Development of a polymerase chain reaction-restriction fragment length polymorphism method for identification of the Fusarium genus using the transcription elongation factor-1α gene

MAJID ZARRIN1,2, FARZANEH GANJI2 and SAMA FARAMARZI2

1Health Research Institute, Infectious and Tropical Diseases Research Center; 2Department of Medical Mycology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran

Received July 14, 2016; Accepted September 28, 2016

DOI: 10.3892/br.2016.783

Abstract. Fusarium species are well-known plant pathogens and food contaminants that have also appeared as one of the most important groups of medically significant fungi. The sequences of the translation elongation factor (TEF)-1α gene have been broadly employed for species detection. A total of 50 strains of Fusarium spp., including environmental, clinical and reference isolates were used for the current study. The primer sets, Fu3f and Fu3r, were used to amplify an ~420-bp DNA fragment of the TEF-1α gene. Double digestion with two restriction enzymes, Xhol and SduI was used for discrimination of the Fusarium species in the TEF-1α gene fragment. Double digestion of the TEF-1α gene fragment from five clinically important Fusarium species were clearly differentiated from each other: The F. solani species complex, F. oxysporum species complex, F. verticillioides, F. proliferatum and F. fujikuroi. This method facilitates detection and enables verification of the Fusarium genus; therefore, it may be applied for disease control.

Introduction

Fusarium species are ubiquitous fungi extensively distributed in soil, plants and various organic substrates. This genus is an important plant pathogen, which causes different diseases and is responsible for important economic losses on crops. In humans, the Fusarium species causes a broad range of diseases, including superficial, locally invasive, or disseminated infections. Disseminated infections occur almost exclusively in severely immunocompromised patients and, currently, disseminated infections are the second most common mold that causes invasive fungal infections in immunosuppressed hosts, and is associated with high morbidity and mortality rates (1,2). Furthermore, the Fusarium species causes allergic diseases, such as sinusitis in immunocompetent individuals and mycotoxicosis following ingestion of food that is contaminated with toxin-producing Fusarium (3,4). This genus contains >70 species (5); a literature review of 259 cases of fusariosis between 2001 and 2005 demonstrated that 12 species were associated with infection. The F. solani species complex was the most common (50% of cases), followed by the F. oxysporum species complex (20% of cases) and F. verticillioides and F. moniliforme (10% of cases for each) (6).

Morphological identification of the Fusarium species is the primary, but most difficult, step in the detection procedure. However, for the species that cannot be reliably recognized by morphological characterization, additional analysis, such as DNA sequencing and species-specific polymerase chain reaction (PCR) assays, must be performed.

Translation elongation factor (TEF) 1-α consistently presents as a single-copy gene in the Fusarium genus. This gene demonstrates a high level of sequence polymorphism among the closely associated species of Fusarium, even compared with the intron-rich portions of protein-coding genes, such as β-tubulin, calmodulin and histone H3. Therefore, TEF has become the choice marker as a single-locus detection tool in Fusarium (7,8). The strategy that was developed in the present study consisted of novel PCR-restriction fragment length polymorphism (RFLP) analysis for detecting DNA polymorphisms in the TEF-1α gene and for discrimination of the Fusarium genus.

Materials and methods

Microorganisms. Fifty strains of Fusarium spp. (including environmental, clinical and reference isolates) were used in the present study. The following reference strains were used: F. solani complex PTCC 5284, F. solani complex PTCC 5285, F. oxysporum complex IBRC-M 30067, F. oxysporum complex PTCC 5115, F. verticillioides PTCC 53-131, F. verticillioides PTCC 15-89, F. proliferatum PTCC 48-125, F. proliferatum PTCC 12-86 and F. fujikuroi PTCC 5144. The environmental
strains were obtained from soil, and two strains used in the present study were clinical, which included \textit{F. solani} complex PTCC 5284 and B988.

