Figure S1. Flow chart of the methods in the present study. A total of 4,534 genes associated with the overall survival in patients with non-small cell lung cancer were first produced by Cox PH survival analysis. Next LASSO regression was used to select the optimal gene signature for prognosis prediction. The survival risk score system was built based on 21 CpG signatures. Overall, 2,000 CpG sites, 1,505 copy number variations regions, 1,841 genes and 527 miRNAs were screened for multi-omics integrative clustering after pre-processing. A total of 6 iCluster subtypes were identified and the features of these were characterized. Through integrating multi-omics data and survival risk scores of the patients, survival risk score-related copy number variation regions and mutations were identified. del, deletion; amp, amplification; CN, copy number; miRNA, microRNA; PH, proportional hazard; LASSO, least absolute shrinkage and selection operator.

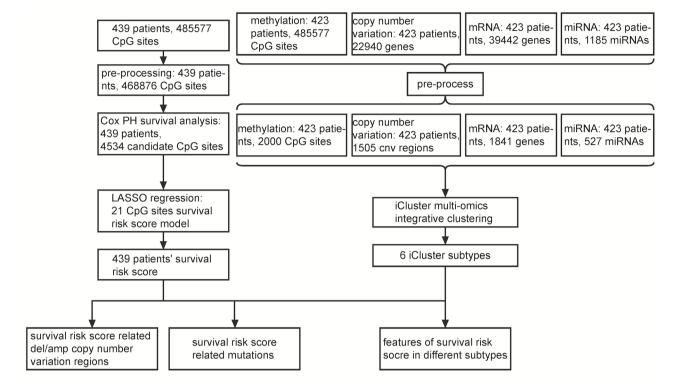


Figure S2. Number of clusters vs. percentage of explained variation. The Bayesian Information Criterion of the different number of clusters did not show an elbow point. According to the of iCluster algorithm manual, the heatmaps of the outcome with the different number of clusters were compared to determine the optimal number of clusters based on the features pattern.

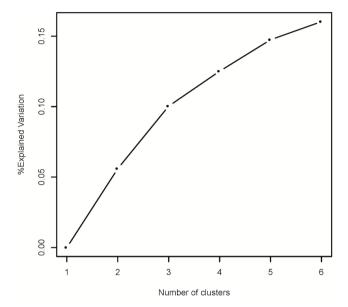


Figure S3. Heatmaps organized by iCluster groupings. (A-E) Two-iCluster solutions to six-iCluster solutions. From top to bottom in each figure, the heatmaps represent, in order, the copy number, mRNA expression, methylation and miRNA expression. Red represents copy number amplification or high expression/methylation levels. Blue represents copy number deletion or low expression/methylation levels. Patients were divided into different iClusters using black vertical lines. A six-iCluster solution was selected. cnv, copy number variation; mRNA, mRNA expression; meth, methylation; miRNA, miRNA expression.

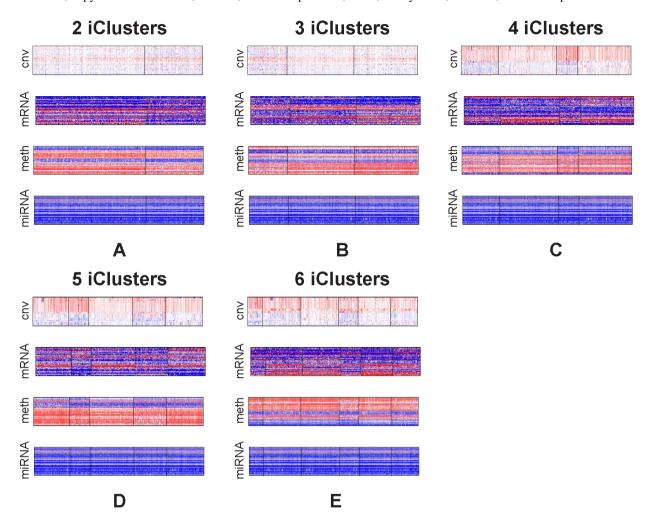


Figure S4. Distribution of patients' risk scores across stages and subtypes. (A) Distribution of patients' risk scores across stages. Patients in stage 2 and stage 3 had significant higher risk scores than patients in stage 1. The significance level was adjusted using Bonferroni's correction ($\alpha'=8.3\times10^{-3}$). (B) Distribution of patients' risk scores across subtypes. Patients in iClusters 4-6 had significant higher risk scores than patients in iCluster 3. Patients in iCluster 6 had significant higher risk scores than patients in iClusters 1-3 and iCluster 5. The significance level was adjusted using Bonferroni's correction ($\alpha'=3.3\times10^{-3}$).

