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Abstract. Pancreatic cancer remains one of the leading causes 
of cancer-related mortality worldwide. The role of p53 family 
isoforms in the pathogenesis of human cancer has been under 
the radar for decades, mainly due to the significant structural 
homology of p63 and p73 genes with the notorious p53 gene. 
Both p63 and p73 have two main isoforms, transactivating 
(TA) and deltaN (DN), each of which has been studied in 
normal and cancer cells. Although their role in cancer remains 
elusive and is tissue‑specific, the manner in which they act 
in pancreatic cancer is evident. As for p53, the mechanism 
of its gain-of-function activities in pancreatic cancer is now 
better understood. In this review, the role of each gene and 
their isoforms is discussed, as well as the possible therapeutic 
agents for pancreatic cancer. Currently, the science revolving 
around p53 family isoforms focuses on their specific roles. 
Thus, we propose that future research be directed at studying 
the interaction between the isoforms, as well as accelerating 
the assessment of potential therapeutic agents.
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1. Introduction

Worldwide, pancreatic cancer is the 7th most common 
cause of cancer-related mortality, resulting in approximately 
432,000 deaths per year, according to the 2018 GLOBOCAN 
study (1). In Western countries alone, the mortality rate asso-
ciated with pancreatic cancer is ranked 4th and is projected 
to be ranked 2nd by 2030 (1,2). In the United States, 82% of 
pancreatic cancer cases lead to death (3). Among the different 
types of pancreatic cancers, pancreatic ductal adenocarcinoma 
(PDAC) encompasses 90-95% of all cases (4,5). According to 
the American Cancer Society, a patient with stage IIA pancre-
atic cancer has a 5-year survival rate of approximately 5% (6). 
These statistics indicate an alarming increase in the incidence 
of and mortality associated with pancreatic cancer. The poor 
prognosis of patients with pancreatic cancer is due to a number 
of reasons, including late-stage detection, a lack of sensitive 
and specific markers, as well as ineffective imaging in the 
early stages (4,7).

p53 family isoform proteins include p53, p63 and p73, all 
of which are evolutionarily conserved in humans and other 
animals. In fact, the origins of p63 seems to go further than the 
other two proteins (8-10). In cancer research, p53 is known to 
be the ‘guardian of the genome’ with anti-proliferative proper-
ties that prevent the growth of cancer. In 1997, the discovery 
of p63 and p73 genes, both of which encode for p53-like 
sequence specific transcription factors with similar functions, 
attracted scientists to investigate their role in various types of 
cancer (11-15).

p63 and p73 have the potential to transactivate target 
genes of p53, including BAX, NOXA and PUMA, which are 
responsible for cell death, p21WAF1, responsible for cell cycle 
arrest and cellular senescence, and 14-3-3σ, which is pivotal 
in cell cycle arrest (8,12). The transactivating (TA) isoforms 
of p63 and p73 transactivate p53-target genes in response 
to anti-cancer drugs with pro-apoptotic functions, while the 
NH2-terminally-truncated deltaN (DN) isoforms exert a domi-
nant-negative behaviour against TA, and hence, are known to 
be pro-oncogenic (16). It should be noted that p53-dependent 
cell death requires the assistance of TAp73 and/or TAp63, 
whereas TAp73/TAp63-dependent cell death following DNA 
damage occurs without the need for p53 (17).

With their controversial roles in cancer, interest in the p53 
family isoforms has intensified over the past decade. Notably, 
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research into p53 mutations in PDAC progression has estab-
lished a platform for exploration of their various interactions 
with p63 and p73 (16,17). It is becoming increasingly clear that 
the aggressive and chemoresistant traits of PDAC may not be 
entirely elucidated by p53-driven mechanisms alone, but may 
implicate specific isoforms of the p53 family (18‑20). Thus, 
this review discusses the role of the p53 family isoforms in 
pancreatic cancer, with a perspective on factors conferring 
cancer aggressiveness and chemoresistance.

