Figure S1. Continued.

Figure S1. Continued.

Figure S1. Continued.

Figure S2. (A) Western blot analysis shows METTL6 expression in different HCC cell lines. (B) Western blot analysis of cell adhesion-associated proteins ITGA1, SPON1 and CLDN14 in SNU-423 and SNU-475 cell lines before and after METTL6 knockout. (C) ChIP-seq analysis of cell adhesion genes *ITGA1*, *CLDN14*, and *SPON1* in SNU-475 METTL6 knockout cells. The chromatin binding activity of H3K27ac and transcription factor CTCF binding affinity between control and METTL6 knockout cells. All data are presented as means \pm standard deviation of at least three independent experiments; **P<0.01; ***P<0.001; NS as non-significant. HCC, hepatocellular carcinoma. METTL6, methyltransferase-like 6; ITGA1, integrin α -1/ β -1; CLDN14, claudin-14 molecules; SPON1, spondin1.

Table SI. Information of the certified cell lines.

Name	Origin	Certification institution	Tested method	DNA profile or characteristics
SNU-423	Human hepatocellular carcinoma	ATCC	STR	Amelogenin: X,Y CSF1PO: 11,12 D13S317: 10,13 D16S539: 9 D5S818: 10 D7S820: 12 THO1: 6.9 TPOX: 8 vWA: 15
SNU-475	Human hepatocellular carcinoma	ATCC	STR	Amelogenin: X,Y CSF1PO: 11,12 D13S317: 8,11 D16S539: 12 D5S818: 10,13 D7S820: 7,12 THO1: 7,9 TPOX: 8,9 vWA: 14
HepG2	Human hepatocellular carcinoma	RBRC	STR	Amelogenin: X,Y CSF1PO: 10,11 D13S317: 9,13 D16S539: 12,13 D5S818: 11,12 D7S820: 10 F13A01: 5,7 F13B: 6,10 FESFPS: 11 LPL: 10,11 THO1: 9 TPOX: 8.9 vWA: 17
Huh-7	Human hepatocellular carcinoma	RBRC	STR	D5S818:12 D13S317:10,11 D7S820:11 D16S539:10 VWA:16,18 TH01:7 Amelogenin:X TPOX:8,11 CSF1PO:10.3
Li-7	Human hepatocellular carcinoma	RBRC	STR	Amelogenin: X CSF1PO: 12 D13S317: 11 D16S539: 9 D5S818: 9,11 D7S820: 10,11 THO1: 7 TPOX: 8,11 vWA: 16.19

ATCC, American Type Culture Collection; RBRC, RIKEN BioResource Research Center.

Table SII. Screening of the RNA modification enzymes in hepatocellular carcinoma (HCC) using GEPIA.

RNA- modification enzymes	Name	mRNA expression in HCC	HCC prognostic	Previous studies in HCC	Authors, year (Refs.)
ADAR1	Adenosine deaminase RNA specific	Significantly upregulated	NS	ADAR1 enhanced HCC metastasis by promoting tumor cells adherence to ECM via increasing ITGA2 expression	Yu et al, 2019 (1)
ADAR2	Adenosine deaminase RNA specific B1	NS	NS	expression	
ADAT1	Adenosine deaminase tRNA specific 1	NS	NS		
ADAT2	Adenosine deaminase tRNA specific 2	NS	Log rank P=0.013 higher expression with worse outcome		
ADAT3	Adenosine deaminase tRNA specific 3	NS	NS		
ALKBH1	alkB homolog 1, tRNA methyltransferase	NS	Log rank P=0.0091 higher expression with worse outcome	Expression level of <i>ALKBH1</i> is increased in HCC tissues	Ma <i>et al</i> , 2019 (2)
ALKBH5	alkB homolog 5, tRNA methyltransferase	NS	NS		
ALKBH8	alkB homolog 8, tRNA methyltransferase	NS	NS		
CTU1	Cytosolic thiouridylase subunit 1	NS	NS		
DNMT2	DIMT2 rRNA methyltransferase and ribosome maturation factor	NS	NS		
EIF2A	Eukaryotic translation initiation factor 2 subunit A	NS	Log rank P=0.026 high expression with worse outcome		
EIF3A	Eukaryotic translation initiation factor 3 subunit A	NS	NS		
EIF3B	Eukaryotic translation initiation factor 3 subunit B	Significantly upregulated	Log rank P=0.0078 higher expression with worse outcome	EIF3B was upregulated in HCV- associated HCC	Golob-Schwarzl et al, 2017 (3)
EIF3C	Eukaryotic translation initiation factor 3 subunit C	NS	NS	EIF3C promotes HCC cell proliferation <i>in vitro</i> as well as tumorigenicity <i>in vivo</i>	Li et al, 2017 (4)
EIF3E	Eukaryotic translation initiation factor 3 subunit E	Significantly upregulated	NS	EIF3E are required for HCC cell proliferation and normal protein biogenesis <i>in vivo</i> and <i>in vitro</i>	Sadato <i>et al</i> , 2018 (5)

