Data S1. Supplementary Materials and methods

Chemistry. Detailed physicochemical information of the synthesized benzenesulphonohydrazones 1-9 is presented below.

N-*[(2,3-difluorophenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 1).* Yield: 31%; m.p.: 218°C. IR: 3157 (NH), 3012 (CH, arom.), 2842 (CH, aliph.), 1568 (C=N), 1317, 1185 (SO2); Proton nuclear magnetic resonance (1H NMR) (DMSO-*d*₆) δ (ppm) =2.34 (s, 3H, CH₃), 7.03-7.05 (m, 2H, ArH), 7.31-7.33 (m, 1H, ArH), 7.38-7.40 (d, 2H, ArH, *J*=6 Hz), 7.91-7.93 (d, 2H, ArH, *J*=6 Hz), 8.74 (s, 1H, =CH), 10.60 (s, 1H, NH); 13C NMR (DMSO) δ (ppm) =21.1 (CH₃), 118.9, 122.5, 126.1, 128.5, 129.2, 129.4, 138.1 (9C_{ar}), 140.2 (=CH), 141.7, 151.5, 152.5 (3C_{ar}). HR-MS: 310.0582 (M+). Analysis for C1₄H1₂F₂N₂O₂S (310.32), calculated: C: 54.19%, H: 3.90%, N: 9.03%; observed: C: 54.26%, H: 3.96%, N: 8.90%.

N-*[(2-chloro-3-methoxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 2).* Yield: 44%; m.p.: 152°C. IR: 3157 (NH), 3012 (CH, arom.), 2842 (CH, aliph.), 1568 (C=N), 1317, 1185 (SO₂); 1H NMR (DMSO-*d*₆) δ (ppm) =2.36 (s, 3H, CH₃), 3.85 (s, 3H, CH₃), 7.13-7.19 (m, 1H, ArH), 7.31-7.35 (m, 2H, ArH), 7.40-7.43 (d, 2H, ArH, *J*=9 Hz), 7.75-7.78 (d, 2H, ArH, *J*=9 Hz), 8.27 (s, 1H, =CH), 11.75 (s, 1H, NH); 13C NMR (DMSO) δ (ppm) =21.1 (CH₃), 56.8 (CH₃), 113.4, 121.5, 124.1, 126.8, 128.5, 129.4, 135.1, 138.1 (10C_{ar}), 140.2 (=CH), 141.7, 157.5 (2C_{ar}). HR-MS: 338.0486 (M+). Analysis for C15H15ClN2O3S (338.81), calculated: C: 53.17%, H: 4.46%, N: 8.27%; observed: C: 53.22%, H: 4.52%, N: 8.20%.

N-[(2-bromo-3-hydroxy-4-methoxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 3). Yield: 38%; m.p.: 144°C. IR: 3203 (NH), 3015 (CH, arom.), 2970 (CH, aliph.), 1594(C=N), 1349, 1186 (SO₂), 1H NMR (DMSO-*d*₆) δ (ppm) =2.34 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 6.70-6.72 (d, 1H, ArH, *J*=6 Hz), 7.03-7.05 (d, 1H, ArH, *J*=6 Hz), 7.37-7.40 (d, 2H, ArH, *J*=9 Hz), 7.84-7.87 (d, 2H, ArH, *J*=9 Hz), 8.63 (s, 1H, OH), 8.75 (s, 1H, =CH), 11.10 (s, 1H, NH); 13C NMR (DMSO) δ (ppm) =21.1 (CH₃), 56.8 (CH₃), 108.1, 115.0, 119.9, 126.2, 128.5, 129.4, 138.1 (9C_{ar}), 139.4 (=CH), 141.7, 145.0, 148.9 (3C_{ar}). Analysis for C15H15BrN2O4S (399.26), calculated: C: 45.12%, H: 3.79%, N: 7.02%; observed: C: 45.20%, H: 3.71%, N: 7.08%.

