
Abstract. Gastric cancer is one of the most diffuse neoplastic
pathologies in the world whose environmental and molecular
causes, although deeply investigated, have not been com-
pletely clarified. Besides some well-established etiological
factors, such as Helicobacter pylori and E-cadherin muta-
tions, investigations on other possible causes gave contrasting
results. Rb family proteins (including pRb/p105, pRb2/p130
and p107) are involved in cell cycle regulation and their
function and/or expression is often lost in various kinds of
tumours such as lung, bladder, breast and brain cancer.
The consequences of RB inactivation in tumours can be very
different depending on the context and the type of cancer.
Recent evidence indicates that Rb status correlates with a
different therapeutic response according to the tumour type
and the therapeutic agent. Studies performed on Rb family
proteins in gastrointestinal tract tumours suggest that these
proteins have an important role in these cancer types. However,
owing to contrasting results, further investigation is required
to assess whether the expression of Rb family proteins can
potentially be used as a prognostic or predictive factor in
gastric cancer.
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1. Introduction

Gastric cancer is one of the most frequent causes of cancer
death in the world, even though in the past few years there
has been a marked decrease in incidence in Western countries
(1-3), whereas positive and negative trends are reported in
Middle and Far East (4-7).

The most used histotype classification of gastric cancer
is, according to Lauren (8), who defined a ‘diffuse phenotype’
characterized by diffuse infiltration of single tumour cells
or grouped in nests, and an ‘intestinal phenotype’ showing
similarity with histological features of differentiated intestinal
carcinoma. More recently, gastric cancers showing charac-
teristics of both histotypes were classified as ‘mixed’ (9).
The intestinal histotype progresses through different steps
beginning with atrophic gastritis to intestinal metaplasia,
dysplasia, carcinoma and subsequent metastasis.

Investigations on the etiological factors related to the
environment, above all to a diet rich in calories, high salted
and smoked food, so as the possible protective role of fresh
fruit and vegetables, gave contrasting results (10-14). How-
ever, the country of birth seems to be an established predis-
posing factor. Gastric cancer, in fact, is more diffuse in some
parts of the world such as Japan, China and Colombia (15),
and studies performed on migrants showed that gastric cancer
incidence decreases in descendants of Japanese migrants, sug-
gesting that the environment plays an important part (16).
Another well characterized predisposing factor is repre-
sented by Helicobacter pylori infection, which is able to cause
gastritis with mucosal damage and increased regenerative
proliferation (17,18) and whose infection increases 2 or 3 folds
the possibility of gastric cancer occurrence (19). There is
universal agreement in considering patients infected by H. pylori
at high risk of developing gastric cancer (20).

So far, just few biomarkers have been well characterized
in their involvement in gastric cancer development. E-cadherin
(epithelial cadherin, or CDH1-cadherin 1) is a calcium
dependent cell-cell adhesion glycoprotein the loss of which
contributes to cancer progression by increasing proliferation,
invasion and metastasis. Point mutations and/or promoter
hypermethylation of E-cadherin gene causing loss of function
and/or expression of the related protein were described by
different authors (21-24). RUNX3 (runt-related transcription
factor 3) is a transcription factor acting as an oncosuppressor
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the function of which is often lost in gastric cancer because of
cytoplasmic delocalization, promoter hypermethylation and
gene mutations (25-27). RUNX3 is involved in the apoptotic
pathway triggered by TGF-ß1 (27) and it is considered a
crucial therapeutic target in gastric cancer (28).

Among oncosuppressors lost in gastric cancer, various
attempts are still ongoing to define the role of pRb family,
comprising three members, all involved in cell cycle
regulation, named pRb/p105, pRb2/p130 and p107 (29-31).
They are also called ‘pocket proteins’ because they all have
a pocket domain that allows them to bind E2F transcription
factors and thereby block cell cycle progression (32). Parti-
cularly pRb/p105 binds E2F1, E2F2 and E2F3, whereas pRb2/
p130 and p107 bind E2F4 and E2F5 (33). They also share
the capability of binding histone deacetylase 1 (HDAC1) that
cooperates with pocket proteins in binding and repressing
E2Fs (32).

