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Abstract. Evo‑devo has been shaped by a myriad of natural 
forces, such as environmental factors, opportunism, survival 
of the fittest and even disease, including cancer. The influ‑
ence of the environment and evolutionary stress through 
natural selection has been driving life since the very begin‑
ning. However, it is not only through the development of jaws 
and claws that species survive and evolve. Disease is just 
another tool in nature's arsenal of evolution. A repertoire of 
gene‑coding and non‑coding regions, as researchers recently 
begin to understand, play a pivotal role in diseases, including 
cancer. The present review focuses on elucidating the role of 
signaling, metabolism and transcription processes as stake 
holders of evolutionary and developmental biology, namely 
evo‑devo, under the prism of reduced survival and disease 
through cancer genes. The mechanisms through which ances‑
tral cancer genes can shape evolution and development, when 
‘cancer’ is viewed as a robust, evolvable system, are discussed, 
focusing on its evolutionary origins as an alternative approach.
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1. Introduction

Evolution can be viewed as the accidental result of random 
mutations, in both gene‑coding and non‑coding regions of 
the DNA, leading to the amazing diversity of life forms 
currently observed on earth. Still, it is the genetic, epigenetic, 
epitranscriptomic and socio‑environmental events that act 
upon the developmental mechanisms, that guide evolution 
and dictate the survival of a single living unit and a species' 
reproductive success across and along generations. Genetic 
alterations that can ‘switch off’ genes or enhance their expres‑
sion, or even relegate them to non‑coding segments of DNA, 
are merely part of the equation. Genetic and environmental 
challenges are determining evolution in terms of the survival of 
the fittest. Natural selection guides the evolutionary process by 
favoring genes for their ability to propagate their information 
through generations.

Evolutionary and developmental biology, namely 
evo‑devo, refers to the mechanisms through which develop‑
mental processes determine and modulate variations, and 
dictate the evolutionary outcomes throughout the course of 
history. The main focus of evo‑devo, as previously described 
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by Hendrikse et al, is the capacity of developmental systems 
for adaptive evolution through these variations, or else evolv‑
ability (1). Robustness, that is the ability of a system to be 
resistant to change, is a basic concept of evolvability. Robust 
organisms have the ability to accumulate genetic variations 
with no effects on their phenotype; however, this cryptic 
evolutionary potential of their genomes can be released in a 
new environmental and genetic background, enhancing the 
probability of the organisms to adapt (2).

Cancer can be viewed as a robust, evolvable system, 
and focusing on the evolutionary origins of cancer can 
be used as an alternative approach (3). The genes that are 
responsible for the processes of proliferation inhibition, cell 
death, division of labor, resource allocation and extracel‑
lular environment maintenance, are the genes that sustain 
the viability of complex multicellular organisms (4). They 
are also the genes that malfunction in cancer (5). A wide 
number of oncogenes and tumor suppressors have been 
discovered over the past 50 years, and almost all cancers 
are driven by genetic alterations in these genes. Hence, the 
genetic basis of cancer has an ancient past. According to the 
atavistic theory, cancer is the result of the accumulation of 
mutations that reprogram the cell into adopting a primitive 
phenotype, by reactivating an ancient behavior character‑
ized by highly conserved survival (6). This phenotype is 
characterized by the upregulation of ancestral genes with 
unicellular evolutionary origins, disrupting the genetic 
regulatory network that rules upon complex multicellular 
organisms and leading to uncontrolled proliferation in 
adverse environmental conditions (7‑9).

As such, cancer events can be considered as a drawback 
or a side‑effect of evolution. However, under the scope of 
evo‑devo as an interplay of yin and yang, it can be argued 
that cancer events can be viewed as an integral component of 
evolution (10). At a (cancer) cell‑level, this phenotype depicts 
a ‘drive for survival’ with its evolutionary roots in the early 
transition stages from unicellularity to multicellularity that 
lead to a diversity burst, whereas at the (host) organism‑level, 
a cancer event outlines the ‘unfitness’ of the host for natural 
selection. The trading between two evolutionary states, 
an ancestral one characterized by stochasticity and plas‑
ticity/flexibility with a high evolutionary rate and a recent, 
synchronous equilibrium with a refined regulatory machinery 
(however threatened by a variety of stressors), by activating 
and deactivating ‘ancient’ genes may be the gear which sets 
in motion the forces that formulate life by survival selection 
and thus, shaping evo‑devo.

