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Abstract. The role of the DNA repair mechanism is to protect 
genetic material from destabilization. A defect in the DNA 
mismatch repair (MMR) mechanism has been associated with 
both hereditary and sporadic tumors. The dysregulation of 
MMR gene expression has been reported in lung, and in head 
and neck sporadic tumors. However, the mechanisms through 
which defects in the DNA MMR mechanism promote lung, 
and head and neck cancer remain unclear. Environmental 
factors and epigenetic alterations can significantly alter the 
ability of cells to repair genetic damage. The loss or a low 
expression of MMR genes allows for the survival of cells 
carrying a significant amount of genetic alterations, some 
in proto‑oncogenes or genes regulating the cell cycle. The 
dysregulation or malfunction of the MMR mechanism has 
also been linked to alterations in response to chemotherapy. 
The investigation of MMR dysregulations in lung, and head 
and neck carcinomas may contribute to a better understanding 
of their biological role in the development and progression of 

these types of cancer, and may thus also improve their diag-
nostic, prognostic and therapeutic value.
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1. Mismatch repair genes and their role in carcinogenesis: 
The functions of the mismatch repair system

DNA repair gene products function together to protect the 
destabilization of genetic material by errors that occur during 
DNA replication. In this manner, they participate in preventing 
the multistep process of the neoplastic transformation of 
normal cells to the tumorigenic phenotype  (1‑7). Genetic 
damage to the DNA mismatch repair (MMR) mechanism 
may lead to microsatellite instability (MSI), a common 
finding in hereditary forms of cancer, such as hereditary 
nonpolyposis colorectal cancer (HNPCC) and hereditary 
endometrial cancer  (8‑16). Defects in the DNA repair 
mechanism have been observed in hereditary forms of cancer, 
and have been linked to specific syndromes. Previous studies 
have demonstrated that MSI and/or the loss of expression of 
MMR proteins or low levels of mRNA, are common findings 
in a number of sporadic cancers, such as lung, endometrial, 
ovarian and gastric cancers, where a loss of expression of 
MMR proteins or low levels of mRNA are common results 
of MMR gene promoter methylation (16‑24). Similarly, there 
have been reported cases of the increased expression of 
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MMR genes in sporadic colon, prostate or urinary bladder 
cancers, supporting the theory of their complex role in 
carcinogenesis (25‑30).

DNA MMR mechanism. The main role of the MMR mecha-
nism is to recognize and repair single‑base mismatch errors, 
such as insertion, deletion and mis‑incorporation that can 
occur during DNA replication. The recognition of the error 
and subsequent activation of the mechanism depends on the 
enzymatic complex of the proteins, MutS, MuH and MutL (31). 
The MutS complex has the ability to recognize mismatched 
nucleotides and bind to the damaged DNA. The MuH complex 
attaches to the hemimethylated sites along the impaired frag-
ment, while the MutL complex activates the MutH peptide, 
which acts as a mediator between MutS and MutH (4‑6).

One of the most crucial part of this system is the 
mutS‑Homolog 2 (MSH2) gene. MSH2 codes a protein which 
participates in the formation of two functional heterodimers: 
MSH2‑MSH6 (MutSα) and MSH2‑MSH3 (MutSβ) that 
recognize DNA mismatches (base‑base mismatches 
and short insertion‑deletion loops) and large DNA loops 
(insertion‑deletion) respectively (Fig. 1).

Mismatch errors promote ATP hydrolysis, resulting in a 
change in the configuration of the MSH2‑MSH6 complex to 
slide from its DNA binding site and to perform the repair. The 
complex acts as ATPase by hydrolyzing ATP. The release of 
the complex from the DNA does not depend on its activity as 
ATPase (1,30).

