A and GSTM1 null (OR 8.3 at 0<SI<800; OR 21.9 14

(1995) 36 small cell)/185 male smoker controls at SI>800)

6 Nakachi et al, 125 adenocarcinoma (71 males, CYP1A1*2A (current or ex-; OR 3.25) 15

(1995) 54 females; 55 current, 25 ex-, 45 never CYP1A1*2B (poorly differentiated; OR 4.09)

smoked)/matcheda 160 healthy controls CYP1A1*2A (current or ex-; OR 3.22) 

CYP1A1*2B (poorly differentiated; OR 3.22)

7 Kiyohara et al, 108 lung cancer (56 adenocarcinoma, CYP1A1*2A (OR 2.93) CYP1A1*2B (OR 3.45) 16

(1998) 30 squamous, 6 large cell, 16 small cell)/ AHH inducibility 7.0<(OR 12.4)

95 healthy male controls

8 Sunaga et al, 198 lung adenocarcinoma (124 males NQO1 (OR 2.15), GSTT1 null (OR 1.61), linkage of both genes 22

(2002) 74 females)/152 hospital controls (OR 4.61) and more evident in smokers than non-smokers

(108 males, 44 females) CYP1A1*2B (not significant), GSTM1 (not significant),

Non-smokers 75 (37.9%)/49 (32.2%) OGG1 (not significant)

Smokers 65 (32.8%)/47 (30.9%)

9 Kiyohara et al, 158 lung cancer female patients CYP1A1*2A (not significant) 57

(2003) (140 adenocarcinoma, 10 squamous)/ GSTM1 null (OR 1.37), GSTM1 null and high-dose ETS*

matched 259 hospital non-smoking (OR2.27)

women

10 Osawa et al, 113 lung cancer (68 adenocarcinoma NAT2 (light smokers; OR 10.9) 23

(2007) 35 squamous; 74 males, 37 females)/ NAT2 and CYP1A2*1F A/A (never smoked; OR 4.95)

matched 121 healthy controls CYP1A1*2A/*2B (not significant),

(73 males, 48 females), CYP1A1 and GSTM1 (not significant)

never smoked 32/55; light 21/18; 

heavy 58/43; unknown 2/5
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
OR, odds ratio; SI, smoking index; ETS, environmental tobacco smoke; NAT2, N-acetyltransferase 2; NQO1, NAD(P)H:quinone oxidoreductase;
OGG1, a DNA glycosylase for 8-hydroxyguanine. asex and age-matched case control study.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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known to participate in the detoxification of hydroxylated
metabolites of polycyclic aromatic hydrocarbons and aro-
matic amines, and the variant allele of SULT 1A1 was reported
to be a risk factor for lung cancer in smokers (26).

Besides the phase I and phase II genes mentioned above,
new candidate genes involved in oxidative stress have been
investigated in the carcinogenesis of lung cancer (24). NQO1
is a flavoenzyme in xenobiotic metabolism and protects cells
from oxidative damage (24). NQO1 -Pro/Pro and Pro/Ser
genotypes have been reported as a significant susceptible
gene for lung cancer in Mexican-Americans and African-
Americans (27) and Taiwanese (28), although the specific
histologic subtypes of lung cancer were not assessed. Sub-
sequently the NQO1-Pro/Pro genotype has a higher enzymatic
activity and was associated with the risk of lung adeno-
carcinoma (22,29). The 690C>TSNPs of NQO1 has been
associated with lower enzyme activity against protection and
was significantly associated with lung cancer among never
smokers (55) and in pooled analysis study of European
Prospective Investigation into Cancer and Nutrition (24).

Myeloperoxidase (MPO) is a lysosomal enzyme in neutro-
phils and activates procarcinogens in tobacco smoke. The
variant A allele is related with low metabolic activation
and subsequently with low risk of lung cancer (30). The
combination of CYP1A1*2B rare genotype and MPO G/G
genotype showed significantly increased risk of lung adeno-
carcinoma (31), although Vineis et al did not show MPO
genotypes as the susceptible gene for lung cancer in a nested
case-control study for non-smokers (24). At present time
this candidate is still controversial.