In the following sections, focus is paid on elucidating the 
role of ancestral genes involved in signaling, metabolism 
and transcription pathways as stake holders of evo‑devo 
under the prism of reduced survival and disease through 
‘cancer’. Collectively, a list of inhouse curated genes that 
are involved in signaling, metabolism and transcription in 
cancer, by harvesting the NCBI Gene Database (11) with 
the respective keywords and filtering out the noise, is 
provided in Table SI. Notably, as shown in Fig. 1, 44.58% 
of cancer‑associated genes are involved in transcription 
pathways, whereas the co‑occurrence of signaling‑ and 
metabolism‑associated genes in cancer is 17.07 and 17.35%, 
respectively.

2. Signaling in cancer

Cells are able to respond and adapt to their environment 
through signal transduction. Signaling pathways coordinate 
intra‑ and intercell communication, as well as the communica‑
tion between cells and the extracellular matrix. Genetic and 
epigenetic alterations often lead to the disruption of signaling 
networks and enable cancer cells to escape regular control 
mechanisms (12). These alterations are involved in cancer 
progression, such as cell growth and proliferation, angiogen‑
esis and inflammation. Oncogenic mutations can cause the 
hyperactivation of the signaling pathways and the overexpres‑
sion of the affected genes or produce mutated proteins with 
deficient activity, and deletions or other mutations can inacti‑
vate tumor suppressors that normally act as negative regulators 
in signaling (13). Even though the mutational profile of tumors 
is highly diverse, there are a small number of mutations with 
a causative role in oncogenesis, termed ‘drivers’, that lead the 
cancer cell to a fitness advantage (14,15). ‘Passengers’ on the 
other hand are estimated to account for ~97% of mutations 
in cancer and are mostly considered random non‑functional 
mutations, although there are indications of a certain fitness 
cost for the tumor upon elevated passengers load (16,17). Driver 
mutations have been shown to affect a limited number of 
signaling pathways that regulate three core cellular processes: 
Cell fate, cell survival and genome maintenance, rendering the 
focus towards a consensus of mutated driver pathways rather 
than individual driver genes (18‑20).

A representative example of driver mutation is p53 
tumor suppressor protein, that is a crucial component in the 
regulation of cell cycle in multicellular organisms (21). The 
evolutionary history of the p53 pathway can be traced back to 
the beginning of multicellularity and is activated upon cellular 
stress signals (22,23). The previous evolutionary study by 
Belyi et al traced the origins of the p53 family genes back to 
the unicellular choanoflagellates and the early metazoan sea 
anemone, where the ancestral gene was found to be related to 
the p63/p73‑like gene, and upon gene duplication in the early 
vertebrate lineage, the resulting product was closely associated 
with that of the p53 gene (24). The p53 protein is a transcrip‑
tion factor that binds to specific DNA sequences and acts as 
an anticancer promoting agent, and is therefore also known as 
the ‘genome guardian’ (25). It activates DNA‑repair proteins, 
induces growth arrest and initiates apoptosis. p53 is encoded 
by the TP53 gene, which is the most frequently mutated gene 
in human cancers. In almost half of human cancer types, p53 
is inactivated by mutation, leading to a severely reduced tumor 
suppressive activity (26).

Another example of genetic alterations deregulating the 
signal transduction and promoting tumor progression is the 
phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway. 
The PI3K/Akt pathway is evolutionary conserved and regu‑
lates metabolism, proliferation, cell survival, growth, motility 
and apoptosis in response to extracellular signals (27). Both 
PI3K and Akt enzymes have a wide phylogenetic distribution 
and have been identified in unicellular organisms and have 
later evolved through complex duplication patterns (28,29). 
Activating mutations in PI3K, Akt and PIK3R1 have been 
described in cancer and result in persistent amplification 
of the PI3K/Akt pathway and aberrant cell proliferation. 
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Inactivating mutations and deletions of phosphatase and tensin 
homolog deleted on chromosome 10 (PTEN) and inositol 
polyphosphate‑4‑phosphatase, type II (INPP4B) tumor 
suppressors lead to unrestrained downstream signaling (30). 
Mutations in TSC1 and TSC2 tumor suppressors hyperactivate 
signaling by mammalian target of rapamycin (mTOR)C1, a 
crucial target of the PI3K/Akt pathway (31,32).

