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Abstract. Microbiota is receiving significant attention in the 
research field, given that it is essential in homeostasis and 
an indirect modulator of diseases, such as cancer. Humans 
harbor a multitude of microorganisms that affect both human 
health and disease. Colorectal cancer is a genetic disease that 
is composed of distinct subtypes. In all cases, the intestinal 
microbiota has recently emerged as a crucial factor that 
promotes tumor growth at all stages through various mecha-
nisms, such as the modulation of inflammation, the stimulation 
of DNA damage and toxic metabolite synthesis. In this review, 
we assess the contribution of the gut microbiome to homeo-
stasis, its role as a potentiator or blocker of tumor progression 
and the underlying molecular mechanisms; we harness human 
data from both meta‑omics analyses and studies using animal 
models. Furthermore, we evaluate the ways through which 
microbes can be manipulated for diagnostic and prognostic 
purposes, and how they respond to chemotherapy or immuno-
therapy. Mounting evidence suggests that the microbiota may 
be used for the development of novel therapeutic strategies 
against colon cancer.
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1. Role of microbiota in homeostasis

The analysis of microbiota composition has become routine 
in our time, mostly due to the explosion and availability of 
new technologies [metagenomic sequencing technologies 
that incorporate next‑generation DNA sequencing methods 
with the computational approach of targeted (16S rRNA 
hypervariable regions) or whole‑genome shotgun sequence 
reads], that allow for the identification and classification 
of a great variety of microbial species (1,2). The genome of 
the microbiota is 100‑fold more extensive than the human 
genome (3). The distribution of microbial cells surpasses the 
number of all human cells, including somatic and germ cells 
throughout the human body (4‑8). Microbiota is a term that 
has been established as the sum of bacteria, fungi, parasites 
and viruses occupying the host (7). The microbiota genome is 
known as the ‘microbiome’, which acts as 'an indirect genome' 
with significant functions that are several fold more numerous 
than those of the human genome (6,7,9,10). The microbiota and 
host form a complex ‘super‑organism’ in which their symbiotic 
association confers benefits to the host regarding key aspects 
of life. However, defects in the host regulatory circuits that 
control bacterial sensing and homeostasis, or alterations in the 
microbiome, through environmental changes (infection, diet or 
lifestyle), may disrupt the symbiotic relationship and promote 
disease. Increasing evidence indicates a key role for bacterial 
microbiota in carcinogenesis (6,7,9‑11). The International 
Agency for Research on Cancer (IARC) has classified only 10 
microorganisms from the total number of 3.7x1030 microor-
ganisms as pathogenic (12).

The microbiota colonizes any surface in the human body, 
with significant functional roles in homeostasis. Each surface 
in different organs (such as the lungs, skin, vagina and oral 
cavity) is exposed to the external environment and has its 
distinct microbiome. The highest percentage of microbial 
mass is located in the gastrointestinal tract (99%), which is the 
reason why the intestinal microbiota is the most extensively 
investigated type of microbiota thus far (13,14). In particular, 
100 trillion micro‑organisms of distinct structures (bacteria, 
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parasites, fungi and viruses) are colonized in the human 
intestine, thus termed the intestinal microbiome (15,16). The 
absolute number of micro‑organisms fluctuates between the 
mouth and rectum (17).

In order to establish the composition of the microbiota, it is 
only reasonable to consider a human being from the early stages 
of life, i.e. birth. The microbial composition is acquired during 
the first three years of childhood; following the initial stages, 
microbiota development continues with environmental expo-
sure (17‑19,29). As a general note, the gut microbiota displays a 
consistent composition and differs among individuals. During 
late stages of life, in the elderly, the composition of the micro-
biota changes again, but retains a stable function (21‑24).

With regards to the microbiota of the human gastrointestinal 
tract, 50 distinct phyla and five hundred bacterial species have 
been reported as dominant (25). High throughput sequencing 
techniques have provided deep insight into the composition 
of the microbiota (26). A high proportion of gut microbiota 
is divided into three categories: The Firmicutes (30‑50%), 
the Bacteroidetes (20‑40%) and Actinobacteria (1‑10%) (27). 
The majority of the microbiota is strictly anaerobic, such as 
Bacteroides, Eubacterium, Bifidobacterium, Fusobacterium, 
Peptostreptococcus and Atopobium, whereas the minority is 
facultative anaerobic and comprises Lactobacilli, Enterococci, 
Streptococci and Enterobacteriaceae (28). The gut microbiota 
varies in mass and composition along the gut, that is, from the 
luminal to the mucosal regions (17,25). For example, microbial 
composition is denser in the large intestine as compared to the 
small intestine, potentially explaining the higher susceptibility 
of the large intestine to cancer (30,31). The close association 
between the gut microbiota and colon cancer was initially 
revealed in 1975, when researchers observed that the potential 
of developing colon cancer in a chemically‑dependent manner 
was reduced in germ‑free rats (32). Furthermore, the colon 
is dominated by Bacteroidetes and Actinobacteria (90%), 
whereas the small intestine is colonized by Bacteroidetes and 
Actinobacteria (50%). The composition of the microbiota in 
the small intestine also includes other bacterial phyla, such 
as Firmicutes species (40%) (33). Despite the fluctuations of 
microbiota in composition and mass along the gut, the main 
population of micro‑organisms is most certainly composed of 
bacteria, residing within the gastrointestinal lumen (34), either 
competing or cooperating with other micro‑organisms (35).

The symbiotic association of micro‑organisms with 
the human gut (host) is accomplished after several years of 
co‑evolution and co‑adaptation, contributing to a balanced 
homeostasis in the gut (4,36‑38). The microbiota plays a key 
role in homeostasis, as confirmed by its participation in a wide 
range of processes, such as wound healing, the maintenance 
of barrier function, and the modulation of cellular growth and 
immune system regulation (39). Apart from participating in 
these processes, the microbiota also expands to the digestion 
of complex carbohydrates and the establishment of ecological 
niches that might otherwise be occupied by non‑innocuous 
microorganisms (11). The gut microbiota is characterized by a 
high self‑restitution capacity following perturbation (40).