RNA- modification enzymes	Name	mRNA expression in HCC	HCC prognostic	Previous studies in HCC	Authors, year (Refs.)
EIF3H	Eukaryotic translation initiation factor 3 subunit H	Significantly upregulated	Log rank P=0.047 higher expression with worse outcome	EIF3H is involved in HCC progression, and EIF3H may be a potentially valuable biomarker for HCC	Zhu <i>et al</i> , 2016 (6)
EIF3I	Eukaryotic translation initiation factor 3 subunit I	NS	Log rank P=0.015 higher expression with worse outcome	Overexpression of EIF3I in HCC is oncogenic and is a surrogate marker and therapeutic target for treatment with Akt1 inhibitors.	Wang <i>et al</i> , 2013 (7)
ELP1	Elongator acetyltransferase complex subunit 1	NS	NS		
ELP3	Elongator acetyltransferase complex subunit 3	NS	NS	Overexpression of ELP3 or ELP4 promotes the migration and invasion of HCC cells, which was abolished when either ELP3 or ELP4 was silenced	Xu <i>et al</i> , 2018 (8)
ELP4	Elongator acetyltransferase complex subunit 4	NS	NS	Overexpression of ELP3 or ELP4 promoted the migration and invasion of HCC cells, which was abolished when either ELP3 or ELP4 was silenced	Xu et al, 2018 (8)
EMG1	EMG1 N1-specific pseudouridine methyltransferase	NS	Log rank P=0.015 higher expression with worse outcome		
FTO	FTOα-ketoglutarate dependent dioxygenase	NS	Not statistically significant		
FTSJ3 GTPBP3	FtsJ RNA 2'-O- methyltransferase 3	Significantly upregulated	Log rank P=0.02 higher expression with worse outcome NS		
GIIDI 5	mitochondrial	upregulated	110		
IGF2BP1	Insulin like growth factor 2 mRNA binding protein 1	NS	NS	IGF2BP1 promotes SRF-dependent transcription in cancer in an m6A- and miRNA-dependent manner (HCC)	Muller <i>et al</i> , 2019 (9)
KIAA1456/T RM9L	tRNA methyltransferase 9B (putative)	NS	NS	No significant differences between recurrence-free survival and KIAA1456 (P=0.564) in HCC	Peng et al, 2014 (10)
METTL1	Methyltransferase like 1	Significantly upregulated	Log rank P=0.00037 higher expression with worse outcome	METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN	Tian <i>et al</i> , 2019 (11)