E2Fs activate transcription of several target genes among
which cyclin A2, CDC2, CDC6 and MAD2 whose roles
are related to cell cycle progression, apoptosis and DNA
replication (34-36).

During quiescence, pocket proteins are hypophospho-
rylated: in this ‘active’ state they bind E2Fs determining
inhibition of their transcription activity. After mitogenic
stimuli D-type cyclin synthesis occurs and the subsequent
formation of complexes between cyclins D and cyclin
dependent kinases (CDK) 4 and 6 (37) induces pocket protein
phosphorylation, and the consequent release of E2Fs that
are free to activate the transcription of their target genes
required for progression through the cell cycle.

Consistent with the importance of Rb in controlling cell
proliferation, mutations in Rb or its pathway are extremely
common in most cancer types.

However, beyond their role in regulating cell cycle
progression through the binding to E2F factors, in the past
decades numerous studies implicated Rb family proteins
in many cellular processes that could all contribute to their
tumour suppressor function, suggesting that the role of Rb
in cancer is more complex than previously thought (38).
Moreover, Rb inactivation in tumours can have different
effects depending on the context and the type of cancer.
Recent evidence indicates that Rb status can influence
the response to different anti-cancer therapeutics according
to the context, therefore, a thorough understanding of Rb
function in different cancer types is pivotal (39). So far,
pocket protein involvement in gastric cancer development is
quite controversial since scarce data exist on pRb2/p130 and
p107 role in this tumour type (40-42) and contrasting data on
pRb/p105 expression levels are reported (43,44). Here, we
summarize what has been found so far on the role of pocket
proteins in the development of gastric cancer. More efforts
will be necessary, however, to clarify whether Rb family
status can serve as a prognostic or predictive factor and help
in the future clinical management of this disease.

2. pRb/p105

pRb/p105 (also known as Rb1, RB or pRb) takes its name
from retinoblastoma, a tumour of the retina arising in child-
hood, determined by two distinct mutations at pRb/p105

locus, each causing loss of function of one of the two
homologous copies (45).

pRb/p105 is located on chromosome 13q14.2 and
mutations to this locus were first found in small and non-
small cell lung carcinomas (SCLC and NSCLC), bladder
carcinomas and sarcomas (28,46). Indeed, pRb/p105 is
frequently mutated in a variety of human cancers, both
directly, through different mechanisms, and indirectly, through
deregulation of other pathway members. For example, Rb loss
of function can be caused by deregulation of upstream control
pathways (47) or owing to viral oncoproteins (48). Adenovirus
E1A protein, Simian Virus 40 tumor antigen (T antigen), and
Human Papillomavirus E7 protein share the capability of
disrupting the interaction between E2F and the retinoblastoma
gene product (49-52). Although the above-mentioned viruses
are evolutionarily distinct, their transforming proteins share
some similarities in their amino acid sequence (52), which
allow them to impair the interaction between pRb/p105 and
E2F, determining E2F release and activation of its tran-
scriptional targets.

In normal cells, during G0 phase, hypophosphorylated
pRb/p105 binds E2F1, E2F2 and E2F3 inhibiting their
activity. Upon mitogenic stimuli, pRb/p105 phosphorylation
induced by cyclin D/CDK4/6 complexes causes E2F release
(53), during the early G1 phase. To allow further cell cycle
progression mitogenic stimuli must remain at least until
middle-late G1, so that cells reach the restriction (R) point
representing the key event in deciding whether halting or
proceeding through the cycle (54). pRb/p105 exerts a pivotal
role in this G1/S transition (51,55,56). Then, to guarantee E2F
activity, pRb/p105 will be maintained hyperphosphorylated
by the cyclin E/CDK2 complexes throughout the other cell
cycle phases (56).

pRb/p105 allows cells to control G1/S transition and when
this function is lost because of mutations, promoter
methylation and subsequent gene silencing, hyper-
phosphorylation or increased degradation, cells can grow in
spite of possible other pathway malfunctions and/or DNA
damage (57-59).