2. Structure of p53 family isoforms

Structural similarity in proteins can be an indication of the 
functional similarity of these proteins and p53 family isoforms 
are no exception (21,22) (Fig. 1). Isoforms of the p53 family 
have a similar build, with an N-terminal transactivation 
domain (TAD) together with a proline-rich domain (PR), a 
central, highly similar DNA-binding domain (DBD), followed 
by a C-terminal tetramerisation/oligomerisation domain (OD). 
p63 and p73 contain an additional sterile alpha motif (SAM) 
domain and a transcription-inhibition domain (TID), which 
are absent in p53 (23-28). Unlike p53, p63 and p73 exist in 
distinct functional isoforms, those containing a TAD and 
those without (13,28). Functionally, TAD seems to be involved 
in DNA editing and repair pathways, as well as cellular 
senescence (29); the SAM domain is known to be involved 
in protein-protein interaction, as well as in the stabilisation of 
p63 and p73 proteins (24,29,30); thus, it has been suggested 
that p63 and p73 are more stable than p53 due to the presence 
of the SAM domain (31).

3. Role of p53 mutations in pancreatic cancer

The p53 gene codes for a nuclear transcription factor that 
responds to genotoxic stress. Strong genotoxic stress activates 
p53 and promotes cell cycle arrest, cellular senescence and 
apoptosis, while mild genotoxic stress can activate pathways 
responsible for repair mechanisms (17,20,32,33). On its own, 
p53 has 12 different isoforms with similar or unique functions, 
as a result of alternate splicing, the presence of diverse tran-
scription promoters, as well as multiple translation initiation 
sites (32,34,35).

In human cancer, p53 inactivation by mutation occurs in 
>50% of cases, and therefore, it is known to be the most common 
genetic alteration (36,37). These mutations commonly occur 
within the DBD, resulting in the loss of p53 functions (38,39). In 
spite of this, the expression of mutant p53 remains in cancerous 
cells, which is suggestive of gain-of-function activities. In fact, 
cancers with the expression of mutant p53 are known to develop 
more aggressive tumours with an earlier onset, in comparison 
with cancers that are p53-null (9,35,40,41). The missense 
mutations, R248H, R273H and R175H, are p53 mutations with 
the highest frequencies in human cancer (35,40,42,43). Certain 
mutations result in the loss-of-function of remaining wild-type 
p53 (dominant-negative effect), while others are known to 
exert a dominant-negative effect on other tumour suppressors, 
such as TAp73 (35,44-52).

In pancreatic cancer, p53 is mutated in 75% of cases (53). 
Often, p53 mutations can be observed in PDAC, followed 
by adenosquamous carcinoma of the pancreas (54). In 

pancreatic neuroendocrine neoplasms, mutant p53 expression 
is uncommon (55). The sustained expression of mutant p53 
seems to be associated with the aggressiveness of pancreatic 
cancer tumours (56). In the study by Morton et al (2010), mice 
harbouring pancreatic cancer cells with mutant KRAS and p53 
exhibited increased metastases compared to identical mice 
harbouring the p53-null allele (57).

Mechanisms of  p53 gain‑of‑ f unct ion mutat ions. 
Gain-of-function activities of mutant p53 are responsible 
for the enhanced tumourigenicity of pancreatic cancer. This 
was first proven by Wolf et al (1984) through the transfection 
of mutant p53 into p53-null tumour cells (58). A number of 
studies have since demonstrated specific p53 gain‑of‑function 
activities, such as metabolic changes, migration, promoting 
cell proliferation, metastasis anti-apoptosis, invasion and 
angiogenesis (59-62). Studies on MiaPaca-2 pancreatic cancer 
cell lines, which contain the R273H mutation of p53, have 
demonstrated that this mutation is responsible for increased 
proliferation, increased colony formation and drug resist-
ance (36,57,63-65). Platelet-derived growth factor receptor β 
(PDGFRβ) has been identified as a downstream mediator of 
mutant p53 in MiaPaca-2 and BxPC-3 pancreatic cancer cell 
lines, as well as in murine pancreatic cancer models. This 
PDGFRβ-mutant p53 axis is believed to increase pancreatic 
cancer cell growth (56). Mutant p53 has also been known to 
manipulate the pancreatic cell autophagy mechanism, resulting 
in increased nutrient uptake and a higher growth rate (66).