The Notch signaling pathway is involved in cell devel‑
opment and differentiation, and has also been found to be 
aberrantly activated in a number of different solid tumors 
through mutations (33). The Notch pathway is based on 
cell‑cell contacts for signal transduction and is highly 
involved in tumor metastasis (34,35). Of note, both gain‑ and 
loss‑of‑function mutations in NOTCH isoforms are described, 
reverting the ability of the Notch signaling pathway from an 
oncogene to a tumor‑suppressor in a highly context‑dependent 
manner (36,37).

A gene that is present in unicellular organisms and 
associated with cancer in multicellular organisms is the 
helicase‑associated endonuclease for fork‑structured DNA 
(Hef). Hef is a protein found in Archaea and is required for 
the processing of blocked replication forks. The vertebrate Hef 
ortholog appears to participate in the Fanconi anemia‑related 
(FA) tumor suppressor pathway, while the archaebacterial 
Hef processes stalls replication forks in order for them to be 
repaired by homologous recombination (38). Vertebrate Hef 
seems to also play a role in DNA repair mechanisms, where it 
interacts directly with DNA structures that are DNA replication 
intermediates and may contribute to resolving DNA crosslinks 
through a complex association with the FA complementation 
group C gene (38).

The 70‑kDa family of heat shock proteins (HSP70) is 
regarded as one of the most conserved groups of proteins in 
evolution. The majority of organisms include multiple members 
of the protein, while some, such as archaebacteria, include at 
least one (39). Hsp70 proteins are molecular chaperones that 
participate in a diverse group of processes, including protein 
folding and remodeling as they act virtually at all stages of 
protein life, from synthesis to degradation, and thus are 

essential in protein homeostasis (40). Cancer cells rely heavily 
on the mechanisms of HSP70s regulation for survival. The 
majority of human tumors, as an example, overexpress HSP70 
family members, and this overexpression can be used as a 
biomarker for a poor prognosis (39). This overexpression in the 
case of mammary carcinoma may be largely due to the prolif‑
eration of misfolded proteins and overexpressed oncoproteins 
that trigger the transcription of HSP genes. A prime example 
is the ability of Tp53 to suppress the HSP70 promoter, and the 
loss of this protein, a common event in cancer, may lead to an 
increase in the expression of said chaperone proteins (41).

3. Metabolism in cancer

Metabolic reprogramming is a hallmark of cancer. The activa‑
tion of cancer genes and the progression of a cancer event alter 
the metabolic process of the cell, in order for it can meet the 
high demands of cancer cells in energy and nutrient resources. 
The majority of malignant cells switch to aerobic glycolysis 
as a preferred metabolic pathway, a phenomenon also known 
as the Warburg effect, producing a high amount of secreted 
lactate (42,43). The acquired glycolytic behavior of cancer cells 
holds for the sustainability of their bioenergetics, biosynthesis 
and redox demands. Even though oxidative phosphorylation is 
a much more efficient source of ATP compared to glycolysis, it 
has been shown that the high glycolytic rates in cancer cells are 
favored due to the increased levels of precursor metabolites for 
anabolic pathways (44). In addition, glycolysis enables cancer 
cells to deal with unfavorable conditions, such as hypoxia and 
a low nutrient supply, and to adapt to their highly heteroge‑
neous microenvironment, thus maintaining an evolutionary 
advantage (45).

The activation of specific oncogenes and the loss of tumor 
suppressors, along with the upregulation of the PI3K pathway 
is controlling the metabolic switch in cancer (46,47). The acti‑
vation of Myc, Ras and Akt, and the inactivation of p53 have 
been shown to upregulate glycolytic enzymes and glucose 
transporters and stimulate glycolysis (48,49). Additionally, to 
maintain this glycolytic phenotype, cancer cells upregulate a 