In addition to the DNA damage recognition complexes, the 
mismatch DNA repair mechanism in humans includes MutL 
complexes that relate to MLH1‑MLH3 and MLH1‑PMS2 
heterodimers (possibly also the MLH1‑PMS1 complex) (32,33). 
MLH1‑MLH3 binds to MutSa (MSH2‑MSH6) by converting 
it to a large complex. The MutL complexes interact with the 
damage recognition complexes and with other proteins that func-
tion in the action of the MMR mechanism, such as exonucleases 
(for example EXO1), DNA polymerases (δ and ε), replicating 
agents, helicases and PCNA to repair the damage (32).

DNA MMR deficiency and carcinogenesis. Defects in DNA 
recognition complexes of the MMR system (MutSα and 
MutSβ) have been observed in humans. Specifically, a defi-
ciency in the expression of DNA MMR genes is almost always 
followed by the alteration of the number of short tandem 
repeats, known as MSI, and this leads to the development of a 
number of known types of carcinomas (34‑36) (Fig. 2).

Defective DNA MMR mechanism leads to carcinogenesis. 
In hereditary forms of cancer, the defective repair mechanism 
can be caused by inherited mutations in coding regions of 
a replication gene allele and loss of heterozygosity (LOH) 
or acquired mutations in the other allele, and is depicted as 
a loss of MMR expression or increased MSI (30). The most 
common recognized and studied syndrome is Lynch syndrome 
characterized by the alteration of hMSH2 and hMLH1 genes 
altered, respectively, in 60 and 30% of patients with Lynch 
syndrome  (37). These mutations are responsible for MSI. 
Notably, both Lynch syndrome and MSI are predisposing 
conditions for the development of several tumors. In particular, 
patients with type I Lynch syndrome are more susceptible 
to the development of colorectal cancer, while patients with 

type II Lynch syndrome have an increased risk of developing 
gastric cancer, urological malignancies, cholangiocarcinoma 
and colon cancer (38‑42)

Besides this syndrome, other genetic and epigenetic altera-
tions in the hMSH2, hMLH1, hMSH6, hMSH3, hPMS2 and 
hPMS1 genes can cause damage to the DNA repair mechanism 
resulting in increased levels of genetic instability recognized 
as elevated MSI rates (32).

Recent studies have demonstrated that numerous sporadic 
tumors exhibit MSI without harboring any mutations in the 
repair genes (43), probably due to epigenetic alterations in 
the transcription and translation of MMR genes  (30,44). 
Specifically, in sporadic cancers, the loss or low levels of MMR 
protein expression or mRNA depicted as increased MSI, due to 
the hypermethylation of hMLH1, or in some cases the hMSH2 
promoter, causes the suppression of their expression and 
compromises the function of the MMR mechanism (22,30).

Figure 1. MMR complexes. The most crucial protein complexes of the DNA 
MMR mechanism that recognize the DNA mismatches are MutSα and 
MutSβ. The MutSα recognizes base substitution, mutations and short DNA 
loops, while MutSβ recognizes large DNA loops. MMR, mismatch repair.

Figure 2. Dysregulated DNA MMR mechanism and carcinogenesis. 
Replication errors can be repaired by a functional DNA MMR mechanism 
that is capable of recognizing and successfully repairing these errors. The 
dysregulated DNA MMR mechanism cannot recognize the DNA replica-
tion errors leading to genetic alterations, such as MSI and/or mutations in 
functional sites of DNA that subsequently may lead to carcinogenesis. MMR, 
mismatch repair; MSI, microsatellite instability.
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In general, the loss or low expression of MMR is evidence 
of a faulty repair mechanism constituting either a genetic 
background of cancer transformation in hereditary cancers, 
allowing for an increased MSI in cells, or promoting the 
tumorigenic pathway in sporadic cancers, allowing for the 
survival of cells carrying a significant amount of genetic 
alterations, some in proto‑oncogenes or genes regulating the 
cell cycle.