The mechanisms though which the different p53 hotspot 
mutations exhibit the gain-of-function properties are diverse. 
Family isoforms of p53 are structurally similar to p53, particu-
larly in the DNA-binding domain, which allows a p53 target 
genes to interact with p63 and p73 to mediate responses, such 
as cell cycle arrest, cellular responses to stress and apoptosis. 
A subset of p53 hotspot mutations are capable of inactivating 
p63 and p73 by forming complexes with them. These inter-
actions, which become possible through the conformational 
changes in the DNA-binding domain of mutant p53, result 
in gain-of-function properties, such as metastasis, invasion, 
migration and chemoresistance (21,48,67).

Another mechanism involves physical interaction between 
mutant p53 and transcription factors, such as NF-Y to mediate 
target gene expression by altering cell cycle regulation, since 
the DNA binding sequence of NF-Y is present in the regula-
tory region of genes involved in the cell cycle (68), as well 
as interactions with other transcription factors, such as E2F 
transcription factor 1 (E2F1), vitamin D receptor and nuclear 
factor (NF)-κB (69). Zhang et al (2013) (62), through their 
in vivo and in vitro evaluation of mutant p53 knockin mice, 
discovered that mutant p53 is capable of driving the Warburg 
effect. This phenomenon is likely driven by the activation of 
ROCK signalling, which promotes the translocation of GLUT1 
to the plasma membrane (62).

Mutant p53 is also known to enhance tumourigenicity 
and genomic instability by forming complexes with proteins, 
such as MRE11 (R175H), a DNA nuclease (70), and topoi-
somerase 1 (R273H), which is responsible for maintaining 
DNA topology (71). The mutant p53-ATM complex is respon-
sible for inactivating DNA damage responses and leads to 
chromosomal translocations and cell cycle arrest (in the case 
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of R273H mutation) (72). Brosh and Rotter (2009) demon-
strated that mutant p53 is capable of up- or downregulating 
various genes involved in tumourigenesis, such as NF-κB2, 
vascular endothelial growth factor receptor (VEGFR), Myc, 
Fos, insulin-like growth factor 2 (IGF2), insulin like growth 
factor 1 receptor (IGF1R) and early growth response protein 1 
(EGR1) (61). This is possible due to the DNA-binding ability 
of mutant p53 in a DNA structure-selective mode. It has a high 
affinity for the AT‑rich regions and is shown to bind selectively 
with high affinity B conformation DNA (73,74).

Interaction with miRNA is another mechanism through 
which mutant p53 exerts its effect, by either inducing or 
repressing its functions. MicroRNA (miR)-155, which has 
been shown to repress zinc finger protein 652 (ZNF652), 
and miR-27a, which has shown to repress EGFR, are both 
suppressed by mutant p53. Through the repression of EGFR, 
mutant p53 is capable of stimulating cell proliferation and 
tumourigenesis by promoting sustained EGFR-induced 
ERK1/2 activation (75,76). Table I summarises the various 
mechanisms for mutant p53 gain-of-function.

4. Role of p63 isoforms in pancreatic cancer

The p63 protein consists of at least six variants, three of 
which contain a TA domain, and the remaining without (DN 
domain) (8). These isoforms regulate a wide range of target 
genes with opposing regulatory effects. However, their role 
in cancer remains ambiguous (77). The view that TAp63 
is a tumour suppressor, while DNp63 acts as an oncogene 
is not always applicable (51,77). For instance, the study by 
Flores et al (2005) concluded that p63 heterogeneity leads 
to the development of spontaneous tumours (78), while 
Keyes et al (2006) came to the opposite conclusion (79). The 
TA and DN isoforms of p63 play various roles in normal cells, 
as well as in cancerous ones; TAp63 is responsible for glyco-
lysis through liver kinase B1 (LKB1) protein kinase regulation, 
fatty acid oxidation, insulin secretion, pro-oxidant response, as 
well as female germ cell preservation (80-84).

