Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells

AKINA OMORI, YOSHITAKA YOSHIMURA, YOSHIKI DEYAMA and KUNIAKI SUZUKI

Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan

Received March 4, 2015; Accepted March 23, 2015

DOI: 10.3892/br.2015.452

Correspondence to: Dr Yoshitaka Yoshimura, Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Sapporo, Hokkaido 060-8586, Japan
E-mail: yoshi@den.hokudai.ac.jp

Abstract. The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and down-regulation of NFATc1.

Introduction

Polyphenols are aromatic and slightly bitter-tasting compounds in vegetables, fruits and herbs. Polyphenols have been reported to prevent several chronic diseases, such as arteriosclerosis, cardiovascular diseases and cancer, due to their antioxidant activity (1-3). The most well-known study associated with polyphenols is the investigation known as the French paradox. The French paradox is the epidemiological observation that the French population has a low incidence of coronary heart disease despite a diet high in saturated fat and is generally attributed to the high concentration of polyphenols in red wine (4,5).

Previous studies have shown that polyphenols not only prevent arteriosclerosis and cancer, but also affect bone diseases by suppressing osteoclast differentiation and increasing bone mineral density in ovariectomized mice (6,7). Several polyphenols, such as curcumin, resveratrol and plum polyphenol, can scavenge reactive oxygen species (ROS) associated with osteoclast differentiation (8-10). Rosmarinic acid is a natural polyphenol contained in Lamiaceae herbs, such as Perilla frutescens, lemon balm mint, sage and sweet basil (11). In particular, rosmarinic acid is effective against allergies, exhibits anti-inflammatory properties and is used in health foods (12,13). Arbutin is a natural polyphenol present in plants such as Ericaceae, Asteraceae and Vaccinium (14). Arbutin has been reported to exert a potent inhibitory effect on the hydroxylation reaction of tyrosinase and has been widely used for skin whitening (15,16).

Osteoclasts are members of the monocyte/macrophage lineage and are formed by fusion of their precursor cells. The receptor activator of nuclear factor-xB (RANK) ligand cells; ROS, reactive oxygen species; SOD, superoxide dismutase; NFATc1, nuclear factor of activated T cells cytoplasmic 1; TRAP, tartrate-resistant acid phosphatase; GAPDH, glyceraldehyde-3-phosphatedehydrogenase; FBS, fetal bovine serum; DMEM, Dulbecco’s modified Eagle’s medium; NF-xB, nuclear factor-xB

Key words: rosmarinic acid, arbutin, osteoclast, osteoclastogenesis, superoxide
The murine macrophage/osteoclast precursor cell line, RAW 264.7 (RAW), is a widely used pre-osteoclast model. RAW cells differentiate into osteoclasts in the presence of RANKL. Bone is continuously and precisely remodeled by the coordination of bone-forming osteoblasts and bone-resorbing osteoclasts (19). Osteoporosis is characterized by reduced bone mass and diminished bone integrity caused by an imbalance between osteoblasts and osteoclasts (20).

ROS contribute to the aging process and the etiology of various degenerative diseases, including osteoporosis (21). Additionally, osteoclasts are activated by ROS, resulting in enhanced bone resorption. By contrast, ROS also play an important role as secondary messengers in osteoclast signaling pathways (22). ROS are generated by superoxide production of nicotinamide adenine dinucleotide phosphate oxidase in a process known as the respiratory burst. Approximately 3-10% of the oxygen utilized by tissues is converted to ROS, including superoxides (23). A previous study reported that rosmarinic acid inhibited phorbol myristate acetate (PMA)-induced superoxide production in a macrophage cell line (24). Arbutin has been shown to inhibit ultraviolet A (UVA) irradiation-induced ROS in skin cells (25).

Rosmarinic acid has been shown to inhibit nuclear factor-kB (NF-kB) activation during osteoclast formation (26). However, with the exception of this mechanism of action of rosmarinic acid, the inhibitory effects of polyphenols on osteoclasts remain unknown. In particular, the therapeutic effects of arbutin on bone have not been studied. The aim of the present study was to investigate the effects of rosmarinic acid and arbutin on the differentiation and formation of osteoclasts from RAW cells through suppression of the superoxide-mediated signaling pathway. We hypothesized that these polyphenols would downregulate NFATc1, resulting in the direct inhibition of osteoclastogenesis and lead to a decrease in osteoclast resorption activity.