The hMSH2 and hMLH1 genes are the most frequently 
involved in such changes. In fact, the MSH2 protein is 
normally expressed 3‑5‑fold above the protein levels of MLH1 
expression, which in turn can be expressed 1.5‑2.5‑fold over 
PMS2 (45). In general the expression levels of MSH2 deter-
mine the expression levels of MSH3 and MSH6. Loss or low 
levels of MSH2 result in unstable MSH3 and MSH6 structures 
that are reflected by low levels of their proteins in the cells. 
Mutations in hMLH1 can also result in low levels of MLH1 
and PMS2 proteins, showing their interrelated relationship 
(PMS2 interacts with MLH1).

Defects that lead to the suppression of MSH6 expression, 
may result in an increase in MSH3 mRNA and protein expres-
sion. It is clear that balanced expression levels of components 
of the MMR system are essential for effective repair func-
tions  (2,32,45). Vageli  et  al previously demonstrated an 
association between an imbalanced mRNA phenotype of 
MMR genes and cancer progression in human lung, colorectal 
and urinary bladder cancer (18,46‑49).

The importance of MMR function as an indicator of chemo-
therapeutic resistance. MSH2 protein, which is a major factor 
of base pair recognition error in DNA, under physiological 
conditions, is equated between the nucleus and cytoplasm. 
MSH2 has a high affinity for binding to the damaged site, 
which can be repaired, while having low affinity binding 
for non‑severe damage that does not allow for cell viability, 
leading to apoptosis. The process of the initiation of apoptosis 
by MMR protein components appears to be related to their 
concentration in the nucleus. The concentration of MSH2 in 
the nucleus is a criterion for triggering apoptosis. Therefore, 
the loss or decreased expression levels of MSH2, will lead to 

an insufficient nuclear concentration of MMR and therefore, 
in the inability of cells carrying extensive DNA damage to 
undergo apoptosis (31,50).

A number of studies have demonstrated that there is an 
association between the transcriptional activity of MMR 
mechanisms and the development of resistance to chemo-
therapy. Specifically, there is evidence that the inactivation of 
hMLH1 by promoter hypermethylation promotes chemothera-
peutic resistance (36,51,52). On the other hand, an imbalance 
in MMR mRNA phenotypes has been suggested to be of 
possible prognostic value in adjuvant chemotherapy treatment 
in non‑small cell lung carcinomas (NSCLCs). Specifically, 
specific increased MMR mRNA phenotypes exhibit a trend for 
improved survival following chemotherapy, compared to other 
decreased mRNA phenotypes, which appear to be more effec-
tive in combination with post‑operative chemotherapy (46).

Epigenetic regulation of MMR mechanism. The efficacy of 
the MMR mechanism can be strongly influenced by various 
environmental factors and epigenetic alterations that can 
significantly affect the ability of cells to repair genetic damage. 
These risk factors are able to determine profound epigenetic 
alterations, including the modulation of DNA methylation 
levels and microRNA (miRNA or miR) expression levels (53). 
The epigenetic regulation of MMR may be also associated 
with the composition of gut microbiota. This may strongly 
influence the development of several pathologies, including 
cancer (54,55).

MMR and methylation. Westwood et al demonstrated that 
the promoter hyper‑methylation of MLH1 was responsible 
for the additional loss of MSH2 and MSH6 expression in 
sporadic colorectal cancer  (56). Other researchers have 
demonstrated that the methylation of MMR genes is 
responsible for the development of other tumors, such as extra 
mammary Paget's disease, where the authors demonstrated 
a significant correlation between reduced MSH2 expression 
and its promoter hyper‑methylation (57). In general, several 
studies have demonstrated a strong association between 
methylation phenomena and Lynch syndrome, highlighting 
how patients with this syndrome have an increased risk of 