In cancer, TAp63 is known to prevent metastases by cell 
apoptosis and senescence (51,78). Previously, the loss of p63 
as a whole was shown to be associated with an accelerated 
tumour growth and increased invasiveness (85,86). Current 
research has even extended this finding to prove that it is the 

loss or inactivation of TAp63 coupled with a p53 mutation, 
that leads to enhanced tumourigenicity through transforming 
growth factor (TGF)-β-induced pathways and the alteration of 
DNA repair genes (87‑89). These findings regarding the func-
tion of TAp63 and the consequences of its loss or inactivation 
have also been proven in pancreatic cancer (88). In fact, TAp63 
has a low expression in T3M4, BxPC3, COLO-357, ASPC-1 
and PANC-1 pancreatic cancer cell lines, which supports the 
anticancer properties of TAp63 (18).

The interaction between p63 and p53 plays an impor-
tant role in cancer progression, and both wild-type p53 and 
mutant p53 are able to interact with p63 protein (48). Mutant 
p53 displays a stronger dominant-negative behaviour against 
TAp63 in comparison with wild-type p53, resulting in the 
impairment of p63 transactivational target genes (20,35,49). 
This mechanism has been associated with enhanced cell inva-
sion and metastases in various types of cancer, particularly 
breast cancer (87,90,91).

The role of DNp63 includes maintaining stem and progen-
itor cells in stratified and glandular epithelial tissues, as well as 
glycolysis and antioxidant defence (92-95). As the most abun-
dant p63 isoform, the overexpression of DNp63 in head and 
neck cancer, non-small cell lung cancer and bladder cancer 
suggests its tumour survival properties (96-99). In spite of this, 
there are studies that have demonstrated a low expression of 
DNp63 in breast and prostate adenocarcinoma, as well as in 
urothelial carcinoma (97,100). This could indicate the suppres-
sive effect of DNp63 in certain types of cancer, alluding to 
the paradoxical role of p63. According to Yang et al (2011), 
DNp63 overexpression is limited to squamous cell carcinoma 
in which it counteracts p53-mediated tumour suppressive 
activities (101). In pancreatic cancer, DNp63 is the predominant 
isoform, with its overexpression being limited to squamous 
differentiation (18,102). In BxPC-3, COLO-357 and T3M4 
pancreatic cancer cell lines, DNp63 expression is elevated, 
which suggests its cancer-enhancing properties (18).

Runt-related transcription factor 2 (RUNX2) is a nuclear 
transcription factor generally associated with osteoblast 
differentiation and bone formation (103,104). In tumours, 
RUNX2 overexpression has been observed in breast, prostate, 
gastric cancer and melanoma, as well as in acute myeloid 
leukaemia (105-110) through target genes responsible for 
angiogenesis, invasiveness and metastasis, such as VEGF, 

Figure 1. A comparison between genetic structures of p53 family isoforms. TA, transactivating domain; DN, deltaN domain.
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secreted phosphoprotein 1 (Spp1), matrix metalloproteinase 
(MMP)9 and MMP13 (107,111). As regards pancreatic 
cancer, Kayed et al discovered the pro-oncogenic role of 
RUNX2 overexpression and its effect on the tumour micro-
environment (109). RUNX2 is responsible for resistance to 
gemcitabine (GEM) by attenuating p53-dependent cell death, 
and the silencing of RUNX2 using siRNA has been shown to 
significantly increase GEM sensitivity, irrespective of the p53 
status (20,112-114).

One reason for the strong expression of mutant p53 in 
pancreatic cancer is the presence of histone deacetylase 
(HDAC) 1 and 2 (115). Therefore, HDAC inhibitors are under 
investigation as potential anticancer drugs, of which SAHA, 
which also affects RUNX2 levels, has recently attracted 
attention (116,117). MiaPaCa-2, a pancreatic cancer cell line, 
contains a p53 R248W mutation. As previously demonstrated, 
upon treatment with SAHA, although the TAp63, γH2A histone 
family member X (γH2AX), p21, phorbol-12-myristate-13- 
acetate-induced protein 1 (PMAIP1, also known as NOXA) 
and poly(ADP-ribose) polymerase (PARP) cleavage levels 
increased, and mutant p53, RUNX and TAp73 were downregu-
lated, the response drug response was relatively poor. However, 
when p53 was knocked down in MiaPaCa-2 cells, the further 
downregulation of RUNX2 and upregulation of TAp63 were 
found to lead to an enhanced sensitivity to SAHA. Similarly, 
the knockdown of RUNX2 led to the further downregulation 
of mutant p53 and the upregulation of TAp63 (118). These 
findings by Ogata et al (118) provide evidence of a regulatory 
axis involving RUNX2, mutant p53 and TAp63.