\textit{DNA extraction.} Thick spore suspension (1 ml) was inoculated in Ehrlenmeyer flasks containing yeast extract peptone dextrose medium and incubated on an incubator shaker at 200 rpm under agitation for 72 h at 25°C for mycelia growth. The harvested mycelia were washed with 0.5 M EDTA and sterile dH2O. The mycelia were ground into a fine powder using liquid nitrogen and a mortar and pestle.

Approximately 100 mg powdered mycelium was transferred into a 1.5-ml tube containing 400 \(\mu l \) lysis buffer (100 mM Tris-HCl, pH 8.0, 30 mM EDTA, pH 8.0, 5\% SDS w/v). After microtubes were boiled at 100°C for 20 min, 3 M acetate potassium (150 \(\mu l \)) was added to each tube. The suspension was maintained at -20°C for 10 min and centrifuged at 14,000 \(x \) g in 4°C for 10 min. The supernatant was carefully transferred to a fresh 1.5-ml Eppendorf tube and 250 \(\mu l \) phenol:chloroform:isoamyl alcohol (25:24:1, v/v) was added. The microtube was vortexed briefly and centrifuged at 4°C at 14,000 \(x \) g for 10 min. After transferring the supernatant to a 1.5-ml microtube, 250 \(\mu l \) chloroform:isoamyl alcohol was added. The tubes were briefly vortexed and centrifuged at 4°C at 14,000 \(x \) g for 10 min. The supernatant was transferred to a fresh microtube, an equal volume of ice-cold 2-propanol was added, maintained at -20°C for 10 min and centrifuged at 14,000 x g for 10 min. The upper aqueous phase was discarded and the pellet was washed with 70\% ethanol (300 \(\mu l \)). The ethanol was discarded and the DNA pellets were air dried and resuspended in 50 \(\mu l \) dH2O.

\textit{PCR amplification.} The primer sets, Fu3f (5'GGTATCGA CAAGCGGACCAT-3') and Fu3r (5'TAGTACGGGGA GTCTCGAA-3) was used to amplify an ~420-bp DNA fragment of the TEF-1\(\alpha \) gene (9). PCR reactions were performed with a volume of 50 \(\mu l \), comprised of 5 \(\mu l \) 10X reaction buffer, 2.2 mM MgCl2, 200 \(\mu l \) each dNTP, 2.5 units of Taq DNA polymerase (CinnaGen, Tehran, Iran), 30 ng template DNA and 50 pmol of each primer.

An initial denaturation step for 5 min at 94°C was followed by 30 cycles of denaturation at 94°C for 1 min, annealing at 58°C for 1 min and extension at 68°C for 2 min. The amplified PCR product (5 \(\mu l \)) was electrophoresed on 1\% agarose gel in TAE buffer at 100 V for 1 h and stained with ethidium bromide. The PCR amplification of TEF-1\(\alpha \) gene resulted in an ~420-bp fragment.

\textit{RFLP analysis.} Digestion with one restriction enzyme was not sufficient to discriminate the 420-bp DNA fragment of the TEF-1\(\alpha \) gene in the \textit{Fusarium} species. Therefore, double digestion with two restriction enzymes, \textit{XhoI} and \textit{SduI} (Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used for discrimination. The restriction digestion reaction was performed in a total volume of 20 \(\mu l \) containing 5 units of each enzyme, 2 \(\mu l \) Buffer O (Thermo Fisher Scientific, Inc.), 5 \(\mu l \) PCR product, and Ultrapure water (CinnaGen, Karaj, Iran) to reach a volume of 20 \(\mu l \). Digested PCR products were electrophoresed at 50 V for 3 h on 2\% agarose gel in TAE buffer and stained with ethidium bromide.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Fusarium species} & \textbf{TEF-1\(\alpha \) fragment prior to digestion (bp)} & \textbf{XhoI and SduI (bp)} \\
\hline
\textit{F. oxysporum} species complex & 420 & 45,62,103,170 \\
\textit{F. verticillioides} & 420 & 6,30,56,47,55,186 \\
\textit{F. proliferatum} & 420 & 25,168,187 \\
\textit{F. fujikuroi} & 420 & 27,62,99,192 \\
\textit{F. solani} species complex & 420 & 308,110 \\
\hline
\end{tabular}
\caption{Restriction fragment size (bp) of the \textit{Fusarium} species TEF-1\(\alpha \) gene, double digested with two restriction enzymes, \textit{XhoI} and \textit{SduI}.}
\end{table}