Figure 3. Environmental risk factors and DNA MMR deficiency may lead to neoplastic transformation in lung and head and neck. Lung and head and neck 
normal epithelial cells are often exposed to different environmental risk factors. Repetitive exposure of these cells to various risk factors may result to the 
accumulation of replication errors due to a defective DNA MMR mechanism. DNA mismatch repair deficiency may lead to a mutator phenotype escaping cell 
control and resulting to a neoplastic transformation of normal cells giving genesis to cancer. MMR, mismatch repair.
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DNA mutation accumulation due to genetic alterations typical 
of Lynch syndrome and the modulation of MMR induced by 
hyper‑methylation (58).

miRNA and MMR regulation. As regards miRNAs, they are 
short (approximately 22 nucleotides in length) single‑stranded 
non‑translational RNAs that contribute to the regulation of 
gene expression (59). Specifically, they have the ability to target 
specific mRNAs, destabilizing or inhibiting their translation. 
The precursors of miRNAs, also known as pri‑miRNAs, 
are produced in the nucleus by RNA polymerase II from the 
non‑coding regions of the genome, and undergo a process of 
maturation in the nucleus, by the Drosha‑DGCR8 complex, 
leading to hairpin RNAs known as precursor miRNAs 
(pre‑miRNAs). The pre‑miRNAs are then transported from the 
nucleus to the cytoplasm by exportin‑5 and cut by Dicer to form 
single‑strand miRNAs, the final functional form of miRNA. 
The majority of miRNAs inhibit the translation of their target 
genes by binding with an imperfect matching to their 3'UTR. In 
some cases, miRNAs can inhibit the protein expression of their 
target genes by binding the 3'UTR with a perfect match, leading 
to mRNA cleavage (60). The function of miRNAs in either case 
is to inhibit the protein expression of their genes. Therefore, 
these small regulatory molecules have been proposed as useful 
targets for the treatment of several pathological conditions, as 
well as markers for early neoplastic changes (61‑66).

In particular, miRNAs have been shown to be involved in 
the regulation of numerous genes associated with various phys-
iological processes, including MMR genes (67‑72). Mao et al 
demonstrated that MutLa could function as a stimulatory 
factor for miRNA processing (73), while Valeri et al demon-
strated the capability of miR‑155 to alter both the expression 
and stability of the MMR pathway, supporting a regulatory 
role of miR‑155 in the MMR mechanism (74). Zhong et al 
suggested that miRNAs play an important role in modulating 
the cell cycle by targeting hMSH2 in lung cancer (75).

Overall, the unbalance of the MMR mechanism and 
the acquisition of new oncogenic mutations are the result 
of different genetic and epigenetic alterations. These altera-
tions in expression can be identified using innovative and 
high‑sensitive techniques (76), providing information with 
which to predict the risk of cancer onset and to identify novel 
biomarkers and therapeutic targets.

2. DNA mismatch repair deficiency in lung, and head and 
neck cancer

Lung and head and neck carcinogenesis is strongly associated 
with known risk factors, such as alcohol, tobacco smoking and 
oncoviruses, causing DNA damage. It is considered that the 
extensive accumulation of genetic alterations in DNA by these 
environmental risk factors may lead to an abnormal DNA 
damage response (DDR), which can result in cell death, chro-
mosomal instability and unregulated proliferation (77‑80). 
Therefore, the proper function of the various DNA repair 
mechanisms is essential for the elimination of these harmful 
effects, maintaining the DNA integrity (Fig. 3).

Head and neck cancer and MMR. Thus far, a number of 
studies have suggested that polymorphisms of MMR are 
associated with an increased risk of developing head and neck 

cancer (81‑83). A number of studies have shown that head and 
neck squamous cell carcinomas (HNSCCs) very often exhibit 
MSI. Notably, it has been observed that HNSCCs exhibit MSI at 
higher rates than other solid tumors, such as esophageal, breast 
and gastric carcinomas (21‑24,40,84,85). Demokan et al, also 
showed that high levels of MSI in HNSCC are strongly associ-
ated with hypermethylation of hMLH1 and hMSH2 (81).