3. pRb/p105 in gastric cancer

Mutations affecting pRb/p105 function or its pathway
occur in most tumour types (60). Usually, pRb/p105 loss of
function determines uncontrolled cell cycle progression and
increase of genomic instability that favours tumorigenesis
(61,62). However the pRb/p105 role in gastric cancer is
not as clear as in other tumours, owing to some controversial
data. In 1996 Songun et al (43) found a connection between
pRb/p105 expression and lymph node metastasis. They noted
that there was a direct correlation between TNM stage and
pRb/p105 expression. In particular, they studied 105 cases of
primary gastric adenocarcinoma in which they analyzed
pRb/p105 expression by immunohistochemistry. They found
that pRb/p105 expression was higher in T4 stage and in TNM
stage 4 samples. Similar results were described by Arici et al
(63) who found a higher expression rate of pRb/p105 and
cyclin D1 in gastric cancer samples, compared with adjacent
non-neoplastic mucosa. These data are quite surprising
considering that pRb/p105 is the prototype onco-suppressor
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and is generally lost in tumours (64,65). In 1999 Coppola et al
(44) analyzed by immunohistochemistry the expression of
pRb/p105 in 56 gastric cancers arisen in patients suffering
from Barrett oesophagus. Barrett oesophagus is a
predisposing factor for the so-called ‘cardiac’ cancers, which
are tumours of the stomach cardias and distal oesophagus
junction. Cardiac cancers arise through a stepwise process
termed the metaplasia-dysplasia-carcinoma sequence (66),
which often starts with Barrett oesophagus in which columnar
epithelium replaces the squamous epithelium that normally
lines the distal oesophagus (67). This replacement represents
a form of incomplete intestinal metaplasia, called ‘specialized
intestinal metaplasia’, predisposing patients to adenocarci-
noma (67). So, the analysis by Coppola et al considers different
steps of progression from Barrett oesophagus to gastric
cancer. Their results showed a progressive reduction of the
pRb/p105 level from normal tissue to progressive stages of
metaplasia, dysplasia, until gastric cancer and this is more
consistent with the expectations based on the pRb/p105 role
in tumour development (68,69).

These seemingly contrasting results could be explained by
the fact that the high levels of pRb/p105 found by Arici et al
could concern an inactive protein. pRb/p105, in fact, might
be inactivated because of hyperphosphorylation (60,70) or
because of gene mutations (71,72), which were not assessed.

Contrasting data were found also when analyzing pRb/
p105 mRNA levels. In 1998, Chen et al reported a lower
level of pRb/p105 mRNA in gastric cancer, compared with
non-cancerous tissue samples. Similar data were found by
others in different tumour types (73,74). Decreased trans-
cription of pRb/p105 may be due to promoter hypermethy-
lation or LOH (75). By contrast, in 2003 Lan et al (76) found
Rb/p105 mRNA upregulation in gastric cancer. They com-
pared 272 cases of patients suffering from chronic gastritis,
intestinal metaplasia type I, II and III (IMI, IMII and IMIII),
mild and moderate dysplasia (DysI and DysII), severe dys-
plasia (DysIII) and gastric cancer. They found a progressive
increase of pRb/p105 mRNA level from the mildest to the
worst stage of the illness and correlation between high pRb/
p105 mRNA level and gastric cancer was even stronger in
cases from patients infected with H. pylori. De Luca et al
(77) demonstrated that CagA and HspB proteins produced
by H. pylori, can contribute to increase pRb/p105 phospho-
rylation via cyclin D3 increased expression. So, it can be
supposed that presence of H. pylori may contribute to hyper-
phosphorylation and consequent loss of function of pRb/
p105 protein. Therefore, pRb/p105 high mRNA level could
be due to an attempt of the cell to compensate its loss.

Interestingly, a recent study describes the effects of an
indole derivative produced in stomach after consumption
of crouciferous vegetables (78). The authors show a decrease
in CDK2 activity with a consequent reduction of pRb/p105
hyperphosphorylation and cell cycle arrest in a colon carci-
noma cell line demonstrating a direct effect exerted by pRb/
p105 in blocking cell cycle progression in an in vitro model
of gastrointestinal cancer.