Other beneficial functions of the microbiota include a 
significant contribution to the maturation of the immune 
system and to the protection against infectious agents (41‑45). 
It is important to highlight that the murine gut microbiota 

displays high homology to the human gut microbiota, paving 
the way for translational research based on experimental 
mouse models (46,47). For example, the microbiota has been 
reported to actively participate in the developmental stages 
of a healthy immune system, as illustrated by severe immune 
defects in mice bred under germ‑free conditions (18,48). As 
a general note, the immune system of the gut is responsible 
for eradicating pathogenic microbes, whereas at the same 
time it has developed immuno‑tolerance mechanisms against 
classical gut microbes. The mucosal immune system is under 
the control of the adaptive immune system and it functions in 
a cell‑autonomous manner (39). The disruption of the micro-
biota has been shown to confer a significant impact on the 
immune system in many aspects. Importantly, the microbiota 
has been demonstrated to affect immune structures, in addi-
tion to immune cell populations. This was initially illustrated 
in experimental mice bred under germ‑free conditions, which 
displayed hallmark changes in immunoglobulin A (IgA) 
secretion and functionality defects in Peyer's patches and 
draining mesenteric lymph nodes (mLNs) (49,50). Notably, 
in a previous study, gut‑associated lymphoid tissues (GALTs) 
were efficiently matured with the concomitant activation of 
T cells and IgA‑secreting plasma cells in the presence of the 
microbiota, which mediated the necessary signals for both 
epithelial and dendritic cell (DC) activation (51). Furthermore, 
the gut microbiota appears to be essential for the function 
of basic immune populations, such as the secretion of inter-
leukin (IL)‑22 by type 3 innate lymphoid cells (ILC3 cells). 
ILC3 cells have been shown to be essential for the growth of 
T cells in a microbiota status‑dependent manner, independently 
of IL‑22, IL‑23 or IL‑17 synthesis (52). Subsequent scientific 
evidence has suggested that some bacterial strains are particu-
larly associated with the functions of the immune system. 
For example, certain microbiota components seem to initiate 
inflammation and to regulate immune cells within the lamina 
propria of the intestine. The absence of segmented filamentous 
bacteria (SFB) causes low enrichments of IgA titers, the reduc-
tion of T helper 1 (Th1) and T helper 17 (Th17) cells, and the 
alleviation of immune responses to classical intestinal patho-
gens (Citrobacter rodentium and Salmonella spp.) (48,53,54). 
Yang et al highlighted the significance of SFB in the function 
of T helper 17 (Th17) cells, through the expression of a T cell 
receptor (TCR) directed to a specific SFB antigen (55). Despite 
the beneficial effects mediated by SFB, it was noted that SFB 
also increases susceptibility to autoimmune disorders (56). 
Specifically, it has been demonstrated that the induction of SFB 
to germ‑free mice renders them susceptible to the development 
of collagen‑induced arthritis (57). In addition, the expression 
of the innate‑like cytokine IL‑17C seems to be under the 
control of microbiota during intestinal tumorigenesis, as the 
latter was shown to mediate Toll‑like receptor (TLR)/MyD88 
signaling, which in turn lead a to IL‑17C upregulation during 
colon cancer progression and ultimately to the uncontrolled 
proliferation of intestinal epithelial cells (IECs) (58).

On the other hand, the gut microbiota also has the capacity 
to induce an anti‑inflammatory environment, by producing 
certain metabolic by‑products that maintain barrier integrity. 
For example, the differentiation of IL‑10‑secreting Tregs 
has been shown to be absolutely dependent on the signal 
transduction pathway triggered by Bacteroides fragilis (51). 
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Specifically, polysaccharide A secreted by Bacteroides 
fragilis induces Treg cell expansion via the TLR2 signaling 
pathway (51). Similarly, it has been reported that Helicobacter 
hepaticus (Hh) stimulates T cells to differentiate into T regu-
latory cells (59). The induction of Tregs was also observed 
following the incubation of clostridial strains, conferring 
significant benefits to experimentally‑induced colitis (35,60). 
For example, Faecalibacterium prausnitzii is a clostridial 
organism that has been shown to protect patients from the onset 
of inflammatory bowel disease (IBD) (61). The gut microbiota 
therefore appears to be indispensable for the immune system 
as a whole (62).

Apart from the gut, the skin also harbors a significant 
number of microbial niches that sustain the recruitment of 
Th1/Th17 cells and provide protection against pathogens, 
such as Leishmania major (63). Indicatively, the functionality 
and persistent response of CD8+ T cells has been attributed to 
the skin microbe, Staphylococcus epidermidis (64). The oral 
cavity also contains microbial communities with key roles 
in modulating persistent immune responses to various infec-
tions (65,66). For example, it has been demonstrated that in the 
absence of microbiota in the oral cavity, immune cells cannot 
combat mucosal influenza virus (67). Even though the micro-
biota exerts its effect on the immune system locally on each 
surface barrier, the gut microbiome appears to be the most 
efficient in controlling systemic immune homeostasis (67‑69). 
The insuperable effect of the gut microbiome on the immune 
system has been attributed to its great variability, the high 
number of associated micro‑organisms and the relatively large 
surface area that is available to expand on (13). In line with 
this, it has been demonstrated that the incubation of certain 
bacterial strains in the skin of germ‑free mice does not seem to 
display systemic effects and to reconstitute Th cell populations 
in the intestine (63). The significance of the presence of the 
microbiota in various anatomical sites was established when 
experimental animal models lacking microbial communities 
exhibited signs of autoimmune disorders (multiple sclerosis or 
arthritis) (57,70,71).

However, as described above, the microbiota does not 
only include populations of bacteria, but also consists of other 
micro‑organisms, such as archaea, fungi, viruses, etc. For 
example, fungi such as Candida appear to be overexpressed 
in animal models following treatment with antibiotics (72). 
Nonetheless, the role of microbiota subtypes other than 
bacteria is still in its infancy and additional studies are required 
in order to assess their impact on the immune system (72,73).

2. Healthy gut conditions

The protection of the gut against exogenous pathogens 
is provided by the presence of the epithelial barrier. The 
integrity of the epithelial barrier is mediated through tight 
junctions between epithelial cells, the mucous layer, soluble 
antibacterial factors and distinct cells of innate and adap-
tive immunity (74‑76). Under normal gut conditions, one 
hundred trillion organisms (particularly microbiota) thrive 
in the intestine, creating a protected, warm and nutrient‑rich 
microenvironment, which in turn helps the microbiota to be in 
equilibrium with the host organism (eubiosis). When eubiosis 
is disrupted, the composition of the microbiota is altered 

and as a consequence, it is mostly represented by facultative 
anaerobic bacteria instead of aerobic bacteria (present in 
healthy conditions) (11). The interaction of the microbiota with 
epithelial cells is indirect, through the mucous layer, which 
separates the compartment of commensal bacteria from that of 
the host (49). If one considers that the gut microbiota is in close 
proximity to the IECs that line the mucous layer, it is only to be 
expected that dysbiosis can rupture the mucous layer, thereby 
leading to inflammatory conditions or even cancer (7,11,62). 
The mucous layer can be ruptured by microbial translocation, 
due to specific molecular alterations or abnormal regulatory 
signals (77).