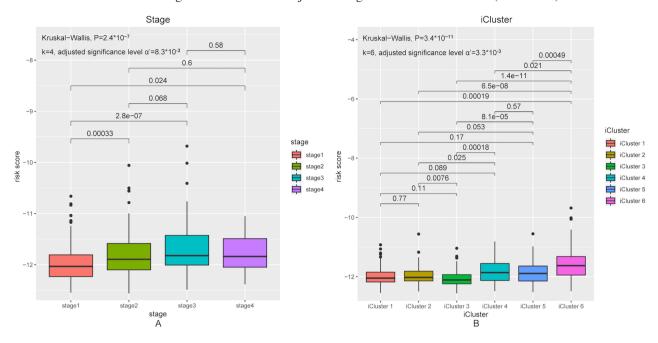


Table SI. Summary table of patients' detailed clinical information.

Characteristics	Patients, 1	
Age, years		
≤60	145	
>60	284	
NA	10	
Sex		
Female	236	
Male	203	
Pathology stage		
I	238	
II	107	
III	70	
IV	20	
NA	4	
Risk		
High	114	
Low	325	

Table SII. Summary table of features of different iClusters.

Category	iClsuter1	iClsuter2	iClsuter3	iClsuter4	iClsuter5	iClsuter6
Male	63.89%	44.68%	30.53%	58%	38.75%	63.24%
Female	36.11%	55.32%	69.47%	42%	61.25%	36.76%
Stage1	58.33%	54.26%	67.37%	54%	50%	39.71%
Stage2	19.44%	25.53%	16.84%	22%	30%	26.47%
Stage3	13.89%	15.96%	11.58%	14%	17.50%	26.47%
Stage4	8.33%	3.19%	2.11%	8%	1.25%	7.35%
M0	75%	64.89%	62.11%	56%	66.25%	66.18%
M1	8.33%	3.19%	2.11%	8%	1.25%	7.35%
Mx	16.67%	30.85%	33.68%	34%	32.50%	26.47%
N0	75%	64.89%	62.11%	56%	66.25%	66.18%
N1	8.33%	3.19%	2.11%	8%	1.25%	7.35%
N2	16.67%	30.85%	33.68%	34%	32.50%	26.47%
N3	0	1.06%	2.11%	2%	0	0
Nx	0	0	0	0	0	0
T1	30.56%	24.47%	53.68%	32%	30%	25%
T2	52.78%	63.83%	35.79%	60%	58.75%	55.88%
T3	8.33%	8.51%	6.32%	6%	8.75%	13.24%
T4	8.33%	3.19%	4.21%	2%	2.50%	4.41%
Tx	0	0	0	0	0	1.47%
TTN mutation	30.56%	56.38%	25.26%	70%	57.50%	66.18%
KRAS mutation	52.78%	32.98%	30.53%	32%	27.50%	26.47%
TP53 mutation	11.11%	75.53%	24.21%	64%	68.75%	66.18%
KEAP1 mutation	63.89%	8.51%	3.16%	26%	8.75%	38.24%

Table SIII. Detailed information of the selected CpG sites.