RUNX2 knockdown in AsPC-1 p53-null pancreatic cancer 
cells has been shown to increase GEM sensitivity through 
TAp-63-dependent cell death pathway activation (113). In 
PANC-1 pancreatic cancer cells with R273H p53 mutation, 
RUNX2 depletion mediates TAp63 induction (119). This has 
been achieved by the exposure of PANC-1 cells to GEM, after 
which γH2aX was increased as a sign of DNA damage, and 
p73KIP1 and phosphor-histone H3 at Ser-10 were reduced as 
a sign of decreased mitosis. In addition, PARP cleavage was 

detected at negligible levels. These data suggest that GEM 
treatment suppresses the cell proliferation rate, but does not 
effectively promote cell death. At the same time, TAp63 target 
gene products p21WAF1 and NOXA are upregulated (119,120). 
Specific to TAp73, the E2F‑1 transcriptional activator is also 
upregulated (119,121,122). Ozaki et al (119) then examined 
the effect of GEM after mutant p53 was knocked down. The 
depletion of mutant p53 in pancreatic cancer cell lines with 
homozygous p53 mutation was not sufficient to enhance the 
cytotoxic effect of GEM therapy. However, when RUNX2 was 
knocked down, the cytotoxic effect of GEM was improved 
in both p53‑proficient and deficient pancreatic cancer cells 
by enhancing TAp63 target genes (p21WAF1 and NOXA), but 
not through TAp73. This was proved by transfecting PANC-1 
cells with TAp63α plasmids, which exhibited an enhanced cell 
cycle arrest and/or cell death (119).

miR-301a plays a role in pancreatic cancer hypoxia-induced 
chemoresistance by targeting p63 and phosphatase and 
tensin homolog (PTEN) in pancreatic cancer cells (123,124). 
miR-301a has been reported to be upregulated in pancreatic 
cancer in comparison with the normal pancreas and/or 
pancreatitis (125). Therefore, miR-301a has the potential to be 
an independent prognostic marker for pancreatic cancer (126). 
In various tumours, hypoxia or low oxygen tension is asso-
ciated with chemoresistance (127) by the upregulation of 
hypoxia-inducible factors (HIFs) in tumour cells (128,129). In 
pancreatic cancer, a few of these factors have been identified, 
including glucose transporter type 1 (GLUT1), ATP binding 
cassette subfamily B member 1 (ABCB1) and ATP binding 
cassette subfamily G member 2 (ABCG2), all of which are 
HIF-1 target genes (130-132).

miR-301a expression is increased in an NF-κB-independent 
manner due to hypoxia. The accumulation of miR-301a leads 
to a decrease in the TAp63 and PTEN protein levels, and an 
increase in the phosphorylation of Akt and HIF-1 factors. 
Notably, the overexpression of TAp63 in hypoxic pancreatic 
cancer cells leads to reduced cell viability, whereas under 
normoxic conditions, this effect is not significant. This finding 

Table I. Mechanisms of major missense hotspot p53 mutations.

Author/(Refs.), year Mechanism  Examples

Liu et al (171), 2014 Interaction with p53 family isoforms R248W
Stindt et al (172), 2015  R175H
Oren and Rotter (52), 2010 Binding to DNA to alter gene expression R248W
Ludes-Meyers et al (173), 1996  R175H
Fiorini et al (69), 2015  R273H
Weisz et al (174), 2004
Scian et al (175), 2005
Song et al (70), 2007 Formation of complexes with proteins R175H
Liu et al (72), 2010  R273H
Di Agostino et al (68), 2006 Binding to transcription factors R273H
Strano et al (176), 2007 Regulation of miRNA R273H
Wang et al (177), 2017
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is suggestive that a reduction in TAp63 contributes to hypoxia- 
induced gemcitabine resistance in pancreatic cancer cells. All in 
all, Luo et al suggested that hypoxia reduced TAp63 and PTEN 
through the upregulation of miR-301a, which in turn promoted 
the accumulation of HIF-1a factors and the phosphorylation of 
Akt, leading to gemcitabine resistance (124).