Materials and methods

Chemicals. RAW cells were purchased from the American Type Culture Collection (Manassas, VA, USA). Rosmarinic acid, arbutin, Dulbecco's modified Eagle's medium (DMEM), α-minimum essential medium (α-MEM), ethanol, Green Chemiluminescence CD, methanol, trifluoroacetic acid and sodium hypochlorite were obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Fetal bovine serum (FBS) and TRIzol were from Invitrogen Life Technologies (Carlsbad, CA, USA). Ascorbic acid 2-phosphate, L-alanyl-L-glutamine and Fast Red Violet LB salt (27). RAW cells were seeded in a 48-well plate and treated with RANKL and rosmarinic acid or arbutin without RANKL for 72 h. After culture, the cells were lysed in 50 µl of cell lysis solution. After incubation for 15 min at room temperature, the cell lysates were transferred to a luminescence plate (Nunc A/S, Roskilde, Denmark) and mixed with 100 µl AMR plus reagent. After 2 min incubation at room temperature in the dark, the plate was read on a luminescence plate reader (Wallac 1420 ARVosx, PerkinElmer Inc., Waltham, MA, USA). The luminescence measured from each treatment group was converted to a percentage of the luminescence measured from the control cells (no rosmarinic acid or arbutin added).

TRAP staining. Osteoclasts were assessed by cytochemical staining for TRAP. RAW cells were seeded in a 48-well plate (BD Biosciences) at a density of 0.5x10^4 cells/well and treated with RANKL and rosmarinic acid or arbutin. After 6 days, the cells were fixed with 10% neutral formalin. Subsequently, the cells were washed with distilled water and stained in TRAP staining solution (pH 5.0) with Fast Red Violet LB salt (27). TRAP-positive osteoclasts with >2 nuclei were considered to be osteoclasts. Osteoclasts with >8 nuclei were considered to be large osteoclasts. The number of osteoclasts was counted under a light microscope.

Measurement of superoxide. Superoxide concentration was measured using a Green Chemiluminescence CD kit according to the manufacturer's instructions. Green Chemiluminescent CD is a highly sensitive chemiluminescence probe that reacts with the superoxide anion and a luminescence dye specific for the detection of superoxide. Briefly, 0.5x10^4 cells/well were seeded in a 48-well plate and treated with RANKL and rosmarinic acid or arbutin for 48 h. The contents of the kit were dissolved in hot methanol:water 1:1 containing 0.1% (w/v) trifluoroacetic acid. To measure the superoxide produced in the medium, 200 µl of the medium was mixed with 150 µl of the reagent. The luminescence intensity of the samples was measured using a luminescence plate reader. The value
for each treated group was converted to a percentage of the control luminescence.

Superoxide dismutase (SOD) activity. The SOD activity of the culture medium was measured using an SOD Assay kit-WST according to the manufacturer's instructions (Dojindo Molecular Technologies, Inc., Kumamoto, Japan). Briefly, the RAW cells were seeded in a 96-well plate at a density of 0.25 x 10^4 cells/well and treated with RANKL and rosmarinic acid or arbutin for 48 h. The SOD activity was measured by mixing the reagents from 220 µl of the WST kit with 20 µl of the culture medium. After incubation for 20 min at 37˚C, absorbance was measured at 450 nm using a microplate reader (Bio-Rad Model 680; Bio-Rad, Hercules, CA, USA). The value for each treated group was converted to a percentage of the value obtained for the control group.

Quantitative polymerase chain reaction (qPCR). RAW cells were seeded in a 6-well plate at a density of 6x10^4 cells/well and treated with RANKL and rosmarinic acid or arbutin for 24 h. After incubation, total RNA was isolated using TRIzol according to the manufacturer's instructions. cDNA synthesis was performed in 25 µl from 1 µg of total RNA using ReverTra Ace® reverse transcriptase (Toyobo Co., Ltd., Osaka, Japan) and oligo dT primers (Toyobo Co., Ltd.).

The specific primer sets used for NFATc1 (Mm00479445_m1), matrix metalloproteinase-9 (MMP‑9) (Mm00442991_m1), TRAP (Mm00475698_m1), cathepsin-K (Mm00484036_m1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Mm99999915_g1) were designed using the Primer Express program (Applied Biosystems, Foster City, CA, USA) and were purchased from Applied Biosystems. qPCR was performed using an ABI7300 (Applied Biosystems). The comparative threshold cycle (Ct) method was used to calculate mRNA expression and the Ct values of the calibrator and the samples of interest were verified by normalizing to GAPDH. The comparative Ct method is also known as the 2^ΔΔCt method, where ΔΔCt = ΔCt sample - ΔCt reference. ΔCt sample is the Ct value for the sample normalized to the endogenous reference gene and ΔCt reference is the Ct value for the calibrator, which was also normalized to the endogenous reference gene.