Figure 1. Percentage of transcription, signaling and metabolism associated genes on the total number of cancer‑associated genes.
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number of plasma membrane transporters, such as monocar‑
boxylate transporters (MCTs), that mediate the proton‑linked 
transport of metabolic monocarboxylic acid (50). Specifically, 
MCT1 and MCT4 isoforms are highly involved in maintaining 
the metabolic phenotype of cancer cells by facilitating the 
transport of lactate across the plasma membrane and regu‑
lating the intracellular pH by co‑transporting a proton (51). 
MCT4 has the lowest affinity for lactate among MCTs and is 
the main isoform that mediates lactic acid efflux from glyco‑
lytic cells, including white skeletal muscle fibers, astrocytes, 
immune cells, chondrocytes and hypoxic cells (52). MCT4 
expression is upregulated under hypoxic conditions and oxida‑
tive stress by hypoxia‑inducible factor 1α (HIF‑1α), favoring 
lactate extrusion from the cell MCTs and preventing intracel‑
lular acidification, thus promoting a number of carcinogenic 
processes (53‑55). MCT4 is also recognized for its role in 
metastasis and is shown to be upregulated in the tumor stroma 
by oncogenes Ras and nuclear factor (NF)‑κB (56). The 
increased expression of MCT4 and its ancillary protein, CD147, 
is also associated with a poor prognosis in a number of types of 
cancer (57). c‑Myc has been shown to increase the expression 
of MCT1, as in with pyruvate dehydrogenase kinase‑1 (PDK‑1) 
that phosphorylates the pyruvate dehydrogenase enzyme and 
lactate dehydrogenase A (LDH‑A), an enzyme that catalyzes 
the conversion of lactate to pyruvate (58,59). As such, MCTs 
are considered as promising therapeutic targets for disrupting 
the glycolytic cascade of cancer cells.

One of the key enzymes found in all organisms and a 
key component in the metabolic reprogramming of cancer, 
is glutamine synthetase (GS). GSs is responsible for nitrogen 
metabolism, where it participates in the biochemical reaction 
of ammonia assimilation and in glutamine biosynthesis. It has 
been demonstrated that GS expression is induced by the Myc 
oncogene, resulting in increased glutamine anabolism that 
is associated with increased cell proliferation, survival and 
transplant tumor growth. All of the above lead to the conclu‑
sion that GS expression plays an important role in Myc‑driven 
carcinogenesis (60).

Three types of GS have been reported from previous 
studies. The two most basic types are GSI and GSII. GSI 
has been identified in prokaryotic organisms, whereas 
GSII has been identified mainly in eukaryotes, but also in 
some prokaryotes belonging to the families Rhizobiaceae, 
Frankiaceae and Streptomycetaceae (61). Finally, the third 
type of GS is GSIII, which has been observed in the anaerobes 
Bacteroides fragilis (62) and Butyrivibrio fibrisolvens (63). 
These types differ in both their primary and tertiary structure. 
GSI consists of 12 identical subunits, which are structured in 
2 layers, each consisting of 6 subunits. At the active site, the 
synthetase contains a pair of Mn++ ions and forms 2 antisense 
π‑structures, one in the carboxyl terminal end of a subunit 
and the other in the N‑terminal end of the adjacent subunit. 
GSII and GSIII contain fewer subunits than GSI, with GSII 
consisting of 8 subunits and GSIII of 6. It is still worth 
noting that a fourth type of synthetase has been identified in 
Rhizobium leguminosarum and is reported as glnT, which has 
more common elements with prokaryotic GSI (64).

According to the results of previous evolutionary analyses 
in which the genes encoding GS were aligned in different 
organisms, it was found that the genes of GSI and GSII existed 

1,700 million years prior to the divergence of prokaryotes 
and eukaryotes (60). In the study by Shatters and Kahn, it 
was denoted that the common ancestor of the GSII genes 
in Rhizobiaceae and the host plant was older than the plant 
itself (65). Moreover, it is surprising that the genes encoding 
the rice and pea chloroplast GSII enzymes are more closely 
related than the corresponding genes of the same species. 
Finally, it is estimated that mitochondrial GSII is 1,050 million 
years old (60).

4. Transcription in cancer

Dysregulation in the gene expression program is also a signa‑
ture in cancer. Transcriptional regulation and gene expression 
are controlled by a vast number of transcription enzymes, 
transcription factors, co‑factors and chromatin regulators that 
are interacting in a highly coordinated manner and perturba‑
tions on the transcriptional mechanism controls are evident in 
all tumors (66). Gene alterations that result in the activation 
of oncogenes, the inactivation of tumor suppressors and the 
upregulation of protein kinases can promote transcription and 
subsequently drive cell proliferation.