N-[(4-bromo-2-fluorophenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 4). Yield: 43%; m.p.: 180°C. IR: 3184 (NH), 3031 (CH, arom.), 2970 (CH, aliph.), 1600 (C=N), 1330, 1182 (SO₂); 1H NMR (DMSO-*d*₆) δ (ppm) =3.01 (s, 3H, CH₃), 7.40-7.43 (d, 2H, ArH, *J*=9 Hz), 7.46-7.47 (d, 1H, ArH, *J*=3 Hz), 7.60-7.66 (m, 2H, ArH), 7.74-7.77 (d, 2H, ArH, *J*=9 Hz), 8.01 (s, 1H, =CH), 11.75 (s, 1H, NH); 1³C NMR (DMSO) δ (ppm) =21.5 (CH₃), 119.8, 120.1, 121.1, 124.0, 127.6, 128.3, 130.3, 136.4, 139.2, 143.9 (10C_{ar}), 144.1 (=CH), 158.8, 162.2 (2C_{ar}). Analysis for C14H12BrFN2O2S (371.22), calculated: C: 45.30%, H: 3.26%, N: 7.55%; observed: C: 45.39%, H: 3.22%, N: 7.63%.

N-[(2,3-dimethoxyphenyl)methylidene]-4-methylbenzenesulfonohydrazide (compound 5). Yield: 37%; m.p.: 216°C. IR: 3203 (NH), 3065 (CH, arom.), 2929 (CH, aliph.), 1596 (C=N), 1329, 1185 (SO₂); 1H NMR (DMSO-*d*₆) δ (ppm) =2.40 (s, 3H, CH₃), 3.70 (s, 3H, CH₃), 3.80 (s, 3H, CH₃), 7.06-7.08 (m, 1H, ArH), 7.18-7.21 (m, 1H, ArH), 7.38-7.41 (d, 2H, ArH, *J*=9 Hz), 7.63-7.66 (d, 2H, ArH, *J*=9 Hz), 7.74-7.76 (d, 1H, ArH, *J*=6Hz), 9.59 (s, 1H, =CH), 11.45 (s, 1H, NH); 13C NMR (DMSO) δ (ppm) =21.1 (CH₃), 56.8 (CH₃), 60.6 (CH₃), 114.4, 122.0, 127.5, 128.3, 128.5, 129.4, 129.9, 135.9, 138.1 (9C_{ar}), 141.6 (=CH), 141.7, 149.7, 149.9 (3C_{ar}). Analysis for C1₆H₁₈N₂O4S (334.39), calculated: C: 57.47%, H: 5.43%, N: 8.38%; observed: C: 57.53%, H: 5.39%, N: 8.42%.

N-[(3-chloro-4-methoxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 6). Yield: 55%; m.p.: 158°C. IR: 3197 (NH), 3002 (CH, arom.), 2970, 2839 (CH, aliph.), 1599 (C=N), 1321, 1185 (SO₂); 1H

NMR (DMSO-*d*₆) δ (ppm) =2.36 (s, 3H, CH₃), 3.87 (s, 3H, CH₃), 7.15-7.18 (d, 1H, ArH, *J*=9 Hz), 7.40-7.42 (d, 2H, ArH, *J*=6 Hz), 7.49-7.52 (d, 1H, ArH, *J*=9 Hz), 7.60-7.66 (m, 1H, ArH), 7.74-7.77 (d, 2H, ArH, *J*=9 Hz), 7.84 (s, 1H, =CH), 11.42 (s, 1H, NH); ¹³C NMR (DMSO) δ (ppm) =21.5 (CH₃), 56.8 (CH₃), 113.4, 121.9, 127.7, 128.0, 128.3, 129.9, 130.1, 135.9, 136.6, 143.9 (11C_{ar}), 146.0 (=CH), 156.2 (C_{ar}). Analysis for C₁₅H₁₅ClN₂O₃S (338.81), calculated: C: 53.17%, H: 4.46%, N: 8.27%; observed: C: 53.22%, H: 4.50%, N: 8.31%.

