Figure S1. GLO 1 and PKC λ gene expression is enhanced at all breast cancer tumor stages compared with that of normal tissue samples. P-values were generated using the Kruskal-Wallis test with a Steel-Dwass test. The α-level was fixed at 0.05 , and $\mathrm{P}<0.05$ was considered to indicate a statistically significant difference. ${ }^{*} \mathrm{P}<0.05,{ }^{* *} \mathrm{P}<0.01$. GLO 1 , glyoxalase $1 ; \mathrm{PKC} \lambda$, protein kinase $\mathrm{C} \lambda$.

Figure S2. Kaplan-Meier analysis of GLO 1 and $P K C \lambda$ gene based on breast cancer subtype. P-values were calculated using a Gehan-Breslow generalized Wilcoxon test. Adjusted P-values were calculated using Holm's method for post-hoc analysis. The α-level was fixed at 0.05 , and $\mathrm{P}<0.05$ was considered to indicate a statistically significant difference. GLO 1 , glyoxalase $1 ; \mathrm{PKC} \lambda$, protein kinase $\mathrm{C} \lambda$; ER, estrogen receptor; PgR, progesterone receptor; TNBC, triple-negative breast cancer.

ER and/or PgR

— GLO $\prod_{\text {high }} P K C \lambda_{\lambda}^{\text {high }}(\mathrm{n}=29)$

- GLO flow PKCX ${ }^{\text {nigh }}$ ($n=90$)

	Adjusted P-value (Holm method)
	0.95
GLO $1^{\text {tigh }}$ PKC $\chi^{\text {nigh }}$ vs GLO $1^{\text {tow }}$ PKC $\chi^{\text {nigh }}$	h 1.00
GLO $1^{\text {tigh }}$ PKC $\lambda^{\text {nigh }}$ vs GLO $1^{\text {nigh }}$ PKC $\lambda^{\text {low }}$	1.00

Figure S3. Basal-like type breast cancer accounts for a larger fraction of cancer classed as GLO $1^{\text {high }} P K C \lambda^{\text {high }}$ among the subtypes in stage III-IV breast cancer. GLO 1 , glyoxalase $1 ; \mathrm{PKC} \lambda$, protein kinase $\mathrm{C} \lambda$.

Figure S4. Correlation between $G L O 1$ and $P K C \lambda$ expression in breast cancer subtypes. r and P-values are indicated. P-values were generated using a non-correlation test. The α-level was fixed at 0.05 , and $\mathrm{P}<0.05$ was considered to indicate a statistically significant difference. GLO 1, glyoxalase 1; PKC λ, protein kinase $\mathrm{C} \lambda$; r, Pearson's correlation coefficient; ER, estrogen receptor; PgR , progesterone receptor; TNBC, triple-negative breast cancer.

Claudin-low
PKC入

Table SI. Clinicopathological data of the 99 patients with breast cancer.

Variable	Value
Median age, years (range)	$59(34-82)$
Tumor size, n (\%)	
Tis	$6(6)$
T1	$34(34)$
T2	$46(46)$
T3	$3(3)$
T4	$2(2)$
Unknown	$8(8)$
Nodal metastasis, n (\%)	
N0	$59(60)$
N1-3	$38(38)$
Unknown	$2(2)$
TNM stage, $\mathrm{n}(\%)$	
0	$6(6)$
1	$24(24)$
2	$37(37)$
3	$3(3)$
4	$2(2)$
Unknown	$27(27)$
ER, $\mathrm{n}(\%)$	
Positive	$74(75)$
Negative	$24(24)$
Unknown	$1(1)$
PgR, n (\%)	
Positive	$54(55)$
Negative	$44(44)$
Unknown	$1(1)$
HER2, $\mathrm{n}(\%)$	
Positive	$63(64)$
Negative	$35(35)$
Unknown	$1(1)$
TNBC, n (\%)	$6(6)$

ER, estrogen receptor; PgR , progesterone receptor; TNBC, triple-negative breast cancer.

Table SII. Clinicopathological data of the 1,904 patients with breast cancer.

Variable	Value
Median age, years (range)	$61.8(21.9-96.3)$
Tumor stage, n (\%)	
0	$4(0.2)$
I	$475(24.9)$
II	$800(42.0)$
III	$115(6.0)$
IV	$5(0.3)$
Unknown	$501(26.3)$
Tumor size, n (\%)	
0-20 mm	$594(31.2)$
≥ 20 mm	$1,292(67.9)$
Unknown	$18(0.9)$
Pam50 + Claudin-low subtype, $\mathrm{n}(\%)$	
Normal-like	$140(7.4)$
Luminal A	$679(35.7)$
Luminal B	$461(24.2)$
HER2-enriched	$220(11.6)$
Claudin-low	$199(10.5)$
Basal-like	$199(10.5)$
ER, n (\%)	
Positive	$1,459(76.6)$
Negative	$445(23.4)$
PgR, n (\%)	
Positive	$1,009(53.0)$
Negative	$895(47.0)$
HER2, n (\%)	$236(12.4)$
Positive	$1,668(87.6)$
Negative	$1,478(77.6)$
ER and/or PgR, $\mathrm{n}(\%)$	$299(15.7)$
Triple negative, $\mathrm{n}(\%)$	

ER, estrogen receptor; PgR, progesterone receptor; Pam50, a minimal gene set for classifying 'intrinsic' subtypes of breast cancer.

Table SIII. Association between the clinicopathological parameters and GLO 1 and $P K C \lambda$ gene expression in 1,904 patients.