Base excision repair (BER) genes, such as OGG1
Ser326Cys, XRCC1 Arg194Try, XRcc1 Arg280His and
XRCC1 Arg399Gln, are considered to modulate DNA repair
capacity and to be associated with the decrease or increase
in risk of lung cancer (32,33). Among them the association
between the OGG1 Cys/Cys genotype and adenocarcinoma
risk and between XRCC1 Arg194Trp polymorphism and
lung cancer risk among heavy smokers were observed (33).

Other recent studies (34-36) have revealed a strong and
reliable association between genetic variation on chromo-
some 15 and risk of lung cancer. The association region
contains several genes which encode nicotinic acetylcholine
receptor subunits (CHRNA5, CHRNA3, and CHRNB4)
although the presence of nicotine dependence was not
consistent in three studies (34-36,56). That is, Thorgeirsson
et al (35) pointed out that the variant has an effect on the
number of cigarettes smoked per day in smokers and was
significantly associated with nicotine dependence.

4. Changing trend of susceptible genes in Japan

Recent Japanese reports by Sunaga et al (#8 in Table I) and
Osawa et al (23) neither showed any significant rare allele
distribution of CYP1A1 nor any significant linkage between
CYP1A1 and GSTM1 for both smokers and those who had
never smoked, but they did demonstrate novel types of gene
polymorphism such as NQO1 (8), NAT2 for light smokers
and linkage between NAT2 and CYP1A2*1F A/A for those
who had never smoked (10). The majority of cases in the
three recent studies surveyed in Japan (8-10) were adeno-

carcinoma. The incidence of adenocarcinoma increased in
the 1990s in Japan similarly to other developed countries
(58-61). Four studies (nos. 2, 3, 6 and 7) published before
1998 had examined the frequency of CYP1A1*2A and
CYP1A1*2B rare variants in cases with adenocarcinoma.
Although one of four studies (no. 2) showed almost the same
distribution of the CYP1A1*2A rare allele in healthy controls,
the three other studies (nos. 3, 6 and 7) demonstrated a
significant difference in the frequency of CYP1A1*2A and/or
CYP1A1*2B rare variants of cases with lung adenocarcinoma
compared with the controls. Among the references published
after 2002, Kiyohara et al (57) investigated the association of
ETS in non-smoking women with the occurrence of lung
cancer and revealed a weak odds ratio for the CYP1A1*2A
and GSTM1 variants. Therefore, a different frequency of
CYP1A1*2A and CYP1A1*2B variants in patients with adeno-
carcinoma was noted in the studies published before 1998,
but not noted in the reports published after 2002.

Then we examined whether the polymorphisms of genes
had changed among the ten studies listed in Table I, that is,
whether gene(s) susceptible to lung cancer had changed over
the past 20 years. Seven studies published before 2000 (#1-7
in Table I) were compared with the three recent references
published after 2001 (#8-10). The odds ratios of the rare
alleles of CYP1A1*2A, CYP1A1*2B, and GSTM1 null type
susceptible genes reported in the references (Table I) were
investigated by the meta-analysis method described
previously (62).

Summarized odds ratios and their 95% confidence intervals
(CI) of CYP1A1*2A (m2/m2) vs. CYP1A1*2A (m1/m1)
susceptible to all lung cancer among the studies are shown in
the upper half of Table II. Summarized odds ratios ‘before
2000’ were 2.493, i.e., greater than 1. This means that the
incidence of lung cancer for the population of CYP1A1*2A
(m2/m2) was much greater than that of CYP1A1*2A (m1/m1).
The odds ratios (with 95% CI) of all references (eight studies)
were 1.945 (1.258-3.006), and their p-value of homogeneity
test was 0.009, in other words the odds ratios in the eight
references were not homogeneous, but distributed diffusely
(62,63). A comparison of summarized odds ratios between
‘before 2000’ and ‘after 2001’ groups showed large diffe-
rences with significant p-value as well as homogeneity
(62-64).

The lower half of Table II shows different results for
CYP1A1*2B (Val/Val) vs. CYP1A1*2B (Ile/Ile). Summarized
odds ratios ‘before 2000’ were larger than those ‘after 2001’
with respective homogeneity p-values, but there were no
significant differences in the two groups.