RNA polymerases are highly conserved in evolution, and 
their subunits exhibit a common structural framework, while 
being operated by closely related molecular mechanisms (67). 
In their study, Werner and Grohmann (67) denoted that the 
last universal common ancestor of bacteria, Archaea, and 
Eukarya carried an RNA polymerase very similar to the 
simplest form of contemporary RNAPs found in bacteria, 
while Shin et al indicated that archaeal RNAPs share more 
properties with their eukaryotic homologs (68). RNA poly‑
merase I (Pol I) is the most highly engaged enzyme in the 
general transcriptional machinery, accounting for >60% of the 
overall cell transcriptional activity (69). Cancer cells have a 
higher biosynthetic demand, exhibiting upregulated ribosome 
biogenesis, known as ‘nucleolar hypertrophy’, to support cell 
growth and uncontrolled cell proliferation. Ribosome produc‑
tion is strictly dependent on the Pol I transcription machinery 
in the nucleolus; thus, Pol I activity is further increased in 
proliferating cells (70). A number of oncogenic factors driving 
accelerated Pol I transcription have been reported over the 
years. The oncogenic activity of Myc has been shown to 
stimulate Pol I transcription and enhance ribosomal biogen‑
esis (71,72). Activated mTOR induces Pol I transcription and 
ribosome synthesis by activating upstream binding factor 
(UBF) and transcription initiation factor 1A (TIF1A) (73). 
The inactivation of PTEN tumor suppressor results in the 
constitutive activation of the oncogenic PI3K/AKT pathway 
and tumorigenesis (74). A number of tumor cells harbor 
mutations that affect both pRb and p53 tumor suppressors, 
that normally suppress Pol I transcription and inhibit cellular 
rRNA synthesis, having an added impact on Pol I activity (75).

Cancer cells also exhibit an upregulated activity of 
RNA polymerase II (Pol II) to produce a high number of 
transcripts, including oncogenes and anti‑apoptotic factors, 
supporting rapid growth and resistance to apoptosis (76). The 
control of Pol II is highly regulated by transcriptional factors 
and non‑coding RNAs (ncRNAs) and is critical for the cell 
homeostasis. Genetic variations, such as mutations in tran‑
scription factors that control Pol II can result in a disruption 
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of the pause release and elongation process. Increased levels 
of c‑Myc cause transcriptional amplification by accumulating 
at promoters regions and producing high levels of transcripts, 
thus inducing tumorigenesis (77). Gene fusion events have 
been shown to alter the transcription elongation, as in the 
case of the chromatin regulator MLL in leukemias (78). Long 
non‑coding RNAs have also been implicated for their role in 
cancer progression, functioning as transcriptional regulators. 
The lncRNA ANRIL induces the transcriptional repression 
of members of the INK4A/ARF/INK4B locus, which encode 
tumor suppressors whose deactivation is associated with 
various types of cancer (79).

5. Computational methods for pharmacological targeting 
in cancer

Developing efficient therapeutic methods for anticancer drug 
design remains a challenge, even though success stories have 
been reported over the past years. Cancer is a heterogeneous 
disease and a deeper understanding of the underlying molecular 
mechanisms that drive its initiation, progression and metas‑
tasis is crucial for providing effective treatment and improved 
diagnostics. Through the advances of bioinformatics and 
omics technologies, a wide variety of computational methods 
can be applied for pharmacological targeting in cancer.

Structure and ligand‑based drug design are principal 
methodologies for drug discovery and lead optimization. 
Ligand‑based approaches use the information of known active 
and/or inactive molecules to generate SAR models, whereas 
structure‑based approaches use the structural information 
of the protein target to discover lead molecules as potent 
inhibitors (80). Homology modelling techniques are applied 
when an experimentally determined structure of a protein is 
not available. Molecular docking and molecular dynamics 
are extensively used to simulate the conformational state of a 
protein target and protein‑ligand interactions to estimate the 
binding affinity. Virtual high‑throughput screening through 
docking of small molecule libraries have been successfully 
applied for the identification of novel inhibitors with anticancer 
properties, as in the case of targeting Cdc25A phosphatases and 
protein kinase CK2 (81,82). The physicochemical properties 
of small molecules with potent activity can be also analyzed 
through statistical methods and the applications of artificial 
intelligence (AI), such as machine learning, in the pursuit of a 
selective inhibitor. A key factor for the success of these strate‑
gies is to target specific biomolecules involved in functional 
molecular and biological traits that distinguish cancer cells 
from normal cells, known as the hallmarks of cancer.