As has been discussed above, the dysfunction of the 
MMR mechanism can lead to MSI and to the accumulation 
of mutations in proto‑oncogenes or tumor‑suppressor genes, 
increasing the risk of malignant development and progression. 
It has already been demonstrated that the decreased expres-
sion of the MSH2 gene causally increases the frequency of 
MSI  (86,87). Furthermore, the investigation of the MSH2 
protein level in surgical specimens of head and neck carci-
noma have revealed an association between low MSH2 levels 
and locoregional metastasis, as well as a worse survival (88).

In addition, a specific polymorphism of the MMR 
genes, MLH1, MSH2 and MSH3, as well as EXO1, has been 
suggested to have prognostic value for HNSCC, particularly 
among smokers (89). Moreover, a recent study also provided 
evidence that a single nucleotide polymorphism in the hMLH1 
promoter was associated with tobacco‑related oral squamous 
cell carcinoma (90).

The hypermethylation of the hMLH1 promoter, leading to 
the inactivation of the gene, has been shown to be an impor-
tant epigenetic mechanism and has been linked to numerous 
human malignancies. The promoter hypermethylation of the 
hMLH1 gene has been also demonstrated in HNSCC (91‑93). 
Specifically, Tawfik et al demonstrated that the loss of MLH1 
protein was not an uncommon finding in HNSCC, and the 
common mechanism involved the methylation of the CpG 
inland of its promoter (94).

Lung cancer and MMR
Role of MMR in NSCLC. Previous studies have demonstrated 
a reduced expression of MSH2 or MLH1 genes at the protein 
or mRNA level in >50% of lung adenocarcinomas, associ-
ated with a poor survival and an increase in MSI (95‑96). 
Kanellis et al evaluated the protein expression levels of MMR 
genes in fine‑needle aspiration (FNA) specimens derived from 
various types of lung cancer. Their study demonstrated that 
that NSCLCs, and particularly squamous cell carcinomas, 
exhibited reduced MSH2 protein levels at relatively high rates 
compared to small cell carcinomas (97).

Although in the majority of cases, the decreased expression 
of MMR genes is attributed to epigenetic silencing, other studies 
have indicated that MMR deficiency may act as a ‘second hit’, 
accelerating the development of lung tumors in mice that carry 
the K‑rasLA1/+ mutation (98). Specifically, Downey and Jirik, 
using a murine animal model, recently demonstrated that a 
deficiency in MMR genes can act in concert with the extremely 
common K‑ras mutation, enhancing tumor development (98).

Wang et al suggested that hMLH1 was the major altered 
MMR gene involved in NSCLC tumorigenesis, and that the 
methylation of its promoter was the most common mechanism 
for its dysregulation (19). Others have also suggested that the 
hypermethylation of hMSH2 has prognostic value, particularly 
for non‑smoking females (96). Although a reduction in the 
expression of MMR genes has been linked to a poor prognosis, 
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Scartozzi et al demonstrated that a decreased MLH1 protein 
expression was associated with a statistically significant 
improvement in survival compared to normal MLH1 protein 
levels (99). A well‑accepted explanation for similar findings 
does not exist thus far; however, it is possible that the loss of 
MLH1 leads to the accumulation of a tremendous number 
of replications errors, leading to a decrease in the division 
rates of cells. Finally, Takahashi et al demonstrated that the 
expression of the MLH1 and MSH2 proteins was significantly 
reduced in cromate‑related (chromate‑exposed) lung cancer, 
demonstrating high replication error rates (100).