Resorption pit assay. A pit formation assay was conducted using a Corning Osteo Assay Surface plate (Corning, Inc., Corning, NY, USA). RAW cells were seeded in plates at a density of 1x10^4 cells/well and treated with RANKL and rosmarinic acid or arbutin for 11 days. Cells were removed with 6% sodium hypochlorite solution. Subsequent to washing the wells with pure water and allowing them to dry, the wells were observed under a light microscope and the pit area was compared to the control.

Statistical analysis. All the data are presented as mean ± standard deviation. Data were analyzed with the Dunnet test using StatView (version 5.0; SAS Institute Inc., Cary, NC, USA). Results with P<0.05 and P<0.01 were considered to indicate a statistically significant difference.

Results

Effect of rosmarinic acid and arbutin on cell viability in osteoclast precursor cells. In order to investigate the potential cytotoxicity of rosmarinic acid and arbutin on RAW cells as osteoclast precursors, cell viability was examined...
using the MTT assay (Fig. 2). Raw cells were incubated with different concentrations of rosmarinic acid or arbutin for 72 h. Rosmarinic acid at 20, 40, 60 and 100 µM (Fig. 2A) and arbutin at 50, 75, 100 and 200 µM (Fig. 2B) did not affect growth, as compared to the control cells. The viability of the cells at all the concentrations tested was >95%.

Rosmarinic acid and arbutin inhibits RANKL-induced osteoclast differentiation. Osteoclast differentiation was dose-dependently inhibited by rosmarinic acid and arbutin (Fig. 3A and B), as shown in Fig. 3C and D. The presence of rosmarinic acid at 20, 40, 60 and 100 µM decreased the number of TRAP-positive cells to ~78, 37, 6 and 0% of the control level, respectively (Fig. 3A). The presence of arbutin at 25, 50, 75, 100 and 200 µM decreased the number of TRAP-positive osteoclasts to ~78, 48, 35, 11 and 0% of the control level, respectively (Fig. 3B). The number of TRAP-positive large osteoclasts decreased with increasing concentrations of rosmarinic acid (Fig. 3C) and arbutin (Fig. 3D).

Rosmarinic acid and arbutin inhibits superoxide production and SOD activity. The effect of rosmarinic acid or arbutin on superoxide production (Fig. 4A and B) was investigated in osteoclasts. RAW cells were incubated with rosmarinic acid (20, 40 and 60 µM) or arbutin (50, 75 and 100 µM) for 48 h. Rosmarinic acid and arbutin decreased superoxide production in a dose-dependent manner. By contrast, all the concentrations of rosmarinic acid and arbutin tested had no effect on SOD inhibition (Fig. 4C and D).

Effect of rosmarinic acid and arbutin on mRNA expression of osteoclast-specific genes. Rosmarinic acid and arbutin suppressed RANKL-induced expression of osteoclastogenesis in a dose-dependent manner after 24 h (Fig. 5).

Rosmarinic acid and arbutin inhibits RANKL-induced resorption by the pit area. Rosmarinic acid and arbutin decreased resorption by the pit area in a dose-dependent manner (Fig. 6A and B). Resorption by the pit area decreased in line with the number of osteoclasts, suggesting that rosmarinic acid and arbutin primarily affect osteoclast differentiation as opposed to activity.

Discussion

The present study reported that rosmarinic acid and arbutin at non-toxic concentrations suppress the number of TRAP-positive osteoclasts and large osteoclasts from RAW cells. The results clearly suggest that rosmarinic acid and arbutin suppress osteoclast formation by directly acting...
Figure 4. Effect of rosmarinic acid and arbutin on superoxide production and superoxide dismutase (SOD) activity. Murine macrophage/osteoclast precursor cell line RAW 264.7 cells were cultured with receptor activator of nuclear factor-κB ligand and the indicated concentration of rosmarinic acid or arbutin for 48 h. (A and B) Superoxide production was measured by a luminescence intensity assay using a luminescence plate reader. (C and D) SOD activity was measured at 450 nm using a microplate reader. Data are representative of results from four separate experiments. Data are expressed as percentages of the value of the control cells (mean ± standard deviation, n=5). (*P<0.05, **P<0.01, vs control). n.s., not significant.