In a recent study Guo et al analyzed miRNA expression
profiles in gastric cancer samples and they found that miR-
106, which targets pRb/p105 mRNA, is upregulated in gastric
cancer specimens, comparing with adjacent non-neoplastic

tissues. Consistent with this result, immunohistochemistry
performed on the same samples showed a decreased pRb/
p105 expression in gastric cancer compared with the normal
specimens (79). This study suggests that other molecular
mechanisms exist to govern pRb/p105 mRNA and protein
expression, which might be altered in gastric cancer, adding
another layer to the complexity of pRb/p105 regulation.

4. pRb2/p130

pRb2/p130 was cloned in 1993 by Mayol et al and is located
on chromosome 16q12.2 (80,81). The activity of pRb2/p130
is regulated by phosphorylation by cyclin D/CDK4/6 and
cyclin E/CDK /2 complexes (82-84), and GSK3 (Glycogen
Syntase kinase 3) (85). Cyclin D/CDK 4/6 complexes are
active during early G1 phase and cyclin E/CDK2 during G1/S
transition, whereas GSK3 phosphorylates pRb2/p130 during
G0 phase contributing to increase protein stability. pRb2/
p130 is the only pocket protein phosphorylated in G0 (82,86)
and in terminally differentiated cells and animal tissues (87).
During quiescence state pRb2/p130 binds the E2F4 and E2F5
transcription factors inhibiting transcription of their target
genes such as cyclin A2, CDC2 and CDC6, all involved in cell
cycle progression and neoplastic transformation (88-90).

pRb2/p130 function is lost in several kinds of tumours such
as glioma, lung cancer, Burkitt lymphoma, ovarian carcinoma
and breast cancer (91-95). pRb2/p130 loss of function occurs
because of mutations, promoter hypermethylation, increased
degradation, or interaction with viral proteins (96-100).
These events may cause synthesis of inactive protein, gene
silencing, decreased protein amount or protein inactivation.
Loss of pRb2/p130 causes the release of E2F4 and E2F5
which are then free to activate transcription of their target
genes promoting cell cycle progression.

Some exceptions, however, have been found. In hepato-
cellular carcinoma, for example, Huynh (101) found over-
expression of pRb2/p130 also in tumour tissue and in
adjacent benign liver. Interestingly, he found both cyto-
plasmic and nuclear expression by Western blot analysis,
whereas a decreased expression or a prevailing citoplasmic
localization was expected. However, transfecting HepG2
(human hepatocellular carcinoma cell line) with pRb2/p130
cDNA determined an increased number of cells in G0/G1
phase and a  reduced tumour burden in SCID mice,
compared with untransfected HepG2. Thus, pRb2/p130
acts as oncosuppressor in hepatocellular carcinoma and it
might be that its overexpression in tissue samples could be an
attempt of cells to activate a protective response against
uncontrolled growth.

5. pRb2/p130 in gastric cancer

The role of pRb2/p130 in gastric cancer has not been
thoroughly investigated. Mattioli et al (40) did not find
striking evidence of direct correlations between gastric
tumour progression and protein expression. The most
important result that they found was a high cytoplasmic
staining along with a high nuclear localization as well, in
gastric cancer with intestinal histotype, whereas a correlation
was not found with the diffuse histotype.
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In 1999, Yoo et al (42) found that TGF-ß1 treatment of
the human gastric carcinoma cell line, SNU-16, determined
cell cycle arrest in G1/S by enhancing the cell cycle inhibitor
p21WAF1/CIP1 and subsequent inhibition of cyclin D/CDK4/
6 and cyclin E/CDK2 complexes associated with their
respective CDKs. This led to decreased phosphorylation of
pRb2/p130 which can be considered a downstream target
of TGF-ß1 pathway and whose deregulation may be involved
in gastric cancer development.