MMR deficiency affects the chemotherapy treatment 
of NSCLC. Taking into consideration that platinum‑based 
chemotherapy is commonly used for advanced NSCLC (101), 
the determination of molecular markers indicating chemo-
therapeutic resistance has tremendous clinical value, potentially 
leading to the evidence‑based selection of chemotherapy and 
the improvement of survival rates. A significant number of 
pre‑clinical and clinical data have suggested that the inactiva-
tion of hMLH1 and hMSH2 promotes resistance to cisplatin 
and carboplatin‑based chemotherapy, but not oxaliplatin‑based 
chemotherapy  (99,102,103). According to Vageli  et  al, 
reduced mRNA levels of MMR are not beneficial for cisplatin 
chemotherapy, resulting in low survival rates in patients with 
NSCLC  (46). Although the underlying mechanism of this 
phenomenon is not yet clear, it is considered that an efficient 
MMR system recognizes the DNA adducts produced by cisplatin 
and by its attempt to process the extensive number of adducts, 
activates a sequence of signals that lead to apoptosis (102). As 
a result, the dysfunction of the MMR system compromises the 
ability of the cell to detect chemotherapy‑induced DNA damage 
and as a consequence, the ability to undergo apoptosis. On the 
other hand, pre‑clinical analyses have suggested the ability of 
cells to recognize and react to the DNA damage induced by 
the drug oxaliplatin does not rely on the MMR system (103). 
Scartozi et al provided evidence based on clinical data that a 
decrease in the expression levels of MMR genes does not influ-
ence the sensitivity to oxaliplatin (99), confirming previously 
published pre‑clinical data (103).

More recently, some studies have focused on the prognostic 
significance of a defective MMR mechanism and MSI in 
several types of cancer, including NSCLC (104,105), and the 
responsiveness of patients towards immune check‑point inhibi-
tors (106‑108). Overall, it is well‑recognized that patients with 
MSI and/or defective MMR have generally a durable complete 
response (106). Furthermore, MSI has been shown to be a good 
predictive biomarker for immunotherapy efficacy in several 
types of cancer treated with pembrolizumab or nivolumab, 
including NSCLC, advanced melanoma, renal cell carcinoma, 
bladder cancer, etc (107,108). As regards NSCLC, studies have 
demonstrated a high response rate following treatment with 
the immune check‑point inhibitor, pembrolizumab, in the 
KEYNOTE‑001 and KEYNOTE‑024 trials (109,110). Further 
clinical trials consisting of a sufficient number of NSCLCs 
patients and adequate follow‑up are necessary to verify the 
efficacy of pembrolizumab in patients with microsatellite 
instability high/deficiency MMR (MSI‑H/dMMR).

Role of MMR in small‑cell lung carcinomas (SCLCs). The 
role of the MMR mechanism in SCLC is not yet clear. Data 
exploring the expression levels of MMR genes and MSI in 

SCLC specimens have yielded controversial results. Although 
Pylkkänen et al reported rates of MSI close to zero (111), a 
number of other studies have shown that the prevalence of MSI 
in SCLC can reach up to 76% (112‑114). These differences 
have been attributed to the different microsatellite loci 
analyzed  (112,115). Kanellis et al reported that small cell 
carcinomas did not exhibit a significant reduction in MSH2 
levels (97). In addition, Hansen et al examined the activity 
of MMR genes at the mRNA and protein level and their 
association with MSI in 17 SCLC cell lines, supporting that 
there was a heterogeneous expression pattern of MMR genes 
and that MMR consequent MSI was not that common in 
SCLC (115).

3. Conclusion

DNA repair deficiency is a hallmark in cancer development 
and may affect the therapeutic outcomes. Sporadic head and 
neck and lung tumors often exhibit genetic alterations due to 
an inadequate mismatch DNA repair mechanism. The mecha-
nisms through which defects in the DNA MMR mechanism 
promote lung, and head and neck cancer are not yet clear. To 
the best of our knowledge, the present review article is the first 
attempt to summarize what is known in the literature about 
the dysregulation of this mechanism and its role in these types 
of cancer. This review supports the further investigation of 
alterations in the expression of mismatch DNA repair genes, 
at both the transcriptional and translational level, in head and 
neck, and lung sporadic tumors, clarifying their prognostic 
and diagnostic value, as well as their therapeutic potential as 
novel targets.
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