CpG	Chromosome	Start	End	Gene symbol	Gene type	Region type
cg01467592	8	144423973	144423974	VPS28	Protein coding	N Shore
cg02967813	2	3633738	3633739	COLEC11	Protein coding	N Shore
cg04391569	10	132781797	132781798	INPP5A	Protein coding	Island
cg05406101	21	29019898	29019899	RWDD2B	Protein coding	S Shore
cg06860998	4	4396367	4396368	D4S234E	Protein coding	-
cg06933711	10	30052194	30052195	<i>KIAA1462</i>	Protein coding	-
cg12193943	12	1776695	1776696	ADIPOR2	Protein coding	-
cg13372811	1	110084968	110084969	LINC01397	Antisense	S Shore
cg19160958	17	37447782	37447783	TADA2A	Protein coding	-
cg21749275	4	109539742	109539743	SEC24B	Protein coding	-
cg22697853	1	148264933	148264934			Island
cg27018309	16	8849265	8849266	PMM2; RP11- 152P23.2; RP11-77H9.2	Protein coding	-
cg27529004	2	236582165	236582166	ACKR3	Protein coding	_
cg00278107	5	1061138	1061139	SLC12A7	Protein coding	Island
cg03723506	5	38557041	38557042	LIFR; LIFR-AS1	Protein coding	Island
cg04973915	5	171927687	171927688	FBXW11	Protein coding	-
cg06720244	3	45968967	45968968	ZC3H13	Protein coding	-
cg11302293	4	3784045	3784046		C	-
cg13354228	8	658673	658674	RP11-806L2.5; TYMS; TYMSOS	Sense intronic	Island
cg17510645	1	243236587	243236588	CEP170	Protein coding	-
cg20981791	8	23293556	23293557	R3HCC1	Protein coding	-

N Shore, 0-2 kb up-stream of a CpG island; S Shore, 0-2 kb down-stream of a CpG island; Island, Cpg Island; -, more than 4 kb up- and down-stream of a CpG island.

Table SIV. Multivariate analysis of methylation risk score and other confounders.

Characteristic	Hazard ratio	95% CI	P-Value	
Risk score	15.3	8.43-27.78	$<2x10^{-16}$	
Age	1.03			
Sex (male)	1.71	1.01-2.88	0.05	
Stage2	2.16	1.16-4.03	0.01	
Stage3	2.18	1.18-4.03	0.01	
Stage4	4.28	1.73-10.6	< 0.01	
Smoke (yes)	1.21	0.61-2.39	0.58	
AC005152_3 normal	183563299.2	0-Inf	0.99	
AC005152_3 amplification	0.43	0.01-19.03	0.66	
SLC39A11 normal	0.01	0-0.23	0.01	
SLC39A11 amplification	1.02	0.04-25.16	0.99	
KCNJ2_ASI normal	0	0-Inf	0.99	
KCNJ2_ASI amplification	1.53	0.15-15.96	0.72	
MOB2 normal	1.41	0.82-2.43	0.22	
MOB2 amplification	1.67	0.83-3.38	0.15	
TP53 mutation	0.99	0.6-1.63	0.98	
MUC16 mutation	1.13	0.69-1.85	0.63	
CSMD3 mutation	0.98	0.55-1.72	0.93	
LRP1B mutation	0.66	0.37-1.17	0.16	
ZFHX4 mutation	0.7	0.39-1.23	0.21	
KEAP1 mutation	0.52	0.28-0.97	0.04	
COL11A1 mutation	1.73	0.93-3.19	80.0	
RYR3 mutation	0.75	0.4-1.43	0.38	
APOB mutation	0.53	0.24-1.16	0.11	
NLRP3 mutation	0.89	0.42-1.89	0.76	
COL22A1 mutation	3.09	1.54-6.18	< 0.01	
TNN mutation	0.95	0.47-1.92	0.88	
FAM47B mutation	0.75	0.31-1.77	0.51	
DNAH3 mutation	1.01	0.42-2.45	0.98	
FMN2 mutation	0.95	0.48-1.9	0.89	
PKD1L1 mutation	1.04	0.42-2.57	0.94	
TRPS1 mutation	2.63	1.13-6.09	0.02	
HYDIN mutation	1.03	0.41-2.61	0.95	
SMARCA4 mutation	1.1	0.47-2.57	0.83	
KCNU1 mutation	2.31	0.91-5.88	0.08	
ERBB4 mutation	0.58	0.18-1.82	0.35	
RBP3 mutation	1.61	0.64-4.02	0.31	
PCDHB5 mutation	0.69	0.28-1.7	0.42	
BSN mutation	0.92	0.34-2.51	0.87	
SCN1A mutation	1.42	0.44-4.52	0.56	
MTCL1 mutation	0.75	0.28-1.99	0.57	
RGPD4 mutation	1.11	0.38-3.31	0.84	
USP9X mutation	1.66	0.43-6.4	0.46	
POTEG mutation	0	0-Inf	0.99	

Inf, Infinity. CI, confidence interval.