N-*[(3-bromo-4-methoxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 7).* Yield: 39%; m.p.: 152°C. IR: 3204 (NH), 3018 (CH, arom.), 2967, 2928 (CH, aliph.), 1596 (C=N), 1317, 1187 (SO₂); 1H NMR (DMSO-*d*₆) δ (ppm) =2.36 (s, 3H, CH₃), 3.86 (s, 3H, CH₃), 7.12-7.15 (d, 2H, ArH, *J*=9 Hz), 7.38-7.42 (m, 1H, ArH), 7.53-7.56 (d, 1H, ArH, *J*=9 Hz), 7.64-7.66 (d, 2H, ArH, *J*=6 Hz), 7.74-7.77 (m, 1H, ArH), 7.84 (s, 1H, =CH), 11.42 (s, 1H, NH); 1₃C NMR (DMSO) δ (ppm) =21.5 (CH₃), 56.9 (CH₃), 111.5, 113.2, 127.7, 128.2, 128.3, 129.9, 130.8, 131.1, 135.9, 136.6, 143.9 (11C_{ar}), 145.9 (=CH), 157.1 (C_{ar}). Analysis for C1₅H₁₅BrN₂O₃S (383.26), calculated: C: 47.01%, H: 3.94%, N: 7.31%; observed: C: 47.11%, H: 3.98%, N: 7.26%.

N-*[(3-bromo-4-hydroxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 8).* Yield: 42%; m.p.: 145°C. IR: 3203 (NH), 3038 (CH, arom.), 2869 (CH, aliph.), 1595 (C=N), 1319, 1162 (SO₂); 1H NMR (DMSO-*d*₆) δ (ppm) =2.40 (s, 3H, CH₃), 6.73-6.75 (d, 1H, ArH, *J*=6 Hz), 7.35-7.37 (m, 1H, ArH), 7.38-7.40 (d, 2H, ArH, *J*=6 Hz), 7.63-7.66 (d, 2H, ArH, *J*=9 Hz), 7.91-7.92 (d, 1H, ArH, *J*=3 Hz), 8.69 (s, 1H, =CH), 9.24 (s, 1H, OH), 10.57 (s, 1H, NH); 13C NMR (DMSO) δ (ppm) =21.3 (CH₃), 109.9, 116.3, 127.2, 128.5, 129.4, 130.4, 138.1, 141.7 (11C_{ar}), 144.7 (=CH), 153.7 (C_{ar}). Analysis for C1₄H1₃BrN₂O₃S (369.23), calculated: C: 45.54%, H: 3.55%, N: 7.59%; observed: C: 45.63%, H: 3.51%, N: 7.63%.

N-*[(3-ethoxy-4-hydroxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide (compound 9).* Yield: 44%; m.p.: 218°C. IR: 3204 (NH), 3065 (CH, arom.), 2970 (CH, aliph.), 1596 (C=N), 1330, 1185 (SO₂); 1H NMR (DMSO-*d*₆) δ (ppm) =1.39-1.41 (t, 3H, CH₃, *J*=3 Hz), 2.34 (s, 3H, CH₃), 4.02-4.08 (q, 2H, CH₂, *J*=6 Hz), 6.78-6.80 (d, 1H, ArH, *J*=6 Hz), 7.03-7.06 (m, 2H, ArH), 7.36-7.38 (d, 2H, ArH, *J*=6 Hz), 7.84-7.86 (d, 2H, ArH, *J*=6 Hz), 8.60 (s, 1H, =CH), 8.94 (s, 1H, OH), 11.00 (s, 1H, NH); 13C NMR (DMSO) δ (ppm) =13.8 (CH₃), 21.1 (CH₃), 64.5 (CH₂), 113.5, 114.5, 122.1, 127.4, 128.5, 129.4, 138.1, 141.7 (10C_{ar}), 144.7 (=CH), 147.8, 150.3 (2C_{ar}). Analysis for C₁₆H₁₈N₂O₄S (334.39), calculated: C: 57.47%, H: 5.43%, N: 8.38%; observed: C: 57.59%, H: 5.40%, N: 8.44%.