The meta-analysis on genotype of GSTM1 null to positive
for all lung cancer showed that summarized odds ratios were
1.415 (1.104-1.813) ‘before 2000’ (three studies) and 1.287
(0.989-1.675) ‘after 2001’ (three studies) with no statistical
differences, with respective homogeneity in p-values.

Next, meta-analysis was conducted focusing on squamous
cell carcinoma and adenocarcinoma separately. However,
sufficient data were not available to compare the summarized
odds ratios before 2000 and after 2001. Linkage of genotypes
of CYP1A1*2A, CYP1A1*2B and GSTM1 null type could not
be obtained. AS NQO1 and NAT 2 appeared as candidate
genes after 2001, we could not examine new candidate.
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The results of our meta-analysis study mentioned above
suggest that CYP1A1*2A (m2/m2) is not a susceptible gene
for lung cancer at present time, and susceptible genes for
lung cancer might have changed during 2 decades. Our meta-
analysis study, however, has not sufficient evidence because
the numbers of studies after 2000 were few, the study sizes in
Table I were not large, and the study designs were different.
The controls used in two studies (nos. 1 and 3) were 104 and
358 healthy individuals over 40 years old with no information
regarding sex or smoking. Controls matched for sex and
age were reported in five studies (#2,4,6,8 and 10, Table I).
Although cigarette doses were not matched, analysis was
performed on cigarette doses in these five studies. Recent
report of Asian pooled analysis (48) was not investigated
chronologically and included all cases and controls in 11
Asian countries, different life styles and different environment.
We should investigate the environment-modified poly-
morphism expression of susceptible genes for lung cancer
in a large pooled analysis.

5. The possibility of genotype expression modified by
environmental change

Environmental change such as air pollution, indoor pollution,
the chemical contents of cigarettes, food and other substances
might affect the transcription of CYP1A1*2A followed by

increased protein levels of CYP1A1 related with AHH
activity, more than that of CYP1A1*2B, over the past few
decades in Japan if the conventional susceptible genes have
changed in patients with lung cancer. The reports of NQO1
and NAT2 may suggest the involvement of oxidative stress
in vivo in the occurrence of lung cancer. The metabolites of
CYP1A2, CYP2E1, and other CYPs may be involved in the
increase in adenocarcinoma with the decrease in squamous
cell carcinoma in lung cancer (5,23). CYP1A2 involves the
metabolism of N-oxidation of several amines such as the
heterocyclic amines formed when meat and fish are cooked
well. The amines are also formed in tobacco smoke (1-5).
The effect of heavy or moderate alcohol drinking with/
without smoking may cause a complicated condition on
CYP2E1 activity induced by alcohol drinking, and CYP2E1
is also involved in the metabolic activation of various N-nitro-
samines including the potent tobacco-specific carcinogen
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (71).

In Japan habitual male smokers decreased from 53.1%
in 1990 to 39.4% in 2007, while females increased from
9.7 to 11.0% (72). Environmental changes also took place
over the past two decades in Japan. As for lifestyle, housing,
food, clothes, cosmetics, perfumes, and drugs have not
changed much except for increased consumption of meat and
instant or conserved food. Increased meat consumption may
cause induction of NAT2 (22), and may also be consistent
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Table II. Summarized odds ratios and their 95% confidence intervals of genotypes of CYP1A1*2A, and CYP1A1*2B susceptible to all lung
cancer among studies listed in Table I, and p-value of statistical test between two groups, one before 2000 and one after 2001.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Before 2000 After 2001 All refs.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

CYP1A1*2A (m2/m2) vs. CYP1A1*2A (m1/m1)

Summarized odds ratios 2.493 (1.677-3.705) 0.899 (0.537-1.506) 1.945 (1.258-3.006)

No. of studies 6 2 8

No. of references in Table I (1,2,4-7) (9,10) (1,2,4-7,9,10)

P-value of homogeneity test 0.151 0.807 0.009

P-value of test for the two groups 0.00259

CYP1A1*2B (Val/Val) vs. CYP1A1*2B (Ile/Ile)