Characteristics	GLO $1^{\text {low }}$	$G L O 1^{\text {high }}$	P -value	$P K C \lambda^{\text {low }}$	$P K C \lambda^{\text {high }}$	P -value	GLO $1^{\text {low }} P K C \lambda^{\text {low }}$	$G L O 1{ }^{\text {high }} P K C \lambda^{\text {high }}$	P -value
Age, years									
<61.77	720	232	0.53	700	252	0.14	537	69	0.82
≥ 61.77	708	244		728	224		552	68	
Tumor stage									
$0-\mathrm{II}$	972	307	0.07	952	327	0.89	740	95	0.77
III-IV	85	39		93	31		63	9	
Tumor size, mm									
0-20	456	136	0.15	456	136	0.16	360	40	0.34
≥ 20	955	337		956	336		715	96	

P-values were calculated using the χ^{2} test. GLO 1 , glyoxalase $1 ; \mathrm{PKC} \lambda$, protein kinase $\mathrm{C} \lambda$.

Table SIV. Multivariable Cox regression analysis of the association between GLO 1 and $P K C \lambda$ expression based on breast cancer subtype.
Comparison
Normal-like
$G L O I^{\text {high }}$ vs. $G L O I^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. $G L O I^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. $G L O I^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $I^{\text {high }} P K C \lambda^{\text {low }}$
Luminal A
$G L O I^{\text {high }}$ vs. GLO $1^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $l^{\text {high }} P K C \lambda^{\text {low }}$
Luminal B
$G L O 1^{\text {high }}$ vs. GLO $1^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. $G L O I^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $l^{\text {high }} P K C \lambda^{\text {low }}$
HER2-enriched
$G L O I^{\text {high }}$ vs. GLO $1^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
GLO $1^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $l^{\text {high }} P K C \lambda^{\text {low }}$
Claudin-low
$G L O 1^{\text {high }}$ vs. GLO $1^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $l^{\text {high }} P K C \lambda^{\text {low }}$
Basal-like
$G L O I^{\text {high }}$ vs. GLO $I^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $I^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {high }} P K C \lambda^{\text {low }}$
ER and/or PgR
$G L O l^{\text {high }}$ vs. GLO $1^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. $G L O 1^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $l^{\text {high }} P K C \lambda^{\text {low }}$
HER2
$G L O I^{\text {high }}$ vs. GLO $1^{\text {low }} \quad 1.03(0.71-1.49) \quad 0.86$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
GLO $1^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $l^{\text {high }} P K C \lambda^{\text {low }}$
TNBC
GLO $1^{\text {high }}$ vs. GLO $1^{\text {low }}$
$P K C \lambda^{\text {high }}$ vs. $P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {low }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $1^{\text {low }} P K C \lambda^{\text {high }}$
$G L O I^{\text {high }} P K C \lambda^{\text {high }}$ vs. GLO $I^{\text {high }} P K C \lambda^{\text {low }}$

P -value

$1.64(0.87-3.06)$	0.12
$1.72(0.86-3.45)$	0.13
$9.11(2.07-40.15)$	<0.01
$2.83(0.49-16.37)$	0.25
$3.21(0.63-16.48)$	0.16
$1.20(0.92-1.55)$	0.17
$1.26(0.96-1.64)$	0.09
$1.81(1.10-2.97)$	0.02
$1.35(0.76-2.39)$	0.30
$1.54(0.89-2.65)$	0.12
$0.85(0.67-1.07)$	0.17
$1.04(0.81-1.33)$	0.77
$0.78(0.54-1.14)$	0.21
$0.61(0.40-0.93)$	0.02
$0.84(0.55-1.26)$	0.40

$1.32(0.93-1.89) \quad 0.12$
$0.94(0.67-1.33) \quad 0.73$
$1.22(0.64-2.30) \quad 0.54$
$1.30(0.66-2.58) \quad 0.45$
$0.96(0.48-1.92) \quad 0.91$
$0.87(0.45-1.69) \quad 0.68$
$1.06(0.66-1.71) \quad 0.80$
$1.47(0.59-3.69) \quad 0.41$
$1.42(0.53-3.83) \quad 0.48$
2.16 (0.62-7.52) 0.23
$0.86(0.57-1.30) \quad 0.48$
$1.08(0.74-1.58) \quad 0.68$
0.96 (0.53-1.77) 0.91
$1.01(0.54-1.90) \quad 0.96$
$1.27(0.63-2.55) \quad 0.50$
1.09 (0.94-1.28) 0.26
$1.26(1.08-1.47)<0.01$
$1.21(0.93-1.57) \quad 0.16$
$0.89(0.66-1.19) \quad 0.43$
$1.06(0.79-1.42) \quad 0.69$
1.03 (0.71-1.49) 0.86
$0.90(0.63-1.27) \quad 0.54$
$0.83(0.43-1.62) \quad 0.59$
$0.90(0.44-1.84) \quad 0.77$
$0.81(0.39-1.70) \quad 0.58$
$0.89(0.61-1.30) \quad 0.55$
$1.03(0.75-1.42) \quad 0.84$
0.98 (0.56-1.72) 0.95
$1.06(0.59-1.90) \quad 0.86$
$1.26(0.64-2.47) \quad 0.50$

[^0]
[^0]: ${ }^{\text {a }}$ Hazard ratio adjusted by age estimated using Cox proportional hazard model. GLO 1, glyoxalase $1 ; \mathrm{PKC} \lambda$, protein kinase $\mathrm{C} \lambda$; ER, estrogen receptor; PgR , progesterone receptor; TNBC , triple-negative breast cancer.