3. Role of microbiota in colorectal carcinogenesis

One of the hallmarks of cancer is the uncontrolled growth of 
malignant cells, which ultimately constitutes one of the main 
causes of mortality. Colorectal cancer is the most predomi-
nant type of cancer in the USA and the third most common 
cause of mortality, therefore presenting a considerable tumor 
burden (78). Colorectal cancer, as the name implies, is char-
acterized by carcinogenic alterations that occur in the colon 
and rectal epithelial cells. Different forms of colon cancer 
arise due to variations in genetic profiles, histological patterns 
and sensitivity to potential therapeutic drugs (79,80). Indeed, 
colorectal cancer can be divided into three subtypes, the 
first of which (35%) is ultimately linked to genetic altera-
tions, the second (65%) is associated with exogenous factors 
and the third, which accounts for 1% of all colorectal cancer 
subtypes, is accompanied by chronic IBD (81). Consequently, 
the majority of patients with colorectal cancer (95%) are not 
directly genetically vulnerable to cancer, thereby supporting 
the notion that the gut microbiota is actively implicated in 
cancer development (82).

The uncontrolled growth of intestinal malignant cells 
begins with the conversion of normal epithelial cells into 
hyperplastic cells. In this manner, epithelial cells lose their 
morphological characteristics and become dysplastic. This is 
followed by the invasion of hyperproliferative epithelial cells 
into the gut lumen, where they form adenomas, and the subse-
quent protrusion of epithelial cells into the gut, which ultimately 
leads to cancer. From a genetic aspect, IECs are transformed 
into hyperplastic intestinal cells after the following sequence 
of genetic events: First the loss of tumor suppressor genes, 
such as adenomatous polyposis coli (Apc) and subsequently 
mutations in genes that encode the machinery for DNA repair, 
such as hMSH2.

Even though significant efforts have been made in order to 
elucidate the driver mechanisms that cause colorectal carci-
nogenesis, the landscape remains obscure. The effect of the 
gut microbiota on carcinogenesis has become a burgeoning 
issue of research in recent times, considering that the gut 
microbiota is vital in sustaining the homeostasis and regula-
tion of the immune system. Since colorectal carcinogenesis is 
a multifactorial cancer type with a genetic basis, it has been 
proposed that inflammatory processes or perturbations of 
the intestinal microbiota can lead to the cancer development 
through genetic alterations. The impact of the gut microbiota 
appears to be more prominent in colon cancer, independent of 
the type and cause, where it seems to systemically influence 
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cancer progression either as individual species or as a micro-
bial community (12).

If one considers that microbes create a dynamic symbiotic 
interplay with the host, it is logical to assume that the gut 
microbiota can function either as a blocker or as a potentiator 
of colon cancer (Fig. 1). The first efforts made in the treatment 
of cancer through the natural effects of the gut microbiota 
were made in the late nineteenth century, when it was realized 
that bacterial infections or injections of heat‑killed bacteria, 
such as Coley's toxin prevented the development of sarcoma 
in patients (83,84). Nowadays, Coley's toxin, which includes 
a mixture of killed bacteria (e.g., Streptococcus pyogenes 
and Serratia marcescens) is regarded a precursor of current 
immunotherapeutic agents. For example, the injection of 
Mycobacterium bovis Bacillus Calmette‑Guérin (BCG) 
is currently used as the classical therapeutic approach in 
non‑muscle invasive bladder cancer (85). Consistent with 
the above, experiments have demonstrated that animals bred 
under germ‑free conditions exhibit a stronger likelihood for 
developing colon cancer than those bred under microbiota‑rich 
environments (86).

Additional in vivo experiments have indicated that the 
microbiota has the capacity to induce cancer in a wider range 
of organs than previously considered, including the skin, 
colon, liver, breast and lungs (86‑93). In a similar manner, 
it was shown that the elimination of intestinal microbiota 

(through antibiotics) ameliorates colorectal cancer or hepatic 
carcinogenesis (88,94‑97).

Consequently, the majority of studies have concentrated 
on investigating the role of the gut microbiota in colitis‑asso-
ciated colorectal cancers, using either germ‑free conditions 
or antibiotics (90,98). Using genetically engineered experi-
mental models specifically predisposed to cancer, such as 
TCR‑deficient (TCRb‑/‑) and double p53 KO (X p53‑/‑) mice, 
it was previously demonstrated that the gut microbiota can 
indeed induce colon cancer. The animals did not develop 
adenocarcinomas under germ‑free conditions (99); however, 
TGFb1‑/‑ mice gut‑colonized with Helicobacter hepaticus 
demonstrated a greater potential for colon cancer develop-
ment (100). Similarly, the gut colonization of Rag2‑/‑ mice 
with Helicobacter hepaticus, and that of Tbet‑/‑ Rag2‑/‑ mice 
with microbiota, has been shown to induce colon carcinogen-
esis (101,102). The resulting phenotype of these experimental 
animal models (TGFb1‑/‑ and Tbet‑/‑ Rag2‑/‑) under germ‑free 
conditions was very similar to the phenotype following anti-
biotic treatment (98,103). Additional studies reported that 
IL10‑/‑ mice developed tumors following treatment with the 
chemical carcinogen azoxymethane (AOM) and incubation 
with Enterococcus faecalis, as compared to mice bred under 
germ‑free conditions, which remained healthy (90,104).

However, since AOM, in combination with dextran 
sulfate sodium (DSS), has been shown to induce colon cancer 

Figure 1. Possible mechanisms through which the gut microbiota induces or blocks colorectal carcinogenesis. The microbiota interacts with the colonic 
mucosa, creating a pro‑inflammatory or anti‑inflammatory state with subsequent metabolic profiles, thus leading to cancer progression or remission.
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formation, the role of the gut microbiota in colorectal carci-
nogenesis in experimental mouse models may be obscured by 
the effects of chemically induced carcinogenesis (92,105‑110). 
In other words, it is difficult to assess which animal models of 
colorectal cancer are the most suitable for elucidating the role 
of the microbiome in cancer development. Despite the seem-
ingly unsurpassed selective pressures displayed by malignant 
cells, the concept of microbe‑driven cancer formation does 
not cease to exist. A significant number of research studies 
have explored whether micro‑organisms are directly involved 
in tumor progression or whether they participate indirectly 
through their metabolites. Recent metagenomic analyses have 
revealed essential differences between healthy and cancer 
states and assessed the tumor‑promoting effects of microbiota 
in certain types of cancer. The mechanisms through which 
specific microbes target certain cancers, contributing to the 
acceleration of tumor progression remain elusive. For example, 
human papillomavirus (HPV), hepatitis B virus, hepatitis C 
virus, human herpesvirus 8 and human T‑lymphotropic virus 1 
have been shown to trigger carcinogenesis via well‑defined 
processes (5,11). Specifically, HPV can cause anogenital or 
oropharyngeal carcinomas, hepatic B or C virus can induce 
hepatocellular carcinoma and human immunodeficiency 
virus (HIV) or Epstein‑Barr virus (EBV) or human T‑cell 
lymphotropic virus type 1 (HTLV‑1) can lead to lymphoma (7). 
As regards individual bacterial species, it has been revealed 
that specific bacterial strains drive carcinogenesis (111). As 
highlighted by epidemiological data, the most highly‑asso-
ciated microbe to cancer development, especially gastric 
cancer, is Helicobacter pylori (H. pylori) (112). Helicobacter 
pylori releases toxins (CagA or VacA) that cause cytoskel-
etal rearrangements which cannot be surpassed by the host 
repair mechanisms (113,114). Notably, the close association 
of Helicobacter pylori with gastric cancer has been regarded 
a landmark discovery and was awarded a Nobel Prize (115). 
Furthermore, Streptococcus bovis, Helicobacter pylori, 
Bacteroides fragilis, Enterococcus faecalis, Clostridium 