Summarized odds ratios 2.199 (1.074-4.502) 1.278 (0.551-2.964) 1.887 (1.105-3.221)

No. of studies 4 2 6

No. of references in Table I (3,5-7) (8,10) (3,5-8,10)

P-value of homogeneity test 0.176 0.521 0.220

P-value of test for the two groups 0.391
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Methods of meta-analysis: when the odds ratio and its 95% CI were given in an article, they were employed for the present meta-analysis. If the
odds ratio and its 95% CI are not reported in an article but could be calculated from the contents of the article by the method described previously
(62), the values calculated were used for the present meta-analysis. If the odds ratio and its 95% CI were not given in an article and the values
could not be calculated from the contents of the article by any means, the article was removed from the present meta-analysis study. Summarized
odds ratios and their 95% CIs were calculated by the method of Fleiss and Gross (63) as described previously (62). When odds ratios for meta-
analysis were homogeneous, a fixed-effect model was used (62,63), and in other cases the random-effects model by DerSimonian and Laird (64)
was used as described previously (62). The original method for CYP1A1*2A polymorphism is based on RFLPs of the CYP1A1 gene digested
with MspI (10,65), but most of the cases in the first study of Kawajiri et al (10) were examined by the PCR-RFLP method developed by Kawajiri
et al (66). Since then the PCR-RFLP method by Kawajiri et al (10) has been used in all references. CYP1A1*2B polymorphism analysis based on
PCR by Hayashi et al (12) was used in all references. GSTM1 positive or null genotype based on the PCR method by Comstock et al (67) and
Groppi et al (68) was used by Hayashi et al (12) and Nakachi et al (13). Other references (14,23,57) used the same PCR method, although two
references cited other studiess (69,70). Therefore, these genotypes were in principal examined by the same PCR so the references could be
compared for the meta-analysis.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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with the remarkable recent increase in the incidence of breast
cancer as well as colon cancer in Japan (72). Another
noticeable change is less pollution of air, water, sand and
roads. Strict monitoring for dioxin is also conducted for
industrial air and water. Recent trends in Japan including less
pollution and increased meat consumption may have changed
the CYP1A1 gene polymorphism susceptible to tobacco-
related lung cancer.

The increase in incidence of adenocarcinoma has been
considered to be related to the increased consumption of
filtered cigarettes, which contain low tar and nicotine but
increased nitrate (0.5-1.3%) (30,73). In Japan low-tar under
15 mg and low-nicotine under 1 mg cigarettes accounted for
over a 50% share of consumption in 1983, while low-tar
under 11 mg and low-nicotine under 1 mg cigarettes accounted
for over 50% after 1991 (74).

The occurrence of adenocarcinoma in the lung may
involve the oxidative stress in vivo with injury to the alveolar
cells, which result in the uncontrolled proliferation of lung
alveolar cancer stem cells (75,76). In this process many
chemical reactants including tobacco-smoke, other chemical
particles stimulate macrophages and neutrophiles to produce
proteinases such as matrix metalloproteinases, elastase
and others as well as cytokines which destroy alveolar cells.
If the inflammation or damage to alveolar cells continues,
bronchoalveolar stem cells may transform to cancer cells
(75,76). Tobacco smoke is one of the most important
carcinogens, but we do not think tobacco-smoke is alone
responsible for lung cancer. We should follow new
susceptible candidate genes in patients with lung cancer in
order to prevent the most prevailed lung cancer.

6. Future problems from the aspect of preventive medicine

Excellent studies based on pooled analysis of individual data
of lung cancer cases and controls from the International
Collaborative Study on Genetic Susceptibility to Environ-
mental Carcinogenesis (6,7,19,21,24) did not show the
chronological change of susceptible genes. We should clarify
the possibility of new candidate susceptible genes from the
aspects of preventive medicine. For this reason we propose
the need for a prospective study in the selected cities in the
world for the genes susceptible to lung cancer related with
environmental change from the chronological aspect.

The change of our life-styles may add new susceptible
gene candidates to lung cancer beyond the conventional
susceptible genes. We should investigate whether the possi-
bility of environment-modified genotype expression occurs
in future.
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