Lipophilicity. Experimental lipophilicity of synthesized benzenesulphonohydrazide derivatives 1-9 was determined using reversed-phase thin-layer chromatography (TLC). The examined compounds 1-9 and the reference substances with known lipophilicity (2-aminophenol, 8-hydroxyquinoline, napht-2-ol, diphenylamine and 3,4-benzopyrene) were dissolved in methanol to obtain the required concentrations (2.0 mg/ml) and the solutions (0.2 μ l) were applied to 10x20 cm HPTLC plates coated with C18 silica F254 (Merck KGaA). The plates were developed to a distance of 9 cm from the origin in a horizontal teflon chamber with an eluent distributor (DS; Chromdes) at 23±1°C. The mobile phases were prepared by mixing appropriate amounts of water and polar modifier (55-75% acetone, 50-80% acetonitrile, 50-75% 1,4-dioxane, 60-85% methanol). All solvents were analytical grade from POCh; Avantor Performance Materials Poland S.A.

The spots of the substances were located under UV illumination (254 nm) and retardation coefficients (RF) were measured. RF is defined as the distance travelled by the compound divided by the distance travelled by the mobile phase.

On the basis of RF values for the tested compounds and for the reference substances, the RM values were calculated using the following formula:

$$R_M = \log \frac{1 - R_F}{R_F}$$

The R_{M0} values (equivalent to the retention of a solute extrapolated to pure water as a mobile phase) were calculated using the equation: $R_M = R_{M0} - S \ge \phi$, where ϕ is the volume fraction of the organic modifier in the mobile phase (Tables SI and SII) (1,2).

Using Pearson's correlation test, the calculated R_{M0} values for the reference substances were correlated with the values of log P in the literature, and appropriate calibration curves were obtained with satisfactory linearity. Acetone: log P_{EXP} = $1.0892 \text{ x R}_{M0} - 0.1515$; r²=0.8822; P=0.002Acetonitrile: log P_{EXP} = $2.2419 \text{ x R}_{M0} - 2.6948$; r²=0.9500; P=0.0051,4-Dioxane: log P_{EXP} = $1.3075 \text{ x R}_{M0} - 0.8322$; r²=0.8597; P=0.003Methanol: log P_{EXP} = $1.8499 \text{ x R}_{M0} - 2.1728$; r²=0.7810; P=0.008

Experimental lipophilicity (log PEXP) of the synthesized benzenesulphonohydrazide derivatives 1-9 was calculated using the calibration equations and R_{M0} values from the TLC method. Additionally, log PCAL values of the compounds 1-9 were calculated using ALOGPS 2.1 software (3,4) and are presented in Table SIII.

References

- Komsta Ł, Skibiński R, Berecka A, Gumieniczek A, Radkiewicz B and Radoń M: Revisiting thin-layer chromatography as a lipophilicity determination tool - a comparative study on several techniques with a model solute set. J Pharm Biomed Anal 53: 911-918, 2010.
- Hawrył A, Popiołek Ł, Dobosz M, Pikula E and Waksmundzka-Hajnos M: RP-HPTLC determination of the lipophilicity of some new derivatives of thiosemicarbazide and 1,2,4-triazole of sulphanylacetic acid. Acta Chromatogr 22: 37-55, 2010.
- Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin V, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, *et al*: Virtual computational chemistry laboratory - design and description. J Comput Aid Mol Des 19: 453-63, 2005.
- 4. VCCLAB, Virtual Computational Chemistry Laboratory. http://www.vcclab.org, 2005.