septicum, Fusobacterium spp. and Escherichia coli have 
also been identified as bacterial species that can lead to the 
development of intestinal neoplasms. Other bacterial strains, 
including Bacteroides fragilis, Escherichia coli, Enterococcus 
faecalis and Fusobacterium nucleatum, have been identified 
in experimental animal models chemically predisposed to 
colon cancer as microbes with an ability to modulate normal 
immune responses (Table I) (116‑121).

An important breakthrough was achieved in the case 
of Fusobacterium nucleatum. In general, Fusobacterium 
nucleatum is localized in the oral cavity. As a resident member 
of the oral microbiota, Fusobacterium nucleatum has been 
extensively studied and has been found highly associated 
with periodontitis and appendicitis (122). Fusobacterium 
nucleatum is an anaerobic Gram‑negative rod bacterium and 
one of the leading micro‑organisms in intrauterine infections 
causing premature death. Compared to the gut microbiota of 
healthy individuals, Fusobacteria are often found in patients 
with colon adenocarcinoma and IBD, thus suggesting an 
association between Fusobacteria and the colon inflam-
matory environment (120,123‑126). In the human body, 
Fusobacterium nucleatum can be introduced through the oral 
cavity and transferred into the gastrointestinal tract, thereby 
affecting human colon adenocarcinoma. From an immune 
point of view, Fusobacterium nucleatum triggers inflamma-
tory signaling pathways and functions as a shield to tumor 
cells against an immune attack (12,127). It has been proposed 
that certain bacterial strains possess many adhesins, medi-
ating their binding to TLR4 and RIG‑I, as well as their direct 
interaction with natural killer (NK) cells via binding to the 
NKp46 receptor (128‑130). In this context, the Fap2 protein 
of Fusobacterium nucleatum has been shown to bind to the 
human (not mouse) TIGIT [T cell immunoreceptor with Ig 
and ITIM (immunoreceptor tyrosine‑based inhibitory motif)] 
receptor present on NK cells and T cells in a hemagglutina-
tion‑dependent manner (Table I) (127). The hemagglutination 
potency of Fap2 has been tightly linked to TIGIT suppression. 

Table I. Microbes modulate immune responses in murine models of colon cancer.

 Secreted Molecular Murine experimental model
Bacterial strains factor mechanism predisposed to colon cancer Refs.

Bacteroides fragilis Enterotoxin Changing host Apcmin/+  (116,117,132)
(B. fragilis) (ETBF) immune system
Escherichia coli (E. coli) Unknown Immune stimulation IL10‑/‑ (118)
Enterococcus faecalis Superoxide Polarization to M1 IL10‑/‑ (118,119) 
(E. faecalis)  macrophages
Fusobacterium nucleatum Unknown MDSCs, TAMs, TANs,  ApcMin/+ (120)
(F. nucleatum)  CD103+ DC infiltration
Fusobacterium nucleatum Fap2 Suppression of immune Allograft of wild‑type mice (121)
(F. nucleatum)  responses with CT26 cancer cells
Fusobacterium nucleatum Fap2  Fap2 engagement to TIGIT,   ApcMin/+ (127)
(F. nucleatum)  avoiding NK cell toxicity

MDSCs, myeloid‑derived suppressor cells; TAMs, tumor‑associated macrophages; TANs, tumor‑associated neutrophils; DC, dendritic cells; 
NK, natural killer.
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In this manner, Fusobacterium nucleatum manages to abolish 
NK cell‑mediated destruction of human cancer cells. Notably, 
Fusobacterium nucleatum has been shown to bind to many 
tumor cells through interactions of its Fap2 protein with 
the Gal‑GalNac protein of cancer cells. Consistent with the 
above, the exposure of experimental ApcMin/+ animal models to 
Fusobacterium nucleatum has been shown to cause enriched 
myeloid cell infiltration (predominantly DCs, macrophages) 
and the activation of the nuclear factor (NF)‑κB signal 
transduction pathway. In addition, Fusobacterium nucleatum 
has been shown to augment the numbers of two types of 
myeloid‑derived suppressor cells (MDSCs), thus inhibiting 
activated T cell responses and exacerbating small intestinal 
adenocarcinoma development (Table I) (120). Substantial 
experimental data have highlighted that Fusobacterium 
nucleatum‑fed mice are enriched for tumor‑associated macro-
phages (TAMs), tumor‑associated neutrophils (TANs), CD103+ 
regulatory DCs, thus exhibiting a promotion of neoplastic 
progression (Table I) (120).

Fusobacterium nucleatum seems to recapitulate tumor 
progression through its effects on the tumor microenviron-
ment. For example, Fusobacterium nucleatum has been shown 
to synthesize hydrogen sulfide following red meat consump-
tion, thus promoting DNA damage responses and genomic 
instability in colon epithelial cells, which can in turn lead to 
tumor development (131,132). The onset of colorectal carci-
noma and the extent of tumor progression appear to be more 
prominent in individuals with mutations or perturbations in 
the DNA‑damage response (e.g., ATR and ATM). In support 
of this notion, both in vitro and in vivo xenograft experiments 
have highlighted the potential of Fusobacterium nucleatum 
to trigger the Wnt/β‑catenin pathway, via FadA binding, 
which is highly associated with the proliferation of neoplastic 
cells (126).

