
Abstract. Increasing evidence suggests that cancers contain
a small subset of cancer-initiating cells, so-called cancer stem
cells (CSCs) that are capable of regenerating a tumor after
chemoradiation therapy. Sphere forming ability is known to
be one of properties of CSCs, but the significance remains
unclear. The present study focused on sphere formation of
human hepatoma cells in three-dimensional culture in order
to evaluate the analogy between sphere forming ability and
stemness of cancer cells in vitro. Under three-dimensional
culture condition, HepG2, Hep3B and PLC/PRF/5 cells
demonstrated the sphere formation while SK-Hep1 and
Huh-7 cells did not. The population of G0/G1 phase increased
in the spheres compared with the monolayer (67 vs. 38%). In
spite of no significant difference in stem cell surface markers
(CD44, CD90, CD133, EpCAM and ABCG2), remarkable up-
regulation of p27 CDK inhibitor was observed in sphere
forming cells. Immunofluorescence analysis revealed the
nuclear expression of p27 in the whole of the sphere, but
weak expression of p21 only at the peripheral area. The
spheres acquired chemoresistance to cisplatin compared with
the monolayers (58.9 vs. 16.2 μM in IC50). This model was

useful for assessment of the role of cell-cycle quiescence in
the stemness and chemoresistance of cancer cells.

Introduction

There is an emerging concept of cancer stem cells (CSCs)
that cancer cells do not consist of homogeneous population
but include a small subpopulation of cells having the ability
of self-renewal and differentiation into multiple phenotypes
(1). Several unique properties of CSCs have been identified
including drug-efflux ability (side population) (2,3), main-
tenance of quiescence, sphere formation, high tumorigenicity,
and resistance to hypoxia and chemoradiation (4). After
anticancer treatment that kills most cancer cells, such drug-
resistant CSCs might survive and finally generate new
populations, resulting in cancer recurrence and metastasis.
Detailed analysis on biological characteristics of CSCs are
required to overcome the resistance of cancer.

Recent studies revealed that the sphere formation might
be essential for cancer-initiating ability of CSCs (5-7), but its
significance and mechanism remain unclear. The sphere-
forming cells in human hepatoma were reported to associate
with the expression of stemness markers such as CD90 (8,9),
CD133 (10,11), EpCAM (12), ABCG2 (13) and CD44 (14).
In this study, we focused on the sphere formation ability
using 3D culture system to evaluate the in vitro analogy to
the stemness phenotypes in human hepatoma cells.

Materials and methods

Cell lines. Human hepatoma cell lines, HepG2, Huh-7, PLC/
PRF/5 and SK-Hep1 were analyzed (15). Additionally, we
used p53-deficient hepatoma cell line Hep3B as well as
Hep3B transfected with wild-type p53 gene (16); named as
Hep3B-p53(-) and Hep3B-p53(+), respectively. Culture media
were the recommended media supplemented with 10% fetal
bovine serum, 100 U/ml penicillin and 100 μg/ml strepto-
mycin. All cell lines were cultivated in a humidified incubator
at 37˚C in 5% CO2. Conventional monolayer culture is referred
to as two-dimensional culture (2D culture) hereafter in this
report.
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Three-dimensional culture (3D culture). Sphere formations
were initiated by 3D culture system using low attachment
plate (NanoCulture Plate; SCIVAX, Kanagawa, Japan) (17).
About 5x103 cells were seeded on each well of a 96-well
plate. The culture media were the same as that of 2D culture.

Cell cycle analysis. For cell cycle analysis, spheres were
collected by gentle centrifugation (800 rpm) and dissociated
mechanically and enzymatically (for 10 min in trypsin). The
single cells were fixed in 70% ethanol at 4˚C for 12 h. Cells
were washed twice with PBS and stained with propidium
iodide at 37˚C for 30 min. Cell cycle analysis was performed
on FACS Calibur flow cytometer (Becton-Dickinson, San Jose,
CA, USA).

Protein expression analysis. Total protein was extracted from
2D cultured cells and sphere forming cells at days 3 and 6
(not dissociated) using cell lysis buffer. Western blot analysis
was performed using antibodies for CD44/HCAM, p27, p53
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), p21
(Cell Signaling Technology, Beverly, MA, USA), ABCG2/
BRCP (Abcam, Cambridge, UK), CD90 (Abgent, San Diego,
CA, USA), EpCAM (AbD Serotec, Oxford, UK) and anti-·-
tubulin (Sigma-Aldrich, St. Louis, MO, USA). For analysis
of CD133 expression, cells were labeled with anti-CD133
antibody (Miltenyi Biotec, Bergisch Gladbach, Germany),
followed by assays on a FACS Calibur flow cytometer
(Becton-Dickinson), as previously described (15).