Figure 5. Expression of mRNA for the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast-specific marker genes, matrix metalloproteinase-9 (MMP-9), tartrate-resistant acid phosphatase (TRAP) and cathepsin-K, by quantitative polymerase chain reaction (qPCR). Murine macrophage/osteoclast precursor cell line RAW 264.7 cells were seeded in a 6-well plate at a density of 6x10^4 cells/well and treated with receptor activator of nuclear factor-κB ligand and rosmarinic acid or arbutin at the indicated concentration for 24 h. (A and B) NFATc1, (C and D) MMP-9, (E and F) TRAP and (G and H) cathepsin-K expression was analyzed by qPCR as described in the Materials and methods. Results are shown as fold-change or relative quantitation of target expression (2^-ΔΔCt method) relative to the control following normalization against GAPDH expression. Data are representative of results from four separate experiments. Data are expressed as percentages of the value of the control cells (mean ± standard deviation, n=5). (**P<0.01 vs. control).

Figure 6. Inhibitory effect of rosmarinic acid and arbutin on receptor activator of nuclear factor-κB ligand (RANKL)-induced resorption pit area. Murine macrophage/osteoclast precursor cell line RAW 264.7 cells were seeded in a 24-well plate at a density of 1x10^4 cells/well and treated with RANKL and (A) rosmarinic acid or (B) arbutin at the indicated concentration. After 11 days culture, the cells were washed with phosphate-buffered saline and removed from the well walls with 6% sodium hypochlorite solution. Images of the resorption pit area were captured. Data are representative of results from three separate experiments (n=3).
on osteoclast precursor cells. Rosmarinic acid has previously been reported to suppress osteoclast differentiation of murine bone marrow-derived macrophages (BMM) and RAW cells (26). However, the regulation by rosmarinic acid of osteoclast differentiation needs to be further defined. Arbutin has not previously been reported to inhibit osteoclast differentiation or to show a beneficial effect on bone. To the best of our knowledge, the study reports for the first time that arbutin inhibits osteoclast differentiation of RAW cells. In particular, the inhibitory effects of rosmarinic acid at a 20 µM concentration is similar to the inhibitory effect of arbutin at 25 µM: 21.54% caused by 20 µM rosmarinic acid and 22.19% caused by 25 µM arbutin. Furthermore, rosmarinic acid has been reported as more potent for ROS removal compared to arbutin in the mesenteric artery in rats (28). Therefore, whether the antioxidant reaction of rosmarinic acid and arbutin can regulate osteoclast differentiation was investigated.

ROS was recognized as a secondary messenger in the differentiation of osteoclasts and plays an important role in differentiation (22). By contrast, excessive ROS production results in an abnormal osteoclast phenotype: The activation of osteoclast signals due to an increase in the number of osteoclasts (29). Additionally, ROS production by osteoporotic bone tissue is significantly higher compared to normal bone tissue (30). Several studies have reported that the ROS level increases during RANKL-induced osteoclast differentiation and that this ROS generation can be attenuated by polyphenols such as curcumin and resveratrol (8,9). In addition, the antioxidants scopoletin and scopolin inhibit ROS and superoxide production in a dose-dependent manner (31). A superoxide is converted into various ROS, such as hydroxyl radical, hydrogen peroxide and peroxynitrite, in the process of osteoclast formation (32,33). Thus, to investigate whether rosmarinic acid and arbutin can inhibit superoxide generation during osteoclast differentiation, the production of superoxide was analyzed. According to the scopoletin and scopolin study referred to above, the ROS level increased to its highest value within 48 h and subsequently decreased (31). Therefore, the superoxide levels were also analyzed after treating the cells with rosmarinic acid and arbutin for 48 h and showed that rosmarinic acid and arbutin reduced superoxide production in a dose-dependent manner. Of note, rosmarinic acid and arbutin inhibited superoxide, but had no effect on RANKL-induced SOD activity, suggesting rosmarinic acid and arbutin have a positive effect on RANKL-induced superoxide removal. The antioxidant activity of rosmarinic acid and arbutin have been observed using various cells. Rosmarinic acid inhibits ROS production in several cell lines, such as dopaminergic cells and hematoma cells (34,35). Rosmarinic acid also inhibits PMA-induced intracellular superoxide in macrophase cell lines and has no effect on copper/zinc SOD (24). Arbutin suppresses UVA-induced ROS on cellular tyrosinase activity, primarily in skin cells, such as human and mice melanocytes (25,36). Additionally, curcumin suppresses phosphor I-κBα and intracellular ROS production in the osteoclast differentiation process in a dose-dependent manner (8). Curcumin also completely suppresses NF-κB activity in the osteoclast differentiation process (37). Rosmarinic acid shares common structural features with curcumin, so we can speculate that rosmarinic acid acts by a similar mechanism to inhibit RANKL-induced production of ROS, such as superoxide. Furthermore, it was previously demonstrated that rosmarinic acid inhibits RANKL-induced NF-κB activation in the osteoclast differentiation process in BMM (26). Arbutin suppresses NF-κB activity in BV2 microglial cells (38). Further investigation is required to ascertain whether inhibition of NF-κB activity plays a role in suppression of osteoclast differentiation from RAW cells by rosmarinic acid and arbutin.