Furthermore, it has been illustrated that enterotoxigenic 
Bacteroides fragilis (ETBF) can potentiate tumor formation 
by activating the signal transducer and activator of transcrip-
tion 3 (STAT3) signaling transduction pathway and recruiting 
T helper 17 cells (Th17) in ApcMin/+ mice (Table I) (132). The 
oncogenicity of Bacteroides fragilis became evident from its 
capacity to trigger the Wnt/β‑catenin pathway, thus aiding in 

distant site colonization by tumor cells. Overall, Bacteroides, 
Escherichia coli and Enterococcus faecalis are the bacterial 
strains found to be DNA damage inducers in animal models 
(Table II) (119,133‑136). Enterococcus faecalis has been 
shown to stimulate the DNA damage response in epithelial 
cells by secreting high levels of reactive oxygen species 
(ROS) (119,137), Bacteroides fragilis has been shown to 
trigger the Wnt signaling pathway and Escherichia coli is 
able to initiate double‑stranded DNA breaks, thus resulting 
in increased genomic instability (133‑135). Escherichia coli, 
in particular, has been found to contain polyketide synthase 
pathogenicity islands (pks), which contain the gene respon-
sible for the toxin (colibactin) that triggers DNA damage 
response in IECs (Table II) (134,138,139). The significant 
oncogenicity of Escherichia coli was highlighted when 
IL10‑/‑ mice developed intestinal tumorigenesis following 
treatment with AOM and Escherichia coli strains, without 
any indication of inflammatory sites (134). Therefore, these 
microbes (Enterococcus faecalis, Bacteroides fragilis, 
Escherichia coli) are considered to be key mediators of the 
DNA damage response and tumor progression, without the 
need for a pro‑inflammatory environment (Table II). Last but 
not least, other bacterial strains have been shown to use other, 
multifaceted mechanisms in order to induce carcinogenesis in 
animal models (Table III) (140‑143).

4. Role of dysbiotic microbiota in inflammation and 
colorectal cancer

Even though recent data have suggested that individual 
micro‑organisms specifically influence the formation of cancer, 
carcinogenesis may also be the result of altered microbiota 
composition (dysbiosis) (144). The defects in the symbiotic 
interplay between the host and intestinal microbiota can result 
in alterations in the composition of the microbiota or in defects 
in the regulatory signals that orchestrate the normal associa-
tion of microbiota with the host. In this manner, the balance 
in the commensal community changes (termed dysbiosis) and 
colon cancer can become the following event (6,8). Possible 
causes of dysbiosis can be either pathogenic microorganisms 
or environmental cues, such as antibiotics, xenobiotics or 

Table II. Microbes modulate DNA damage responses in murine models of colon cancer.

 Secreted Molecular Murine experimental model
Bacterial strains factor mechanism predisposed to colon cancer Refs.

Bacteroides fragilis Enterotoxin  DNA damage through ApcMin (133)
(B. fragilis)  spermine oxidase action
Enterococcus faecalis  Epithelial DNA damage   (119,137) 
(E. faecalis)  through ROS induction
Escherichia coli (E. coli) Colibactin DNA damage and IL‑10‑/‑, AOM (134,135) 
  senescence activation
Helicobacter hepaticus CDT DNA damage Rag2‑/‑ (136)
(H. hepaticus)

AOM, azoxymethane; CDT, cytolethal distending toxin.



WORLD ACADEMY OF SCIENCES JOURNAL  1:  3-19,  2019 9

obesity (11). Other causes may be genetic defects in epithelial, 
myeloid, or lymphoid cells of the gut, which can stimulate 
dysbiosis and consequently lead to inflammatory states, such 
as Crohn's disease, which may in turn confer some predisposi-
tion to carcinogenesis (35).

Dysbiotic bacteria appear to be indispensable to the creation 
of an inflammatory environment in the gut. Nevertheless, 
additional genetic changes are required for the initiation of 
colorectal carcinogenesis (11,145,146).

A significant number of studies have investigated the precise 
mechanisms through which the microbiota can be implicated 
in tumor development. In general, experimental mouse models 
chemically predisposed to colon cancer exhibit a lower inci-
dence of tumor formation when treated with antibiotics or 
when bred under germ‑free conditions, as compared to animals 
bred under conventional conditions (86,92,93,95‑97,147,148). 
It remains to be clarified whether inflammation precedes or 
follows dysbiosis, before ultimately leading to cancer. On 
one hand, it has been suggested that a dysbiotic microbial 
community can lead to carcinogenesis by inducing chronic 
inflammation (149). For example, IL‑18‑, IL‑18R‑ and 
MyD88‑deficient mice are unable to mount adequate immune 
responses due to intestinal dysbiosis that occurs through the 
expansion of bacterial phyla Bacteroidetes (Prevotellaceae) 
and TM7, which ultimately leads to colon cancer (108,150,151). 
Other immune‑deficient mice [Nod2‑/‑, Asc‑/‑ (also known as 
Pycard‑/‑) and Nlrp6‑/‑] also display dysbiotic microbiota and 
exhibit carcinogenesis (152,153). The functional significance 
of dysbiotic microbiota has been highlighted by the fact that 
the transfer of dysbiotic intestinal microbiota in healthy mice 
renders them susceptible to colon cancer (151). Similarly, 
genetically‑edited mice (Tlr5 or IL1‑ or Tbx1 or Rag2 immu-
nologically ablated) display prominent signs of colon cancer 
due to dysbiotic microbiota, as compared to immunologically 
wild‑type mice (111). Last but not least, mice deficient for 
mucin (total Mucin 2 KO) present a defective intestinal barrier 
and for this they have been classified as models of intestinal 
neoplasia (154).

On the other hand, it has been proposed that inflamma-
tion causes barrier deterioration (dysbiosis), thus facilitating 
bacterial translocation, which in turn facilitates the creation 
of amplification feedback loops between intestinal barrier loss 
and carcinogenesis (145). For example, if mice display defects 

in pattern recognition receptors which specifically bind to 
microbial‑associated molecular patterns (MAMPs), then these 
mice are characterized by bacterial translocation, dysbiosis 
and ultimately exhibit carcinogenesis (134,152,153).

In addition to the local gut microbiota effect on cancer 
described above, other changes can cause long‑distance 
effects, determining the outcome of neoplasms other 
than colorectal cancer (e.g., pancreatic, liver and breast 
cancer) (88,94,155‑157). A characteristic example of cancer 
caused by the distant effect of dysbiotic microbiota is repre-
sented by hepatocellular carcinoma. The long‑distance effects 
to host organs are exerted by dysbiotic intestinal microbiota 
either via the activation of pro‑inflammatory MAMPs or 
via the secretion of bacterial metabolites. For example, 
the gut microbiota is capable of stimulating hepatocellular 
carcinoma following entry into the liver through the portal 
vein (88,94,158,159). Similarly, it has been demonstrated that 
antibiotics ameliorate the progression of hepatocellular carci-
noma (88,159,160). Notably, dysbiotic microbiota have been 
shown to influence estrogen metabolism, thereby affecting 
tumors in distant sites (7). In the lungs, Candida overgrowth 
has been observed following antibiotic‑mediated gut dysbiosis, 
with subsequent increases in plasma prostaglandin E2 levels 
and macrophage differentiation towards the M2 lineage (72). 
These findings are in agreement with the results of epidemio-
logical studies supporting a strong link between dysbiosis and 
the development of extracolonic neoplasms, including breast 
carcinoma (161,162). It was concluded that bacteria and their 
products are systemically distributed throughout the body, 
compromising the integrity of the intestinal barrier (94).