RNA- modification enzymes	Name	mRNA expression in HCC	HCC prognostic	Previous studies in HCC	Authors, year (Refs.)
METTL14	Methyltransferase like 14	NS	NS	METTL14 downregulation acts as an adverse prognosis factor for recurrence-free survival of HCC and is significantly associated with tumor metactacis in witho and in wing	Ma et al, 2017 (12)
METTL3	Methyltransferase like 3	Significantly upregulated	Log rank P=0.0021 higher expression with worse	METTL3 is frequently upregulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-	Chen et al, 2018 (13)
METTL5	Methyltransferase like 5	Significantly upregulated	Log rank P=0.00026 higher expression with worse outcome	dependent mechanism	
METTL6	Methyltransferase like 6	Significantly upregulated	expression with worse outcome	Log rank P=0.0022 higher	
MOD5 MRM2	Mitochondrial rRNA methyltransferase 2	NS NS	NS Log rank P=0.0059 higher expression with worse outcome		
MTO1	Mitochondrial tRNA translation	NS	NS		
NAT10	N-acetyltransferase 10	NS	Log rank P=0.00076 higher expression with worse outcome	Loss of nucleolar localization of NAT10 promotes cell migration and invasion in HCC	Tan <i>et al</i> , 2018 (14)
NEP1		NS	Log rank P=0.015 higher expression with worse outcome		
NML		NS	Log rank P=4.1e-05 higher expression with worse		
NOP2	N-acetyltransferase 10	Significantly	NS		
NSUN1	NOP2/Sun RNA methyltransferase 1	upregulated Significantly upregulated	NS		
NSUN2	NOP2/Sun RNA methyltransferase 2	NS	NS		

RNA- modification		mRNA expression	HCC		
enzymes	Name	in HCC	prognostic	Previous studies in HCC	Authors, year (Refs.)
NSUN3	NOP2/Sun RNA methyltransferase 3	NS	NS		
NSUN4	NOP2/Sun RNA methyltransferase 4	NS	NS		
NSUN5	NOP2/Sun RNA methyltransferase 5	Significantly upregulated	NS		
NSUN6	NOP2/Sun RNA methyltransferase 6	NS	NS		
TRDMT1	tRNA aspartic acid methyltransferase 1	NS	NS		
TRMT10C	tRNA methyltransferase 10C, mitochondrial RNase P subunit	NS	Log rank P=0.0066 higher expression with worse		
TRMT11	tRNA methyltransferase 11 homolog	NS	NS		
TRMT112	tRNA methyltransferase subunit 11-2	Significantly upregulated	Log rank P=0.0025 higher expression with worse outcome		
TRMT13	tRNA methyltransferase subunit 13	NS	NS		
TRMT2A	tRNA methyltransferase 2 homolog A	Significantly upregulated	Log rank P=0.0049 higher expression with worse outcome		
TRMT2B	tRNA methyltransferase 2 homolog B	NS	NS		
TRMT6	tRNA methyltransferase 6	NS	Log rank P=0.0016 higher expression with worse outcome		
EIF3H TRMT7	Eukaryotic translation tRNA methyltransferase 7	Significantly Significantly upregulated	Log rank Log rank P=0.00017 higher expression with worse outcome	EIF3H is involved in HCC	Zhu <i>et al</i> , 2016 (6)

RNA- modification enzymes	Name	mRNA expression in HCC	HCC prognostic	Previous studies in HCC	Authors, year (Refs.)
TRMU	tRNA 5- methylaminomethyl-2- thiouridylate methyltransferase	Significantly upregulated	Log rank P=0.0027 higher expression with worse		
WDR4	WD repeat domain 4	Significantly upregulated	Log rank P=0.00022 higher expression with worse outcome	METTL1/WDR4 COMPLEX related to poor prognosis and promotes HCC	Tian <i>et al</i> , 2019 (11)
WTAP	WT1 associated protein	NS	Log rank P=0.0053 higher expression with worse outcome	WTAP facilitates progression of HCC via m6A-HuR-dependent epigenetic silencing of ETS1	Chen et al, 2019 (15)
YTHDC2	YTH domain containing 2	NS	NS		
YTHDF1	YTH N6- methyladenosine RNA binding protein 1	NS	Log rank P=0.0013 higher expression with worse outcome	m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of HCC by promoting ATG2A and ATG14 translation	Li <i>et al</i> , 2021 (16)
YTHDF2	YTH N6- methyladenosine RNA binding protein 2	NS	Log rank P=0.0068 higher expression with worse	YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in HCC	Zhong et al, 2019 (17)
YTHDF3	YTH N6- methyladenosine RNA binding protein 3	NS	NS		

A list of 60 RNA modification enzymes and their mRNA expression levels, prognostic role in HCC, and previous related studies are shown. The group cut-off value are based on the median level. GEPIA, Gene Expression Profiling Interactive Analysis; HCC, hepatocellular carcinoma; NS, not significant.