Taken together, the present results show that rosmarinic acid and arbutin decrease RANKL-induced expression of NFATc1 mRNA. NFATc1 is a master regulator of RANKL-induced osteoclast differentiation (39). NFATc1 plays a pivotal role in osteoclast activation via upregulation of various genes in a series of processes, such as osteoclast adhesion, migration, acidification and degradation of inorganic and organic bone matrix (18). Thus, the effect of rosmarinic acid and arbutin on the mRNA expression of the osteoclast marker genes, MMP-9, TRAP and cathepsin-K, was investigated in osteoclasts. The mRNA expression of MMP-9, TRAP and cathepsin-K was also suppressed by the addition of rosmarinic acid and arbutin. MMP-9 is essential for initiating the osteoclastic resorption process by removing the collagenous layer from the bone surface prior to demineralization (40). Furthermore, expression of MMP-9 in osteoclast is markedly higher compared to other cell types (41). Tea polyphenols suppress osteoclast formation and activity by inhibiting the production of free radicals and MMP-9 and inducing apoptosis (42). TRAP is a marker for osteoclasts and there is increasing evidence of its proteolytic role in bone resorption (43). TRAP knockout mice have shown that bone shape and modeling are altered by increased mineral density, suggesting that TRAP plays an important role in bone resorption (44). Cathepsin-K activity is required for the initial formation of actin rings and thus for the activation of osteoclasts (45). An NFATc1 knockout murine study has reported that the endocardial expression of NFATc1 is dependent on the expression of cathepsin-K (46). Based on these findings, we hypothesized that rosmarinic acid and arbutin may suppress the resorption activity of osteoclasts. To investigate the effect of resorption activity of osteoclasts treated with rosmarinic acid and arbutin, cells were treated with rosmarinic acid and arbutin after 11 days of culture using Corning Osteo Assay Surface plates. Pit assays compared the pit area following treatment with rosmarinic acid and arbutin to that of the controls, suggesting that rosmarinic acid and arbutin impair the resorption activity of osteoclasts.

It is critical to investigate the effect of compounds in vivo rather than in vitro. Increasing studies are therefore required to test the beneficial bone effects of rosmarinic acid and arbutin in animal models and human studies. From the viewpoint of clinical applications, it has been reported that the concentration of rosmarinic acid in the plasma of goat kids fed a diet containing 140.44 or 273.86 mg/kg rosmarinic acid for 224 days was 0.78 and 0.81 mg/l, respectively (47). The present results suggest that such plasma concentrations can significantly inhibit osteoclasts. Rosmarinic acid, as well as other polyphenols such as caffeic acid and ferulic acid, is metabolized when taken orally (48). A rat serum concentration of 1.36 µmol/min/l was obtained by dosing 100 µmol/kg body weight rosmarinic acid (49). These studies apparently show the effective concentration difference between in vitro and blood.
concentrations. The blood levels of arbutin have not been reported. However, arbutin is used as a traditional medicine for treating urinary tract infections, thereby confirming its safety when taken orally (50).

In conclusion, the effect of rosmarinic acid and arbutin on osteoclast differentiation was analyzed by studying their inhibition of RANKL-induced superoxide, which is the source of ROS generation. Rosmarinic acid and arbutin inhibited osteoclast formation by blocking osteoclast marker genes, such as MMP-9, TRAP and cathepsin-K, via downregulation of NFATc1. These findings strongly suggest that rosmarinic acid and arbutin hold promise for the treatment of various bone diseases, such as osteoporosis and bone metastasis, associated with excessive bone resorption.

References