5. Role of microbiota in genotoxic stress

If one considers that cancer is tightly associated with genetic 
diseases, it makes sense to assume that the microbiota exerts a 
tumor‑promoting role via genotoxic stress. The gut microbiota 
is highly implicated in colorectal carcinogenesis through the 
secretion of toxic metabolites as by‑products of fermenta-
tion. Toxic metabolites bind to specific surface receptors on 
intestinal cells, thereby affecting key signaling pathways. As a 
general note, microbiota‑secreted toxins trigger DNA damage 
response, causing cell cycle arrest, which is often followed by 
apoptosis (116,134,139,163‑167).

Table III. Microbes use various mechanisms in murine models of colon cancer.

 Secreted Molecular Murine experimental model
Bacterial strains factor mechanism predisposed to colon cancer Refs.

Bilophila wadsworthia  Sulfide Uncontrolled growth due to IL‑10‑/‑ (140)
(B. wadsworthia)  augmented bile acid production
Helicobacter spp. Unknown ROS generation  Gpx1‑/‑, Gpx2‑/‑ (142)
Helicobacter spp. Unknown ROS generation  Smad3‑/‑ (141)
Streptococcus gallolyticus CDT Induction of angiogenesis AOM (143)
(S. gallolyticus)

ROS, reactive oxygen species; AOM, azoxymethane; CDT, cytolethal distending toxin.
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A particular toxin, termed CagA, secreted by Helicobacter 
pylori, has been shown to induce both inflammation and 
cancer (168,169). ETBF, another well‑described toxin, is 
secreted by Bacteroides fragilis and is also implicated in 
colorectal carcinogenesis. Specifically, ETBF binds to the 
epithelial receptor, stimulating the Wnt and NF‑κB signal 
transduction pathways, thus leading to enhanced cell prolif-
eration and DNA damage response (133,171‑172). ETBF 
stimulates IL‑17 synthesis in the ApcMin/+ mouse model, 
thereby predisposing it to intestinal neoplasia (116,172,173). 
The underlying molecular mechanisms of ETBF have been 
shown to include the epithelial damage through E‑cadherin 
cleavage, which in turn activates the β‑catenin/Wnt pathway 
and the STAT3 signaling pathway (critical for the growth of 
malignant cells) (116,174).

Since DNA damage is tightly associated with genomic 
instability, proteins that are responsible for all the changes 
caused by double‑strand DNA breaks, such as cytolethal 
distending toxin (CDT) and colibactin, can be regarded as true 
genotoxins (139,165). Colibactin, however, stands out among 
other toxins, as it is capable of inducing oxidative burst, in 
addition to causing genome instability (134,139).

Bacteria‑secreted toxins may also have a profound impact 
on the oxidation status of cancer cells (175). Enterococcus 
faecalis seems to be the main bacterial strain producing 
reactive oxygen intermediates (superoxide and hydrogen 
peroxide) and inducing harmful changes in epithelial cells 
and malignant transformation. Notably, these effects are 
exacerbated in IL‑10‑deficient mice, suggesting that the 
microbiota leads to colorectal carcinogenesis via reactive 
toxins in an established inflammatory environment (104,176). 
It has also been indicated that IECs are toxically hampered 
by sulfate‑reducing bacteria through production of hydrogen 
sulfide (H2S) (177,178). Finally, it has been argued that 
bacteria can obtain virulence factors and convert them 
to pathogens. The capacity of bacteria to bind to IECs 
seems to be facilitated via the acquisition of virulence 
factors (11,179‑181). For example, FadA has been identified 
as the virulence factor secreted by Fusobacterium nucleatum 
in order to activate colorectal cancer (126,182). Similarly, the 
afa and eae adhesins have been identified as the virulence 
factors released by Escherichia coli strains in order to drive 
intestinal malignant transformation (107,183).

6. Role of gut microbiota in metabolism

Recent experimental data have confirmed that the gut micro-
biota can synthesize an enormous quantity of metabolic 
by‑products that affect tumor progression either positively 
or negatively, upon interaction with the host. In general, the 
microbiota is responsible for metabolizing dietary factors 
into bioactive food components. Commencal bacteria are 
known to exert their fermentation capacity in the gut, metabo-
lizing non‑digestible carbohydrates such as polysaccharides 
(e.g., resistant starch, cellulose, hemicellulose, pectins and 
gums), oligosaccharides, and lignins into short‑chain fatty 
acids (SCFAs). The SCFAs are composed of acetate, propio-
nate and butyrate, which are regarded as tumor suppressors 
with great anti‑inflammatory and chemo‑preventive proper-
ties (184,185). SCFAs are final fermentation products of 

dietary fiber in gut bacteria and provide the appropriate energy 
to sustain the health of gut epithelial cells. The type of diet 
directly influences bacterial abundance and composition, as 
indicated by technologies, such as metagenomics (effect of 
diet on microbiota), metaproteomics (microbial gene expres-
sion) and metabolomics (microbial metabolites). On the other 
hand, the microbiota can exert beneficial effects on the host 
organism, as it is responsible for vitamin synthesis, such as 
vitamin K and most B vitamins (186). In addition, carbohy-
drates, branched chain amino acids, ammonia, amines, phenols, 
indoles and phenylacetic acid are also generated through the 
actions of gut microbiota (187,188). Several Bacteroides spp. 
and some Firmicutes have been classified as the bacteria 
responsible for the synthesis of phenylacetic acid, phenols, 
indoles and p‑cresol. These metabolites are known to be quite 
toxic as they cause the nitrogen alkylation of DNA (189,190). 
For example, N‑nitroso compounds (NOCs) are exogenously 
supplied or endogenously synthesized through the nitrosation 
of amines by gut microbiota. The abundance of NOCs has 
been positively linked to an increased incidence of colorectal 
cancer in European populations (94). Some products, such as 
ammonium are carcinogenic despite being produced at low 
concentrations (191).

SCFAs, such as acetate, propionate and butyrate are effi-
ciently absorbed by the gut lumen, despite differences in their 
distribution and their effects on host cell metabolism. Each 
SCFA has specific characteristics that distinguish it from the 
other SFCAs. Despite low concentration levels of butyrate in 
the systemic circulation, IECs predominantly use butyrate 
to fuel their energy stores (60‑70%). Normal colonocytes 
exploit butyrate as their primary energy source, as butyrate 
follows the procedure of mitochondrial β‑oxidation every 
7 days (192‑194). With respect to the distribution of other 
SCFAs, the liver has the greatest metabolizing capacity of 
propionate, while most of the peripheral blood is occupied by 
high concentrations of acetate (0.10‑0.15 mM) (195).