A, Acetone-water					
Substance	Log P	R _{M0}	S	V^2	φ
2-aminophenol	0.62	1.65	-0.02	0.9768	67.11
8-hydroxyquinoline	2.02	1.41	-0.02	0.9233	69.02
napht-2-ol	2.7	2.09	-0.03	0.9787	72.71
diphenylamine	3.5	3.65	-0.05	0.9259	80.33
3,4-benzopyrene	6.04	5.56	-0.07	0.9681	85.49
B, Acetonitrile-water					
Substance	Log P	R м0	S	r^{2}	φ
2-aminophenol	0.62	1.28	-0.02	0.9722	62.82
8-hydroxyquinoline	2.02	2.39	-0.03	0.9900	81.73
napht-2-ol	2.7	2.47	-0.04	0.9884	59.65
diphenylamine	3.5	2.79	-0.04	0.9969	74.75
3,4-benzopyrene	6.04	3.72	-0.04	0.9782	103.21
C, 1,4-Dioxane-water					
Substance	Log P	R _{M0}	S	r^{2}	φ
2-aminophenol	0.62	1.99	-0.03	0.9919	57.24
8-hydroxyquinoline	2.02	1.87	-0.03	0.9949	61.51
napht-2-ol	2.7	2.05	-0.03	0.9667	60.29
diphenylamine	3.5	3.46	-0.05	0.9902	70.90
3,4-benzopyrene	6.04	5.19	-0.07	0.9861	79.29
D, Methanol-water					
Substance	Log P	R _{M0}	S	r^2	φ
2-aminophenol	0.62	2.40	-0.03	0.9843	84.90
8-hydroxyquinoline	2.02	1.93	-0.03	0.9858	76.82
napht-2-ol	2.7	2.32	-0.03	0.9847	76.45
diphenylamine	3.5	2.87	-0.03	0.8599	86.43
3,4-benzopyrene	6.04	4.39	-0.04	0.8387	118.68

Table SI. Log P and R_{M0} values of reference substances (1).

 φ , amount of organic modifier in the mobile phase; R_{M0}, intercept of the plot; *S*, slope of the plot; *r*, correlation coefficient.

A, Acetone-water				
Compound no.	R м0	S	r^2	φ
1	2.03	-0.03	0.9564	69.38
2	3.20	-0.04	0.9742	72.03
3	3.57	-0.05	0.9810	70.83
4	4.16	-0.06	0.9747	73.83
5	2.84	-0.04	0.9762	67.92
6	3.29	-0.05	0.9766	69.62
7	3.53	-0.05	0.9699	70.04
8	2.19	-0.03	0.9839	64.29
9	2.13	-0.03	0.9846	64.16
B, Acetonitrile-water				
Compound no.	R _{M0}	S	r^2	φ
1	2.63	-0.04	0.9553	60.71
2	3.13	-0.05	0.9881	69.44
3	2.99	-0.04	0.9902	69.05
4	3.03	-0.04	0.9932	73.60
5	2.78	-0.04	0.9900	65.34
6	2.77	-0.04	0.9850	67.18
7	2.82	-0.04	0.9899	68.65
8	2.76	-0.05	0.9970	57.67
9	2.97	-0.05	0.9917	57.55
C, 1,4-Dioxane-water				
Compound no.	R _{M0}	S	r^2	φ
1	3.99	-0.06	0.9786	64.22
2	3.66	-0.06	0.9972	64.71
3	3.59	-0.06	0.9959	63.56
4	4.32	-0.06	0.9953	68.10
5	3.28	-0.05	0.9909	61.81
6	3.51	-0.06	0.9926	63.04
7	3.65	-0.06	0.9985	63.52
8	2.36	-0.04	0.9882	58.23

Table SII. R_{M0} values of the synthesized benzenesulphonohydrazones.

9	2.33	-0.04	0.9845	58.05
D, Methanol-water				
Compound no.	R _{M0}	S	r^2	φ
1	2.80	-0.04	0.9962	70.04
2	4.18	-0.05	0.9898	80.53
3	4.38	-0.05	0.9885	80.73
4	4.72	-0.06	0.9942	84.00
5	3.63	-0.05	0.9876	76.43
6	4.02	-0.05	0.9909	80.14
7	4.09	-0.05	0.9935	81.06
8	2.44	-0.04	0.9934	67.14
9	2.39	-0.04	0.9901	67.15

 φ , amount of organic modifier in the mobile phase; RM0, intercept of the plot; *S*, slope of the plot; *r*, correlation coefficient.