The ability of DNp63 to regulate cell adhesion in 
mammary epithelial cells and keratinocytes suggest its role as 
an oncogene (133). This was also shown in pancreatic cancer 
by a direct association between DNp63α and β1-integrin, an 
extracellular matrix component that plays a critical role in 
determining the invasive phenotype of PDAC (134). Upon 
the upregulation of DNp63α in PANC-1 cells, increased 
colony formation and proliferation was observed through an 
increase in EGFR signalling and its downstream kinases, 
extracellular-signal-regulated kinase (ERK), Akt and c-Jun 
N-terminal kinase (JNK) (134). These outcomes, however, 
have not been consistently evident in other types of pancreatic 
cancer cells.

5. Role of p73 isoforms in pancreatic cancer

Similar to p53, p73 induces apoptosis by transactivating 
p53-regulated promoters, as well as other p73 target genes, 
such as p53 upregulated modulator of apoptosis (PUMA), 
Bax and GRAM domain containing 4 (GRAMD4), which 
induce apoptosis by acting on the cell mitochondria and 
cytoplasm (27,47,135-137). Researchers remain divided as 
to its role in angiogenesis; some studies have suggested that 
TAp73 exerts a suppressive effect (138,140), whilst others have 
demonstrated that it is pro-angiogenic (140-142). DNp73 has 
been constantly shown to be pro-angiogenic (139-142).

As the predominant isoform of p73, the loss of TAp73 
in various cell lines or mouse models has been associated 
with spontaneous tumour development due to an enhanced 
genomic instability and the inability of DNA repair mecha-
nisms to be activated (89,143,144). By contrast, a recent 
study suggested the ability of TAp73 to indirectly induce 
the expression of interleukin (IL)-1β in lung cancer cell 
lines, which is suggestive of its tumour-enhancing proper-
ties (145). As regards the tumour-suppressive properties of 
TAp73, a mechanism involving miRNA induction has been 
identified; these miRNAs, such as miR-3158, inhibit cell 
migration through epithelial-mesenchymal transition (EMT) 
and exhibit anti-invasive properties in p53-mutant cancer cell 
lines (146,147).

In the progression of cancer, the interaction between 
mutant p53 and p73 plays an important role. Mutant p53 has 
the ability to co-precipitate and interact with p73, resulting in a 
dominant-negative effect, which inhibits p73 activities (47,48). 
It is also clear that certain p53 mutations. such as R175H, 
which have a high frequency in pancreatic cancer cases (43), 
exhibit a stronger binding with p73 in comparison with R273H 
mutation (36,48).

TGF-β plays a tumour suppressive role in pancreatic cancer 
mediated by SMAD4 (148). The absence of TAp73 disables 
the SMAD4 dependent TGF-β pathway in pancreatic cancer. 
In the study by Thakur et al (19), TAp73-positive and -negative 
cell lines were developed from mouse models of pancreatic 
cancer. In TAp73‑deficient cells, which were also p53‑null, an 

increase in EMT markers, such as N-cadherin and vimentin, 
as well as a reduction in the TGF-β inhibitor, biglycan (BGN), 
and SMAD4, were suggestive of the role of TAp73 in limiting 
EMT progression (19).

6. Therapeutic targets of pancreatic cancer

GEM is a nucleoside analogue and a standard chemothera-
peutic drug for pancreatic cancer (149). Although the primary 
action of GEM is the inhibition of DNA synthesis by the incor-
poration of gemcitabine diphosphate into DNA (150), it has 
a secondary effect of activating p53 target genes by binding 
to DNA and terminating DNA elongation, leading to apop-
tosis (151-153). GEM itself requires phosphorylation in order 
to become active and cause cytotoxicity (113). Resistance 
against GEM is increasing, particularly in pancreatic cancer 
cell lines with p53 mutation, such as MiaPacCa-2, or cell 
lines that are null-p53, such as AsPC-1 and cell lines, such as 
SW1990 that are p53 proficient are yet to exhibit GEM resist-
ance (20,113,149).