Although these data show that pRb2/p130 deregulation
may be involved in gastric cancer, further research is
necessary to support a direct role. It may be useful, for
example, investigating whether point mutations in pRb2/
p130 occur (97,102) or whether the protein is hyperphos-
phorylated by the cyclinD-E/CDK2/4/6 complexes (103) or
inactivated through other mechanisms.

6. p107

p107 was cloned in 1991 by Ewen et al (104) and maps on
chromosome 20q11.2. P107 protein shares with pRb/p105
and pRb2/p130 the capability of binding E2Fs through its
pocket domain. It binds E2F4 and E2F5 (104-108) but it is
also able to interact physically with the cyclin E/CDK2 and
cyclin A/CDK 2 complexes through its pocket spacer domain
(109). Knockout mice for p107 show normal phenotype,
whereas double knockouts p107-/-; pRb2/p130-/- show defects
above all in limb development and double knockout p107-/-;
pRb/p105-/- have a phenotype that strongly resembles pRb/
p105-/- and a shorter lifespan (108,110,111).

In its role in controlling cell cycle Xiao et al (112)
showed that p107 is phosphorylated by cyclin D/CDK4/6
starting from mid G1 and proceeding through late G1 and
then S phase although a role of cyclin E/CDK2 and cyclin
A/CDK2 cannot be excluded. It has been shown that p107
can act as a direct inhibitor of cyclin A-E /CDK2 complexes,
rather than a simple substrate (113).

The role of p107 in tumour development is not well
defined. In 1993 Zhu et al (31) showed that p107 has growth
suppressive properties. In fact, p107 forced expression in two
human osteosarcoma cell lines, SAOS-2 and U2OS, inhibited
cell proliferation. But, as the authors themselves underline,
cell growth arrest properties are not necessarily indicative
of tumour suppressive properties. They mention Brookstein
et al (114) who showed that reintroduction of wild-type
pRb/p105 in the DU145 prostate carcinoma cell line inhibits
tumour formation in nude mice, although it does not affect
cellular  growth rate.  Wu et  al (115) found that  in
colorectal cancer p107 is progressively increased tissue until
the stage of early carcinoma whereas its level rapidly
decreases in liver metastasis, lymphatic invasion and advanced
stage, suggesting that p107 oncosuppressor activity is more
evident in the late stages of tumour development. Moreover,
studies on double knockout mice pRb/p105-/-; p107-/- suggested
that loss of p107 aggravates the phenotypic consequences
of epidermal-specific deletion of pRb (116). Santos et al
also showed that mice lacking both pRb/p105 and p107, but
not pRb/p105 alone, developed spontaneous skin tumours and
that the deficiency of both makes them highly susceptible to
Ha-ras transformation (117,118).

Contrasting data were recently found by a dissociable
antibody microarray (DAMA), a technique that combines
protein microarrays with traditional immunostaining, on
normal and cancer breast cell lines showing that p107 is one
of the upregulated proteins in cancer compared to normal
cells (119). Data were confirmed by Western blot analysis and
statistical analysis leading the authors to consider p107 a
candidate biomarker for breast cancer diagnosis. Never-
theless, it has been shown that in DU145 depletion of p107
inhibits senescence induced by p53 dependent-DNA damage
response, suggesting that p107 loss could underlie tumour
development (120).

These seemingly contrasting results could be explained
by the fact that p107 function is highly dependent on the
context. For example, despite binding the same E2F tran-
scription factors, E2F4 and E2F5, p107 and pRb2/p130 do not
have a redundant role in tumorigenesis. Rather, the requi-
rement for pocket proteins in tumour suppression seems to be
cell-type dependent as shown by the fact that pRb/p105-/-;
p107-/- and pRb/p105-/-; pRb2/p130-/- mice do not have an
overlapping tumour spectrum (116). In retina, for example,
both pRb2/p130 and p107 are necessary to suppress proli-
feration of pRb/p105-/- cells, whereas in the adrenal gland
loss of pRb/p105 can be compensated just by pRb2/p130.
Indeed, osteosarcomas occur in pRb/p105+/-; p107-/- and not
in pRb/p105+/-; pRb2/p130-/- mice (121). Substantially, p107
role in cancer development may be highly related to cell type
and this may explain the contrasting results found in different
kinds of tumours. Further investigations will help to define
the role of each pocket protein and to identify both common
and specific pathways.