References

- Yu J, Zhang C, Yu Q, Yu H and Zhang B: ADAR1 p110 Enhances adhesion of tumor cells to extracellular matrix in hepatocellular carcinoma via up-regulating ITGA2 expression. Med Sci Monit 25: 1469-1479, 2019.
- Ma CJ, Ding JH, Ye TT, Yuan BF and Feng YQ: AlkB homologue 1 demethylates N(3)-methylcytidine in mRNA of mammals. ACS Chem Biol 14: 1418-1425, 2019.
- 3. Golob-Schwarzl N, Krassnig S, Toeglhofer AM, Park YN, Gogg-Kamerer M, Vierlinger K, Schroder F, Rhee H, Schicho R, Fickert P, *et al*: New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer 83: 56-70, 2017.
- 4. Li T, Li S, Chen D, Chen B, Yu T, Zhao F, Wang Q, Yao M, Huang S, Chen Z, *et al*: Transcriptomic analyses of RNA-binding proteins reveal eIF3c promotes cell proliferation in hepatocellular carcinoma. Cancer Sci 108: 877-885, 2017.
- Sadato D, Ono T, Gotoh-Saito S, Kajiwara N, Nomura N, Ukaji M, Yang L, Sakimura K, Tajima Y, Oboki K, *et al*: Eukaryotic translation initiation factor 3 (eIF3) subunit e is essential for embryonic development and cell proliferation. FEBS Open Bio 8: 1188-1201, 2018.
- 6. Zhu Q, Qiao GL, Zeng XC, Li Y, Yan JJ, Duan R and Du ZY: Elevated expression of eukaryotic translation initiation factor 3H is associated with proliferation, invasion and tumorigenicity in human hepatocellular carcinoma. Oncotarget 7: 49888-49901, 2016.
- Wang YW, Lin KT, Chen SC, Gu DL, Chen CF, Tu PH and Jou YS: Overexpressed-eIF3I interacted and activated oncogenic Akt1 is a theranostic target in human hepatocellular carcinoma. Hepatology 58: 239-250, 2013.
- Xu Y, Zhou W, Ji Y, Shen J, Zhu X, Yu H, Guo J, Pang Z and Wei W: Elongator promotes the migration and invasion of hepatocellular carcinoma cell by the phosphorylation of AKT. Int J Biol Sci 14: 518-530, 2018.
- Muller S, Glass M, Singh AK, Haase J, Bley N, Fuchs T, Lederer M, Dahl A, Huang H, Chen J, *et al*: IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 47: 375-390, 2019.

- Peng C, Zhang Z, Wu J, Lv Z, Tang J, Xie H, Zhou L and Zheng S: A critical role for ZDHHC2 in metastasis and recurrence in human hepatocellular carcinoma. Biomed Res Int 2014: 832712, 2014.
- Tian QH, Zhang MF, Zeng JS, Luo RG, Wen Y, Chen J, Gan LG and Xiong JP: METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med (Berl) 97: 1535-1545, 2019.
- 12. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP and Sun SH: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology 65: 529-543, 2017.
- Chen M, Wei L, Law ČT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67: 2254-2270, 2018.
 Tan Y, Zheng J, Liu X, Lu M, Zhang C, Xing B and Du X: Loss
- Tan Y, Zheng J, Liu X, Lu M, Zhang C, Xing B and Du X: Loss of nucleolar localization of NAT10 promotes cell migration and invasion in hepatocellular carcinoma. Biochem Biophys Res Commun 499: 1032-1038, 2018.
- Chen Y, Peng C, Chen J, Chen D, Yang B, He B, Hu W, Zhang Y, Liu H, Dai L, *et al*: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer 18: 127, 2019.
- 16. Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, et al: HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 6: 76, 2021.
- 17. Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, Ma H and Kang T: YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 442: 252-261, 2019.