Numerous studies have examined mechanisms through 
which to restore GEM sensitivity in pancreatic cancer. In 
p53-null pancreatic cancer cell lines, such as AsPC-1, the 
knockdown and silencing of RUNX2 has been shown to 
enhance GEM sensitivity through TAp73 and TAp63 pathways 
which activates p21 and NOXA genes (20,113).

Mouse double minute 2 (MDM2), Itch and neural 
precursor cell-expressed developmentally downregulated 
gene 4 (NEDD4) are ubiquitin ligase proteins that are known 
to suppress p73 in pancreatic cancer (149,154,155), and 
hence, their expression exhibits enhanced resistance to GEM 
therapy (156). Targeting these proteins could enhance GEM 
sensitivity in pancreatic cancer. MI-319 is an siRNA that, in 
combination with cisplatin, is known to inhibit MDM2 and 
therefore activate p73 (157). In pancreatic cell lines and xeno-
graft models with p53 mutation, the knockdown of Itch by 
anti-Itch shRNA transduction coupled with GEM therapy has 
demonstrated improved sensitivity to GEM (149). Similarly, 
curcumin and curcumin difluorinated have been identified 
as an anticancer agents that inhibit NEDD4 and promote 
p73 activities, and hence improve the response to GEM 
therapy (155,158). Apart from these three proteins, AKT PI3K 
protein kinase is known to stabilise mutant p53 protein, and 
therefore, its inhibition is related to an enhanced effectiveness 
of cancer therapies (159). Although the effect of AKT/PI3K 
has not been documented for pancreatic cancer, it is a potential 
therapeutic target for future research in this area.

Apart from GEM, imatinib, a chemotherapeutic drug most 
commonly used for chronic myeloid leukaemia, is a potential 
treatment for pancreatic cancer with mutant p53. It targets the 
PDGFRβ pathway, which is constitutively activated by mutant 
p53 resulting in uncontrollable cell growth (56).

In terms of gene therapy, knocking down the DN isoform 
of p63 is promising target for pancreatic cancer therapy (18). 
In a study using mouse models of pancreatic cancer, the 
shRNA-mediated knockdown of DNp63 was shown to lead 
to a decrease in tumour volume compared to identical mice 
carrying non-targeting shRNA (160). Table II summarises 
the strategies used to inhibit various therapeutic targets in 
pancreatic cancer.
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Another promising target for pancreatic cancer is 
p53-mediated therapy. MDM2, a feedback regulator of p53, 
is upregulated and frequently amplified in cancers, rendering 
the MDM2-p53 pathway the optimal target for therapy (161). 
Several drugs have been formulated to disrupt the p53-MDM2 
pathway such as Nutlin-3a, a selective inhibitor of MDM2, 
designed to block the MDM2-p53 interaction, which can 
induce cell cycle arrest and apoptosis by blocking the G1 and 
G2 phases (161-163). In animal models, Nutlin-3a has been 
demonstrated to induce the activation of p53 signalling, as 
well as the suppression of tumour growth (161). Another drug, 

RITA, is a small molecule that activates the p53 pathway and 
has successfully demonstrated suppression of tumour growth 
in animal models (164).

Small molecules, including CP-31398, PRIMA-1 and 
NSC-319726, can alter mutant p53 to exhibit wild-type p53 
functions. PRIMA-1 restores the DNA binding domains by 
converting the conformation of mutant p53 (R273H and R175H) 
to wild-type p53 (165,166). NSC-319726 has been tested to 
restore the structure and function of wild type p53 in R175H 
mutations, while CP-31398 stabilises the DNA binding domain 
of p53, increasing the transcriptional activity (165,167). By 

Table II. Therapeutic targets that cause resistance to gemcitabine or confer tumour tumour-enhancing properties and strategies 
to inhibit these targets.