SCFAs also exert growth‑inhibitory effects against patho-
gens (196). The anti‑inflammatory and anti‑carcinogenic 
effects of butyrate attenuate inflammation in IBDs such 
as colitis and Crohn's disease in both rodent models and 
humans. More than five microbiome studies have confirmed 
that butyrate‑producing bacteria are diminished in patients 
with colon cancer, as compared to healthy individuals (197). 
Particularly, the anti‑inflammatory properties of butyrate 
and propionate (but not acetate) have emerged through 
their capacity to reduce the activity of histone deacety-
lases (HDACs) in colonocytes and immune cells. This results 
in histone hyperacetylation, the recruitment of the transcrip-
tional machinery to specific genes and the downregulation 
of IL‑6/12 signal transduction pathways (198‑200). In this 
context, butyrate and propionate are regarded as powerful 
stimuli to the differentiation and function of Tregs (201‑203). 
Furthermore, tumor cells use glycose aerobically through the 
Warburg effect (204) and the majority of butyrate translocate 
to the nucleus, where it exerts its action (205,206). Consistent 
with this, colon tumor‑bearing mice colonized with wild‑type 
butyrate‑producing bacteria do not show any signs of cancer 
following a high‑fiber diet. By contrast, in the absence of 
butyrate‑producing bacteria, the same mice exhibit obvious 
tumor signs (205,207). Butyrate seems to exert its effects at 
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specific genomic regions, such as the Fas and p21 genes, which 
are actively involved in apoptosis and the inhibition of cell 
cycle progression, respectively (197,208), thereby reinforcing 
the hypothesis that butyrate is a well‑established HDAC inhib-
itor (197,208). Another example of the beneficial effects of 
butyrate was demonstrated in experimental ApcMin/+ MSH2‑/‑ 
mice. Polyp formation is abrogated in ApcMin/+ MSH2‑/‑ mice 
following a low carbohydrate diet due to the production of 
butyrate (185). Apart from functioning as an HDAC inhibitor, 
butyrate has been found to mediate its signals through certain 
G protein coupled receptors (209,210).

Butyrate and niacin also constitute main representative 
metabolites of microbiota‑secreted SCFAs that have been 
shown to influence the immune system through two opposing 
mechanisms. From one perspective, microbial metabolites may 
mediate their action through binding to the GPR109A receptor, 
thereby triggering IL‑18 synthesis in IECs and affecting DCs, 
macrophages and T cells (211). Form another perspective, gut 
microbial metabolites may exert anti‑inflammatory properties, 
supporting Treg differentiation and expansion, thus estab-
lishing an immunosuppressive micro‑environment (201).

Importantly, the gut microbiota is significantly implicated 
in metabolizing certain food supplements and nutrients. 
For example, berries and nuts involve ellagic acid, which 
is converted to urolithins by gut microbiota. Urolithins 
diminish Cox2 levels, thus exhibiting a certain anti‑cancer 
effect (212,213). Daidzen is another nutrient metabolized 
by gut sulfate‑reducing microbiota into equols (214,215). 
Epidemiological data from Asian populations have reported 
an association between high urinary or plasma equol concen-
trations and a decreased breast and prostate cancer risk (216). 
Another characteristic example is the elimination by certain 
gut microbiota (Lactobacilli and Bifidobacteria) of linoleic 
acid levels, which are regarded very toxic as they convert 
omega‑6 to omega‑3 and produce prostaglandins (217). Finally, 
resveratrol constitutes another example of the metabolizing 
effect mediated by gut microbiota (218).

In contrast to the above, the gut microbiota may promote 
carcinogenesis through the synthesis of secondary bile acids. 
Characteristically, a minor portion of primary bile acids (5%) 
escapes the classical enterohepatic circulation and reaches 
the colon. The following procedure deconjugates and trans-
forms primary bile acids into secondary bile acids (such as 
DCA and LCA) though the action of specific bacteria (219). 
The presence of mutations that are insensitive to apoptosis 
enables secondary bile salts to act as promoters of tumori-
genesis (220). DCA is such a toxic metabolite, provoking 
epithelial DNA damage and apoptosis in a p53‑independent 
but PKC‑ERK1/2‑dependent manner, with direct associations 
to the formation of colon cancer or hepatocellular carcinoma 
or esophageal cancer (94,221‑225). Recent data illustrate that 
bacteria in Clostridium cluster IX are responsible for enrich-
ment of DCA levels in obese mice, rendering them highly 
susceptible to cancer formation (144). Similarly, certain types 
of microbiota that convert ethanol into acetaldehyde have been 
regarded as major stimulators of carcinogenesis (191).

Last but not least, the cumulative exposure of humans to 
xenobiotics or pharmaceuticals has helped in the understanding 
that gut microbiota may have direct or indirect implications in 
the breakdown of such substances (226).

7. Association of cancer therapy with microbiota

Significant efforts are being made in order to manipulate gut 
microbiota for preventive, diagnostic and therapeutic purposes. 
For the diagnostic purposes, identification of specific bacterial 
strains can offer enormous benefit in the context of new, reli-
able, non‑invasive biomarkers for cancer. For cancer prevention 
purposes, Fusobacterium nucleatum has been proven to be a 
valuable prognostic biomarker, if one considers the abundance 
of Fusobacterium nucleatum in patients with high‑grade colon 
cancer and adenomas (227,228). This has been supported by 
elevated fecal levels of Fusobacterium nucleatum in patients 
with colorectal cancer (120,227,229,230). Notably, recent 
evidence has suggested that the percentage of Fusobacterium 
nucleatum present in fecal samples is inversely associated 
with the survival of patients with colon cancer (231).

A subset of microbes have also been shown to reduce 
chronic inflammation or to mitigate malignant transforma-
tion (132,232,233). Below, we discuss some potential avenues 
through which microbiota can be therapeutically exploited.

First of all, the gut microbiota appears to be essential to 
the effectiveness of classical chemotherapeutic drugs such as 
oxiplatin, cisplatin, and cyclophosphamide (CTX). In general, 
chemotherapeutic compounds elicit toxic effects on tumor 
cells, including ROS activation by myeloid cells, intrinsic 
mitochondrial apoptosis, and the stimulation of inflamma-
tory genes (132,234,235). The beneficial contribution of the 
microbiota to chemotherapy has been determined by the 
composition of the microbiota on myeloid cells (24,236). 
Similarly, microbiota located on myeloid cells has been found 
to exert a positive effect on cancer immunotherapy or total 
body irradiation (TBI). Therefore, the importance of the gut 
microbiota in cancer therapy emerges from its interaction with 
anti‑neoplastic agents in a bidirectional manner.

