
Figure S1. HIF-1 α /TGF- α expression attenuates sensitivity to osimertinib in RPC-9 cells harboring EGFR mutations. (A) Effect of gefitinib or osimertinib on RPC-9 or H1975 cell viability 50% inhibitory concentration: RPC-9 (gefitinib, not reached; osimertinib, 17.46 nM); H1975 (gefitinib, not reached; osimertinib: 7.81 nM). Data are presented as the mean ± SEM. (B) Phospho-RTK array. Effect of osimertinib (5 mg/kg/day, day 7) on receptor tyrosine kinase phosphorylation in RPC-9 cell xenograft tumors from the conventional or large models. (C) Correlation between HIF-1 α and TGF- α expression levels. (D) Crystal violet assay. Effect of osimertinib (72 h) on the viability of RPC-9 cells pre-incubated under hypoxic or normoxic conditions. HIF-1 α , hypoxia-inducible factor-1 α ; TGF- α , transforming growth factor- α ; Osi, osimertinib.

#5 : Osi 100 nM

Figure S2. Inhibitory effect of cetuximab, osimertinib or a combination of osimertinib and cetuximab (72 h) on the viability of RPC-9 cells pre-incubated under hypoxic conditions for 48 h. Crystal violet assay data were quantified using ImageJ software. Data are presented as the mean \pm SEM. Comb., combination of osimertinib and cetuximab.

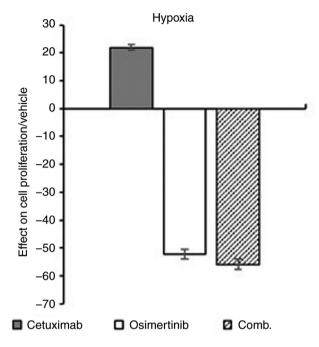


Figure S3. Effect of bevacizumab, cetuximab or a triple therapy with osimertinib, bevacizumab and cetuximab in xenograft tumors with HIF-1 α /TGF- α expression. (A) Effect of bevacizumab (5 mg/kg, twice/week) and cetuximab (1 mg/body, twice/week) for 28 days on RPC-9 cell xenograft tumors from the large model (starting tumor volume, 500 mm³; n=8), with a 28-day observation period. (B) Effect of osimertinib monotherapy (5 mg/kg, 5 times/week), its combination with cetuximab (1 mg/body, twice/week) or triple therapy with bevacizumab (5 mg/kg, twice/week) and cetuximab (1 mg/body, twice/week) for 28 days on RPC-9 cell xenograft tumors from the large model (starting tumor volume, 500 mm³; n=8), with a 28-day observation period. (B) Effect of osimertinib monotherapy (5 mg/kg, 5 times/week), its combination with cetuximab (1 mg/body, twice/week) or triple therapy with bevacizumab (5 mg/kg, twice/week) and cetuximab (1 mg/body, twice/week) for 28 days on RPC-9 cell xenograft tumors from the large model (starting tumor volume, 500 mm³; n=6), with a 28-day observation period. Data are presented as the mean ± SEM. **P<0.01. n.s., not significant.

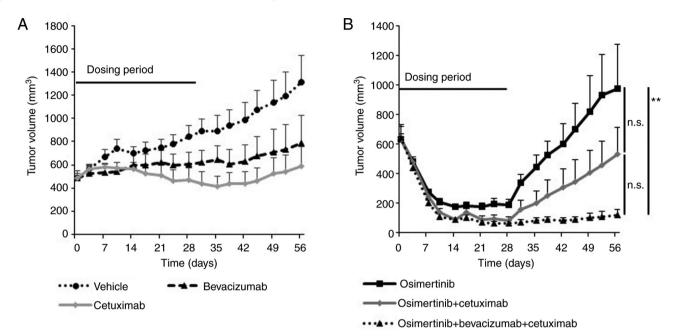
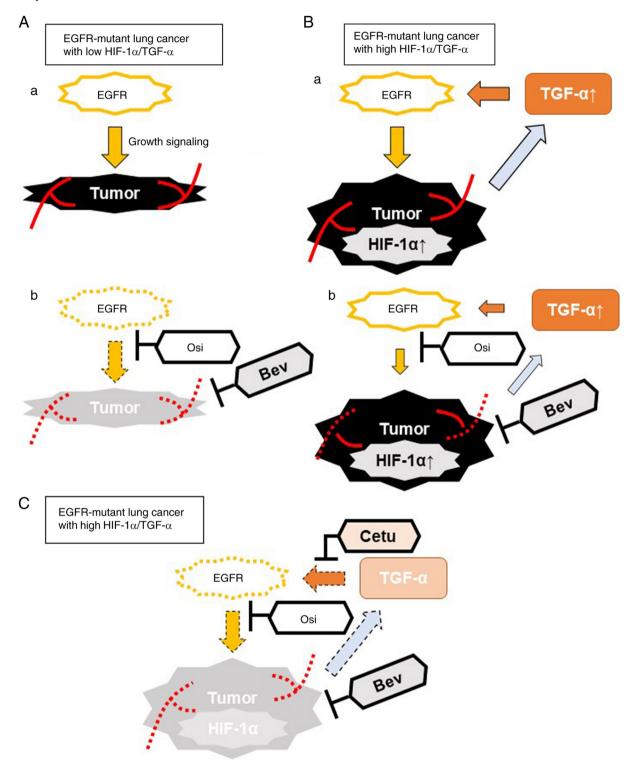



Figure S4. Mechanism of triple therapy with osimertinib, bevacizumab and cetuximab in tumors with HIF-1 α /TGF- α expression. (A-a) EGFR-mutant lung cancer with low HIF-1 α /TGF- α expression. (b) Osimertinib plus bevacizumab inhibits EGFR signaling and angiogenesis. (B-a) EGFR-mutant lung cancer with high HIF-1 α /TGF- α expression. (b) Osimertinib plus bevacizumab does not inhibit the activation loop of the HIF-1 α /TGF- α axis. (C) EGFR-mutant lung cancer with high HIF-1 α /TGF- α expression. Triple therapy with osimertinib, bevacizumab and cetuximab inhibits EGFR signaling, angiogenesis and the activation loop of the HIF-1 α , hypoxia-inducible factor-1 α ; TGF- α , transforming growth factor- α ; EGFR, epidermal growth factor receptor; Osi, osimertinib; Bev, bevacizumab; Cetu, cetuximab.