Author/(Refs.), year Therapeutic target Mechanism of resistance/tumourigenicity Method of inhibition

Sugimoto et al (113), 2015 RUNX2 Inhibits TAp73 and TAp63 pathways siRNA-mediated knockdown
Nakamura et al (20), 2016
Azmi et al (157), 2010 MDM2 Suppresses p73 pathways Inhibition by MI-319 coupled
Yang et al (156), 2017   with cisplatin
de la Fuente et al (149), 2015 ITCH Suppresses p73 pathways Anti-Itch shRNA knockdown
Azmi et al (158), 2011 NEDD4 Suppresses p73 pathways Inhibition by curcumin and
Su et al (155), 2017   curcumin difluorinated
Hamilton et al (159), 2014 AKT PI3K Stabilises mutant p53 protein AKT inhibition by MK-2206
Weissmueller et al (56), 2014 DNp63 Promotes cell growth Anti-DNp63 shRNA knockdown
Urist et al (85), 2002 PDGFRβ Activated by mutant p53 and promotes Inhibition by imatinib
Bid et al (160), 2014  cell growth

RUNX, runt-related transcription factor 2; MDM2, mouse double minute 2; NEDD4, neural precursor cell-expressed developmentally down-
regulated gene 4; AKT PI3K, phosphatidylinositol-3-kinase and proteinase kinase B; PDGFRβ, platelet derived growth factor receptor β.

Table III. drugs involved in p53-mediated therapy for pancreatic cancer.

 Drug/small
Author/(Refs.) molecule Mechanism  Method  Clinical stage

Vassilev et al (162), 2004 Nutlin-3a Inhibits MDM2-p53 pathway Binds to MDM2 to block the Preclinical
   MDM2-p53 interaction
Issaeva et al (164), 2004 RITA Inhibits MDM2-p53 pathway Binds to p53 to block the Preclinical
   MDM2-p53 interaction
Bykov et al (168), 2002 PRIMA-1 Restores wild-type function Restores DNA contact and convert Phase I/II
  of p53 mutant p53 conformation
   to wild-type
Yu et al (165), 2012 NSC-319726 Restores wild-type function R175H mutation converted to Preclinical
  of p53 wild-type
Tang et al (167), 2007 CP-31398 Restores wild-type function Mutant p53 core domain Preclinical
  of p53 stabilisation
Li et al (169), 2011 HDAC6 Hsp90 Degradation of mutant p53 Interrupts HDAC-p53 interaction Preclinical

MDM2, mouse double minute 2; RITA, reactivation of p53 and induction of tumour cell apoptosis; PRIMA-1, p53 re-activation and induction 
of massive apoptosis; HDAC6, histone deacetylase 6.
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restoring the wild-type p53 functions, it is enabled to carry out 
apoptosis and cell cycle arrest (168).

Lastly, the degradation of mutant p53 in PDAC using 
inhibitory factors, such as HDAC1 and HDAC2 inhibitors, 
block the HDAC signalling pathway. HDAC and p53 interac-
tion is responsible for stabilising the mutant p53, rendering 
it more stable than the wild-type p53 (115,169,170). Table III 
summarises the p53-mediated therapeutics in pancreatic 
cancer.

7. Conclusion and future directions

The mortality rate of patients with pancreatic cancer continues 
to increase due to the lack of appropriate screening markers for 
early detection. As the understanding of biology surrounding 
the p53 family grows, their role in pathogenesis of cancer may 
be a target for cancer detection or therapy.

In this review, the structure of p53 family isoforms, and the 
role of wild-type p53, mutant p53, TAp63, DNp63, TAp73 and 
DNp73 were discussed. Particularly in pancreatic cancer, it is 
apparent that in addition to the loss of the apoptotic ability of 
p53, mutations in this gene leads to gain of cancer-promoting 
properties through various pathways, such as the inhibition 
of regulatory genes, promoting growth through the PDGFRβ 
pathway, as well as the manipulation of autophagy in cells. As 
for p63 and p73, the function of each isoform forms a paradox 
as they have contradictory properties in cancer. In actuality, 
the function of each isoform varies based on the origin of 
cancer and seems to be tissue‑specific.

There is still much to learn about the exact role of p53 
family isoforms in cancer. In fact, due to their functional 
similarity and tissue specificity, how each gene and their 
isoform interact with each other is particularly attractive for 
future research. In addition, future research should shift its 
focus to clinical trials for therapeutic targets such as RUNX2, 
Itch, MDM2 and DNp63 in order to elucidate more effective 
strategies for the treatment of pancreatic cancer.
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