•		
Compound	R	log PCAL
no.		
1	2,3-diF	3.34
2	2-Cl-3-OMe	3.83
3	2-Br-3-OH-4-OMe	3.95
4	2-F-4-Br	3.79
5	2,3-diOMe	3.20
6	3-Cl-4-OMe	3.78
7	3-Br-4-OMe	3.80
8	3-Br-4-OH	3.82
9	3-OEt-4-OH	3.69

Table SIII. Log PCAL values of the synthesized benzenesulphonohydrazides 1-9.

R, substituent; log P_{CAL}, log P values obtained with ALOGPS 2.1 software.

Compound no.	R	Regression equations and correlation coefficients (r ²)			
		769-P	HepG2	H2170	Vero
1	2,3-diF	$y = 5.6466 \ln(x) - 8.9487; r^2 = 0.9603$	$y = 17.073 \ln(x) - 61.095;$ $r^2 = 0.8723$	$y = 17.3\ln(x) - 90.583;$ $r^2 = 0.9365$	$y = 13.081\ln(x) - 22.689; r^2 = 0.7802$
2	2-Cl-3-OMe	$y = 31.689 \ln(x) - 83.508; r^2 = 0.7789$	$y = 6.4767 \ln(x) + 17.111; r^2 = 0.861$	$y = 28.895 \ln(x) - 129.66;$ $r^2 = 0.9412$	$y = 11.333 \ln(x) - 33.936;$ $r^2 = 0.7985$
3	2-Br-3-OH-4-OMe	$y = 61.531\ln(x) - 255.92; r^2 = 0.8899$	$y = 15.773 \ln(x) - 33.577;$ $r^2 = 0.7511$	y = 17.383 ln(x) - 53.586; $r^2 = 0.9591$	y = $20.089\ln(x) - 70.173$; r ² = 0.9151
4	2-F-4-Br	$y = 16.661\ln(x) - 21.624; r^2 = 0.7424$	$y = 15.672 \ln(x) - 23.133;$ $r^2 = 0.9624$	$y = 19.096 \ln(x) - 62.918;$ $r^2 = 0.8868$	$y = 14.065 \ln(x) - 46.652;$ $r^2 = 0.9226$
5	2,3-diOMe	$y = 7.4578 \ln(x) + 45.048; r^2 = 0.7672$	$y = 4.31311n(x) + 20.869; r^2 = 0.9878$	y = 11.312ln(x) - 60.228; $r^2 = 0.7948$	$y = 16.407 \ln(x) - 26.961;$ $r^2 = 0.8257$
6	3-Cl-4-OMe	$y = 7.0979 \ln(x) + 26.77; r^2 = 0.9475$	$y = 10.531 \ln(x) - 12.13;$ $r^2 = 0.9929$	$y = 25.213 \ln(x) - 107.55;$ $r^2 = 0.8273$	$y = 12.929 \ln(x) - 44.184;$ $r^2 = 0.9496$
7	3-Br-4-OMe	$y = 25.752 \ln(x) - 68.754; r^2 = 0.9687$	$y = 6.139 \ln(x) + 7.4308;$ $r^2 = 0.7323$	$y = 25.179 \ln(x) - 94.808;$ $r^2 = 0.9754$	y = $22.557\ln(x) - 110.09$; r ² = 0.9837
8	3-Br-4-OH	$y = 12.429 \ln(x) - 3.585; r^2 = 0.7685$	nd	$y = 4.7569 \ln(x) - 26.772;$ $r^2 = 0.8306$	$y = \overline{45.663\ln(x) - 180.94};$ $r^2 = 0.941$
9	3-OEt-4-OH	$y = 21.199\ln(x) - 34.653; r^2 = 0.9389$	$y = \frac{32.425 \ln(x) - 133.39}{r^2 = 0.7764};$	y = 5.2416ln(x) - 15.631; $r^2 = 0.7212$	$y = 28.596 \ln(x) - 92.635;$ r ² = 0.9045

Table SIV. Determination of IC50 values for the tested compounds (1-9) in cancer and normal cell lines; data from the concentration-response curves.

nd, not determined.