Immunofluorescence analysis. Spheres were cryoembedded
in OCT compound (Sakura Finetek, Tokyo, Japan) and
sectioned at 10 μm thickness with microtome. The sections
were fixed in 4% PFA at 4˚C for 10 min and washed three
times with distilled water, then stained with an automated
immunostainer (BenchMark XT; Ventana Medical Systems,
Tucson, AZ, USA). Fluorescence microscopy was performed
using Axio Observer (Carl Zeiss, Oberkochen, Germany) and
images were acquired digitally using AxioVision (Carl Zeiss).

Chemosensitivity test. For 2D culture, cells were seeded onto
a 96-well plate at a density of 2x103 cells per well and
incubated for 24 h. For 3D culture, cells were seeded on to a
96-well NanoCulture Plate (SCIVAX) at a density of 5x103

per well and incubated for 72 or 144 h (referred to as sphere
day 3 and sphere day 6, respectively). Then, cells were
exposed to DMSO control and different concentrations of
cisplatin (0.01-300 μM; provided by Bristol-Myers Squibb,
Tokyo, Japan) for 72 h. As chemosensitivity test, CellTiter-
GLO luminescence Cell Viability Assay (Promega, Madison,
WI, USA) was adopted. CentroLB 960 (Berthold, Bad
Wildbad, Germany) was used for recording luminescence.

Results

Sphere formation ability of hepatoma cell lines. It is known
that cells seeded onto NanoCulture Plate grow and aggregate
three-dimensionally and finally form spheres. It depends on
characteristics of cell lines whether they can form spheres
or grow like 2D culture. In HepG2, Hep3B-p53(-), Hep3B-
p53(+) and PLC/PRF/5 cell lines, sphere formation was

observed at day 3. In contrast, sphere formation was not
observed in SK-Hep1 and Huh-7 cell lines (Fig. 1). In
Hep3B-p53(-) cells, sphere formation was observed at day 3,
but the verge of spheres began collapsing at day 6. Some of
them could not keep spherical body and finally spread two-
dimensionally. HepG2 cell line was best in respect of the
efficacy of sphere formation, so we determined to use HepG2
cell line in the sphere analysis.

Accumulation of quiescent cells in the spheres. We analyzed
cell cycle of 2D cultured cells and sphere forming cells at
days 3 and 6 (Fig. 2). The population of G0/G1 phase was
accumulated in sphere forming cells (67%) compared with in
2D cultured cells (38%). At day 6 in sphere forming cells,
remarkable decrease of S phase was observed. These results
indicate that the cultivation of cells as spheres inhibits the
transition from G1 to S phase.

Expression of cell cycle regulators. In cell cycle analysis, we
found that the transition form G1 to S phase was inhibited
in sphere forming cells. To search for the factors that govern
G1-S phase transition, we analyzed the expression of cell
cycle regulators (p27, p21 and p53) in 2D cultured cells and
sphere forming cells at days 3 and 6. p27 and p21 are known
to be CDK inhibitors, which regulate G1 to S phase transition
by binding to CDKs, and beseids, the expression of p21 is
tightly controlled by p53. In addition to those cell cycle regu-
lators, we analyzed the expression of cell surface markers
specific for CSCs (ABCG2, EpCAM, CD44, CD90 and
CD133) to investigate the correlation between spheres and
CSCs. In Western blot analysis (Fig. 3A), up-regulation of
p27 protein level was observed in sphere forming cells at
day 6, but in contrast, p53 and p21 protein levels were down-
regulated. No significant difference in hepatocellular carci-
noma stem/progenitor cell surface markers was found between
2D cultured cells and sphere forming cells. By immunocyto-
fluorescence of spheres (Fig. 3B), interestingly, the expression
of p27 was localized in the nucleus, but the expression of p21
was localized in cells at the peripheral area of spheres.

Sphere forming cells acquired chemoresistance ability. To
analyze whether the cultivation of human hepatoma cells as
spheres can affect chemosensitivity, 2D cultured cells and
sphere forming cells at days 3 and 6 were exposed to 0.01-
300 nM cisplatin or DMSO control for 72 h (Fig. 4). The
chemosensitivity test of cisplatin (0-300 μM) did not show a
significant change of the IC50 value between the cells of 2D
culture and sphere at day 3. In sphere at day 6, however, the
IC50 value of cisplatin was three folds higher compared with
2D cultured cells.