On the one hand, many current anti‑cancer therapeutic 
strategies (chemotherapy and radiation therapy) negatively 
affect microbial composition, by fostering dysbiosis (24,236). 
Radiation therapy, allogeneic stem cell transplantation and 
several chemotherapeutic agents, including irinotecan and 
5‑fluorouracil, appear to negatively affect the composition of 
the gut microbiota (237‑239). On the other hand, a considerable 
body of evidence has demonstrated that the gut microbiota is 
of the utmost importance to the efficacy of therapeutic drugs, 
by eliminating side‑effects and by interfering in a pharmaco-
dynamic or immunological manner (132,234,240,241).

Currently, therapeutic interventions based on the gut micro-
biota are categorized as follows: i) Antibiotics; ii) probiotics; 
ii) prebiotics; and iv) postbiotics. Each therapeutic perspective 
of the gut microbiota is distinct. Antibiotics are usually used 
for the eradication of specific bacterial strains. Probiotics are 
living bacteria and prebiotics are non‑digestible compounds, 
both of which provide strong support to the host. Postbiotics 
are non‑viable products of microbiota, recapitulating a wide 
range of functions in the human body. All of these therapeutic 
categories have been shown to confer significant benefits to 
the host.

Probiotics and prebiotics are known for their capacity 
to sustain a balanced microbial community, obviating 
pro‑inflammatory or signaling pathways that lead to carcino-
genesis (5‑8,11,242,243). Probiotics are usually administered 
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as a curative strategy for antibiotic‑mediated dysbiosis and 
side‑effects in studies with mice and humans (244). Probiotics 
are innocuous microbes, critical for homeostasis, preventing 
entry of pathogens by stimulating AMPS, IgA and contrib-
uting to intestinal barrier integrity (243,245,246). A number of 
studies have proposed probiotics as a preventive intervention 
for inflammatory bowel disease or ulcerative colitis (247‑251).

Notably, the chemo‑preventive efficacy of probiotics and 
prebiotics seems to be higher than that elicited by antibiotics, 
through alleviation of inflammation. Antibiotics are not only 
insufficient as chemopreventive agents, but they can also 
eliminate commensal homeostatic bacteria and make certain 
bacterial strains resistant (252). However, human microbiome 
reconstitution following antibiotic treatment is defective due 
to impairment of commensal microbial community (253‑255), 
and a time‑consuming process (256). For this reason, efforts 
have focused on devising therapeutic strategies which sustain 
the microbial composition and population, thereby conferring 
benefit to the host. Based on data derived from 20 studies, 
36% of patients with IBD who were transplanted fecal‑derived 
microbiota from healthy donors exhibited an alleviation 
of symptoms (257). In another case, fecal microbiota trans-
plantation has been shown to alleviate diarrhea symptoms 
in individuals with severe Clostridium difficile infections, 
following the use of antibiotics (258). The most impressive 
results were derived from the study by Suez et al, who demon-
strated that autologous fecal microbiome transplantation was 
able to reconstitute the microbial community in its initial 
configuration in both murine and human samples following 
treatment with antibiotics. The rapid and complete recovery of 
the microbiome niche in aFMT‑samples following the use of 
antibiotics, as compared to incomplete niche following treat-
ment with probiotics, was compelling (259).

Mounting evidence suggests that the microbiota can be a 
determinant factor in modulating the host immune response. 
Several studies have demonstrated the crucial role of the 
microbiota in the response of distinct cancer types to classical 
immunotherapy (immune checkpoint inhibitors) (260‑264). 
For example, the gut microbiota can positively influence the 
effectiveness of recently developed immunotherapeutic mole-
cules [cytotoxic T lymphocyte associated protein 4 (CTLA4) 
or programmed death protein 1 (PD‑1) antibodies]. The effects 
of germ‑free state or the effects of colonization with specific 
bacterial strains on therapies using immune checkpoint inhibi-
tors have been investigated. Bacteroides spp. appears to be 
necessary in the anti‑CTLA treatment against sarcomas (265) 
and Bifidobacterium seems to be essential in anti‑PDL1 
therapy against melanoma (266). Furthermore, the micro-
biota seem to elicit an efficient response to immunotherapy 
[CpG‑oligodeoxynucleotides (ODN) with neutralization 
antibody against IL‑10], as indicated by experiments using 
mice (132). Similarly, mice grown under conventional condi-
tions have exhibited stronger responses to CpG‑ODN than 
TLR4‑deficient mice (132).

Additional research efforts are required in order to elucidate 
the mechanisms through which the gut microbiota modulates 
the clinical effectiveness of various drugs, thus facilitating 
the design of appropriate personalized therapies based on the 
microbiota profile of an individual patient. The binding of 
the Fap2 protein of Fusobacterium nucleatum to the Ig and 

ITIM domains (TIGIT) of the human inhibitory receptor that 
is present on NK cells protects tumors from an immune attack 
by NK cells (127). Therefore, the presence of Fusobacterium 
nucleatum in patients may be a direct determinant and/or 
predictor of resistance to immunotherapy, and special consid-
erations will have to be taken into account when designing 
personalized therapies for this particular patient group.

Certain issues will also have to be addressed before we 
move forward in the design of more personalized therapies. 
For example, the gut microbiota can be directed towards 
a specific immune population so as to serve as a tool for 
enriching the specific immune population against cancer. A 
better understanding of the microbiome effect on anti‑PD1 
therapy, currently applied to various types of cancer, may 
help to address the question (262‑264). Another issue may 
be whether host T cells can be equipped with a TCR that 
is specific for a bacterial epitope and thereby to orchestrate 
an appropriate immune response. The ultimate goal will be 
to use microbiota or microbiota‑derived molecules as novel 
immunotherapeutic approaches that will spare patients from 
the side‑effects associated with systemic immunotherapies. 
For example, an organized and enriched CD8+ T cell response 
already looks promising in effectively enhancing the thera-
peutic action of immune checkpoint inhibitors in melanoma 
without adverse effects (262).

8. Conclusion

A considerable body of evidence exists nowadays that supports 
how essential the microbiota is in deciding the fate of neoplastic 
formations, their progression and their sensitivity to classical 
therapeutic drugs. The effect of the microbiota on cancer is 
usually elicited locally but it can also be developed systemi-
cally, through alterations in the whole immunological milieu. 
The knowledge pertaining to the microbiome expands rapidly, 
however therapeutic interventions of intestinal carcinogenesis 
are still limited. Further experiments will be critical in under-
standing the underlying molecular mechanisms of microbiota, 
using animal models or epidemiological data derived from 
clinical trials towards inventing new treatments. Nevertheless, 
the available methodologies need to incorporate new technolo-
gies in order to facilitate the growth of microbes in conditions 
that are a direct replica to those within the gastrointestinal 
tract of the human body. The combination of metagenomics 
(effect of diet on microbiota), metaproteomics (microbial gene 
expression), and metabolomics (microbial metabolites) seems 
to play an important role in developing strategies for disease 
prevention.
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