Omics data are accumulating rapidly and can be assessed 
through statistical analysis and computational methods 
to uncover potential targets for efficacious therapeutics in 
cancer. Systems biology approaches, including computational 
modeling, network analysis, gene signature analysis, functional 
genomics, protein‑protein interactions and high‑throughput 
screening, are efficient tools for advancing the prediction of effi‑
cient therapeutics in complex diseases, such as cancer (83). In 
network analysis, computational models of signaling networks 
are designed and used to predict systems properties that can 
indicate and prioritize protein targets for cancer therapy (84). 
Computational approaches have been used for the prediction 

of functional impact of mutations and discriminate driver 
from passenger mutations, based on evolutionary conserva‑
tion, protein structure modifications and observed recurrence 
in existing cancer datasets (85). Chen et al illustrated the 
oncogenic signatures in the tyrosine kinase family through 
an evolutionary analysis concluding that gain‑of‑function 
mutations are causing reverse evolution on the oncogenes 
supporting the cancer atavistic model (86). An interesting 
computational analysis in gene expression data was previously 
presented by Trigos et al (87), where 7 solid tumors were 
investigated with regards to their corresponding gene ages 
using phylostratigraphy. The results indicated that a common 
feature in tumors was a trend for the preferential expression of 
more ancient genes. The authors reported that these cellular 
processes assigned to a unicellularity origin were more active 
in tumors. Additional research demonstrates the effectiveness 
of evolutionary network analysis to identify prognostic cancer 
modules (88). These results provide a completely new perspec‑
tive in identifying suitable pharmacological targets based on 
the evolutionary age of their encoding genes.

6. Conclusions

Cancer is a complex disease and its underlying mechanisms 
have yet to be fully elucidated. However, critical nodes can 
be identified under the scope of its evolutionary origins. The 
emergence of long‑living multicellular animals demands 
the evolution of mechanisms that operate on various levels 
(including on individual cells, tissue organization, and the 
whole body) in order to maintain an appropriate number of 
cells within a specific tissue and limit cancer growth (89).

Another aspect of the evolutionary link of cancer to 
unicellularity concerns lateral gene transfer between bacteria 
and eukaryotes, particularly when symbiotic relationships are 
present (90). Given that human somatic cells are in a state of 
coexistence with various kinds of bacteria, the integration 
of bacterial genetic material is hypothesized to disrupt tumor 
suppressor genes or proto‑oncogenes, acting as a mutagen, or 
the possibility for integrated bacterial gene to be transcribed 
by the mechanisms of the recipient human cell, leading to the 
production of a polypeptide with unpredictable repercussions 
on the cell (91). In a 2017 study, the tissues of patients suffering 
from esophageal cancer were analyzed, affirming the presence 
of the bacterium Fusobacterium nucleatum. Through micro‑
array analysis, it was found that the presence of the bacterium 
affected cellular pathways in the cancer tissues, namely the 
cytokine‑to‑cytokine receptor interaction. These findings 
suggested that the presence of the bacterium in the cells induced 
the activation of chemokines, such as CCL20, contributing 
to tumorigenesis (92). Other researchers have begun to eluci‑
date the effects of bacteria‑human lateral gene transfer on the 
development of various cancer types. Bacterial DNA integra‑
tions have been found in human mitochondrial genome and 
more specifically, in samples of acute myeloid leukemia, identi‑
fying bacterial integration in genes known to be upregulated in 
stomach adenocarcinoma, an integration that appeared to take 
place in the 5'‑UTR and 3'‑UTR of those proto‑oncogenes (93).

The regulatory network of living systems has been finely 
tuned through evolution and genetic and environmental pertur‑
bations can compromise the viability equilibrium of the cell and 
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ancestral genes that are dysregulated can be encountered in all 
the critical cell signaling pathways. Upon tumorigenesis, uncon‑
trolled proliferation and metastasis, a number of properties of 
multicellular organisms are dysregulated or lost (94). Genes 
originating from unicellular ancestors are either specifically 
activated or required for maintenance of cancer phenotype (95). 
It is argued herein that these ancestral cancer genes represent an 
integral part of evolution, by disrupting the acquired balance of 
the multicellular organisms and driving disease through cancer 
as a means for change and evolvability.

Cancer itself may be considered as an evolutionary system, 
in which cancer cells acquire mutations that allow them to 
survive, compete for space and resources, evade the immune 
system, and even cooperate in order to disperse and colonize 
new organs (96). Several factors, from radiation to chemicals 
to aging, can promote the evolution of cancer by increasing 
mutation frequency and promoting the selection of adaptive 
mutations. In direct correspondence with animal evolution, 
cancer cells respond to environmental adversities by selecting 
the clone which is most fit for survival. Therefore, it appears that 
cancer and tumor‑suppressive mechanisms are engaged in an 
evolutionary arms race with each other (10). Considering this, the 
evolutionary aspect of cancer may help to predict the response of 
cancers to drugs and therapy, and lay the foundation for optimal 
treatment with immunotherapy, drugs, or chemotherapy.
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