Figure S1. CMA3 induces apoptosis in CCA cell lines in a dose-dependent manner. CCA cells were treated with increasing concentrations of CMA3 (0-40 nM) for 24 h. After that cells were stained with Annexin V/PI and were analyzed by flow cytometry. (A) The representative dot plots of three CCA cell lines shows Annexin V-positive cells (in red boxes) after treatment with various concentrations of CMA3 for 24 h. Numbers indicate Annexin V-positive cells (B) The bar graph represents the mean \pm standard deviation of % Annexin V-positive cells from three independent experiments. *P<0.05, **P<0.01 and ***P<0.001 vs. 0 nM. CMA3, Chromomycin A3; CCA, cholangiocarcinoma; PI, propidium iodide.

Figure S2. CMA3 suppresses Sp1-related apoptotic proteins and induces caspase-dependent apoptosis in KKU-055. (A) Expression of activated caspase-8, -9 and -3 in CMA3-treated KKU-055 (0-40 nM) for 24 h are demonstrated by western blotting. (B) KKU-055 cells were treated with 20 nM CMA3 at 0-24 h and activated caspase-8, -9, and -3 were determined. (C) Expression of Sp1-related anti-apoptotic proteins are shown in 20 nM CMA3-treated KKU-055 at various times. Intensities of protein bands were normalized with Hsc70 and compared with those without CMA3 (0 nM or 0 h, intensity=1), as indicated by the number shown on the top of each band. For FLIP_{S/L}, only FLIP_S isoform was quantitated. CMA3, Chromomycin A3; CCA, cholangiocarcinoma; FLIP, FADD-like IL-1 β -converting enzyme-inhibitory protein; SP1, specificity protein 1; cIAP2, cellular inhibitor of apoptosis; XIAP, X-linked inhibitor of apoptosis protein; Mcl-1, myeloid cell leukemia-1.

Figure S3. mRNA expression of Mcl-1 and XIAP in KKU-213 after treatment with 40 nM CMA3 (CMA3-Mcl-1 and CMA3-XIAP) or 200 nM MTA (MTA-Mcl-1 and MTA-XIAP) for 0-24 h. The data are presented as the mean \pm standard error from the representative experiment. CMA3, Chromomycin A3; CCA, cholangiocarcinoma; XIAP, X-linked inhibitor of apoptosis protein; Mcl-1, myeloid cell leukemia-1; MTA, mithramycin A.

Figure S4. CMA3 reduces tumor growth *in vivo* without any serious side effects. (A) Tumor tissues from control and CMA3-treated group are shown (n=12/group). (B) Tumor weights of control and treatment groups are compared. Each tumor weight is presented and the bar represents the mean \pm SD of tumor weights. The smallest and biggest tumors of each group were omitted to avoid technical error. (C) Body weights of mice in control and CMA3-treated group are presented as the mean \pm SD of percentage of body weight (at day 0=100%, n=7/group). *P<0.05 and ***P<0.001. SD, standard deviation; CMA3, Chromomycin A3.

Figure S5. Chromomycin A3 toxicity test in mouse model. A total of eight mice were randomly divided into 4 groups (n=2/group) and different treatments were given intravenously for 3 weeks. The body weights were measured 3 times a week. The data are shown as mean body weight changes (%). Mean body weight on day 0 of each group was set as 100%.

Figure S6. CMA3 suppressed tumor growth by induction of apoptosis. The areas of caspase-9- and Bax-positive were determined and are presented as AU/cells/field (n=5/group, 5 images/tumor, total =25 images/group). The data are shown as mean \pm standard deviation. *P<0.05 and ***P<0.001. AU, arbitrary units; CMA3, Chromomycin A3; CK19, cytokeratin 19.