7. p107 in gastric cancer

So far, only two studies have been published investigating
p107 role in gastric cancer. In 1996, Wang et al (122)
described a different effect of staurosporin, a protein kinase
inhibitor, on the human gastric adenocarcinoma cell line,
BGC-823, compared to the normal 2BS cell line. Staurosporin
blocked in G1 phase the normal cell line through reduction
of calmodulin and calcium ions and a decrease of p107 phos-
phorylation. In the cancer cell line, instead, staurosporin
induced calmodulin decrease and calcium ion increase and
consequent loss of the G1 phase arrest, suggesting that p107
phosphorylation could be a downstream target of the ion
equilibrium in gastric environment, whose loss could under-
lie tumorigenesis.

A more recent study concerns the interaction between
p107 and the regulatory subunit p55Á of PI3K (41). Here, the
authors investigated the effects exerted by p55Á on the MKN-
28 human gastric cell line. Forced expression of the 24-
amino acid N-terminal end of p55Á determined a block of cell
cycle in G1 phase, inhibition of DNA synthesis and down-
regulation of cyclins D and A expression. They found that
p55Á binds both pRb2/p130 and p107 and they speculated
that this binding may affect pocket proteins interaction with
E2F factors modifying downstream pathways. Besides, since
both cyclins D and A complexed with respective CDKs are
involved in pocket protein phosphorylation, their reduction
may contribute to G1 arrest because of reduction of pRb2/-
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p130 and p107 phosphorylation. Although the role of p55Á
interaction with pocket proteins deserves further investigation,
this study casts light on the importance of p107 in gastric
cancer development.

8. Conclusion

The small family of pocket proteins including pRb/p105,
pRb2/p130 and p107 exerts a pivotal role in the control of
cell cycle progression (53,82,86,123). However, dissecting
the precise role of pocket proteins is complicated not only
because they have both overlapping and distinct functions
but also because they are involved in almost all biological
processes. Moreover, they regulate the transcription of a
myriad of target genes, both by up- and down-regulation and
can interact with many other cellular proteins. For example,
they are able to form complexes (32,124,125) which help
them to repress E2F activity and with other molecules such
as MyoD (126) involving pRb/p105 in muscle differentiation,
and Raf-1 (130), which is able to inactivate E2F interaction
with pRb/p105 and pRb2/p130.

Consistent with their oncosuppressor functions, pocket
proteins are often dysregulated in a variety of tumours
(128-132). Generally, hyperphosphorylation, point mutations
or protein delocalization lead pocket proteins not to bind
their respective E2F partners thereby promoting unscheduled
cell cycle progression. However, it is likely that also other
molecular mechanisms, which have been previously over-
looked, can affect Rb family function in cancer, such as for
example post-transcriptional regulation by microRNAs. In
gastric cancer, however, more investigations are necessary to
clarify the status and function of the three pocket proteins.
This seems particularly crucial as it has been recently shown
that pRb/p105 status can be predictive of the therapeutic
response to different anti-cancer agents according to the
context. Up to date, loss of function of pRb/p105 seems to be
a more common event in gastric cancer, however, a deeper
analysis of the cases showing pRb/p105 upregulation should
help to clarify its role in these tumours. It will be equally
important, to investigate further the pRb2/p130 and p107
function in gastric cancer, since the data discussed here point
to a role of these proteins in gastric cancer development.

Despite ongoing efforts, a definitive standard chemo-
therapy regimen for gastric cancer has not been defined yet
and surgery often remains the first choice of treatment.
Several studies are ongoing to establish the utility of
preoperative and postoperative chemotherapy although it is
crucial to find novel biomarkers that could help to identify
the more appropriate therapeutic regimen. Considering the
emerging role of pocket proteins as possible predictive factors
of tumour outcome it seems urgent to better define their role in
gastric cancer and assess whether they could represent a
potential useful tool for the clinical management of gastric
cancer patients.
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