Discussion

The present study demonstrated that sphere formation contri-
butes to increase of G0/G1 quiescent cells. In cell cycle
analysis, the population of G0/G1 phase was accumulated in
sphere forming cells (67%) compared with in 2D cultured
cells (38%). We then explored factors in inducing quiescence
in sphere forming cells. In sphere forming cells, up-regulation
of p27 expression was observed at day 6, and the immuno-
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Figure 1. Sphere formation in hepatoma cell lines using 3D culture system. HepG2 cells formed spheres. Hep3B-p53(-) cells formed spheres, but they
collapsed at day 6. On the other hand, Hep3B-p53(+) cells formed sphere stably even at day 6. SK-Hep1 cells did not form spheres. Scale bar, 100 μm.

Figure 2. Analysis of HepG2 cell cycle distribution by flow cytometry. The population of G0-G1 phase was increased in sphere forming cells compared with
2D cultured cells. In sphere forming cells at day 6, a remarkable decrease of the population of S phase was observed.
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cytofluorescence analysis revealed the nuclear localization of
p27. The intranuclear p27 was reported to modulate G1-S
phase transition by regulating the activity of CDKs (18,19).
It is supposed that p27 in nucleus binds to cyclin E-CDK2
complex and inactivates the complex in G0/G1 phase, but
once p27 is transported to cytosol and degraded, the complex
is activated and it triggers the transition from G1 to S phase.
Our data were consistent with this kinetics of p27, so it was

suggested that intranuclear p27 plays a central role for cell-
cycle quiescence in sphere forming cells (20-22).

On the other hand, the p21 expression was down-regulated
in the sphere forming cells. The CDKs inhibitor p21 functions
as the key of stress response and major transcriptional target
of tumor suppressor gene p53 (23,24). Therefore, the down-
regulation of p21 might apparently be inconsistent with the
cellular quiescence. As suppressor of tumor proliferation,
however, the function of p21 is rather ambiguous compared
with p27. In fact, the poor prognosis and clinical progression
of HCC were significantly associated with the lack of p27
but not p21 (25-27). By immunocytofluorescence analysis on
the spheres, the expression of p21 was localized in cells at
the peripheral area of spheres where comparatively active
cell proliferation might occur. Considering the down-regulation
of p21 protein levels, the function of p21 may be different
from inhibiting cell proliferation in the spheres.

In addition, spheres of Hep3B-p53(+) cells could keep
their shapes longer than those of Hep3B-p53(-) cells. Collapse
at the verge of spheres was observed at day 6 in Hep3B-p53(-)
cells, but spheres of Hep3B-p53(+) cells could keep spherical
bodies even at day 6. It was suggested that the mainte-
nance of sphere formation should be controlled by p53 status.
Recently, the p53-p21 pathway has been reported as obstacles
to generate the induced pluripotent stem cells, and this
pathway is a hot issue in stem cell investigation (28,29). Our
data implicated that p53-p21 pathway might play some
essential roles in the sphere formation. In chemosensitivity
test, the sphere forming cells acquired significant chemo-
resistance at day 6, while there were no significant difference
of chemosensitivity between the sphere forming cells at
day 3 and 2D cultured cells. It is possible that the difference
of chemosensitivity was caused not only by cellular quiescence
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Figure 4. The dose response curve of cisplatin (0-300 μM) in HepG2 cells of
2D culture and sphere at days 3 and 6. Cells were treated with DMSO
control or 0.01-300 nM cisplatin. Data represent relative cell viability of
each dose when compared with that of DMSO control. Data are repre-
sentative of three independent experiments. Statistical analysis was
performed using Student's t-test. *P<0.05; between 2D cultured cells and
sphere at day 6.

Figure 3. Expression of cell cycle regulators and hepatocellular carcinoma stem/progenitor cell surface markers in spheres of HepG2 cells. (A) Western blot
analysis of cell cycle regulator (p27, p21 and p53) and hepatocellular carcinoma stem/progenitor cell surface markers (ABCG2, EpCAM, CD44 and CD90).
Tubulin was measured as control. (B) p27 and p21 distribution in HepG2 sphere frozen section. p27 and p21 protein are stained green. The nuclei are stained
blue. Scale bar, 100 μm.
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but also by some other factors including p53-p21 pathway.
Further studies are required to clarify the functional roles of
p21 and p27 in cancer stemness as well as chemo-resistance
using our model of sphere formation.
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