\textit{Results}

\textit{PCR amplification of the TEF-1\(\alpha \) gene.} The PCR amplification of TEF-1\(\alpha \) gene with Fu3f and Fu3r primers produced a unique band of ~420 bp for all tested \textit{Fusarium} isolates (Fig. 1). The TEF-1\(\alpha \) gene fragment was sequenced for certain isolates, including the reference strains. The BLAST search in NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) demonstrated the TEF-1\(\alpha \) gene fragment from five clinically important \textit{Fusarium} reference strains, including \textit{F. solani} species complex, \textit{F. oxysporum} species complex, \textit{F. verticillioides}, \textit{F. proliferatum} and \textit{F. fujikuroi} exhibited 99\% homology with the associated sequences deposited in the GenBank database.

\textit{Restriction patterns for the \textit{Fusarium} strains.} Double digestion of the fragment with restriction enzymes, \textit{XhoI} and \textit{SduI} clearly discriminated the \textit{F. solani} species complex, \textit{F. oxysporum} species complex, \textit{F. verticillioides}, \textit{F. proliferatum} and \textit{F. fujikuroi} from each other (Table 1 and Fig. 2).

The restriction patterns of one clinical and six environmental \textit{Fusarium} strains following double digestion using \textit{XhoI} and \textit{SduI} are presented in Fig. 3. The digestion of the 420-bp fragment from these strains demonstrated different patterns. Strains E4, E16 and E25 were sequenced. A BLAST search showed that strains E4 and E16 exhibited 100\% homology with \textit{F. equiseti} and \textit{F. solani} species complex, respectively and strain E25 exhibited 99\% homology with \textit{F. incarnatum}. Therefore, the restriction pattern strain E16 (Fig. 3) was similar to the \textit{F. solani} complex PTCC 5284 (Fig. 2).

\textit{Discussion}

Identification of filamentous fungi at the species level using classical techniques, such as morphological methods, is difficult and time-consuming. Novel rapid techniques are required in order to verify the \textit{Fusarium} genus on time, particularly for clinical administration of patients. Rapid molecular approaches, such as PCR, DNA hybridization and DNA microarray have been developed and they may replace the classical methods. The major advantages of molecular
Figure 1. Agarose gel electrophoresis of transcription elongation factor-1α gene products (420 bp) of the Fusarium species. Lane M, 100-bp ladder; lane 1, F. oxysporum complex IBRC-M 30067; lane 2, F. verticillioides PFCC 15-89; lane 3, F. proliferatum PFCC 48-125; lane 4, F. fujikuroi PTCC 5144; lane 5, F. solani complex PTCC 5284. TEF, transcription elongation factor.

Figure 2. Agarose gel electrophoresis of transcription elongation factor-1α gene products (420 bp) of the Fusarium species following double digestion with XhoI and Sdul. Lane M, 100-bp ladder; lane 1, F. oxysporum complex IBRC-M 30067; lane 2, F. verticillioides PFCC 15-89; lane 3, F. proliferatum PFCC 48-125; lane 4, F. fujikuroi PTCC 5144; lane 5, F. solani complex PTCC 5284.

Figure 3. Agarose gel electrophoresis of transcription elongation factor-1α gene products (420 bp) of the Fusarium species (lane 1, clinical isolate; lanes 2-7, environmental isolates) following double digestion with XhoI and Sdul. Lane M, 100-bp ladder; lane 1, B988; lane 2, E4; lane 3, E16; lane 4, E17; lane 5, E18; lane 6, E20; lane 7, E25.

Figure 2. Agarose gel electrophoresis of transcription elongation factor-1α gene products (420 bp) of the Fusarium species following double digestion with XhoI and Sdul. Lane M, 100-bp ladder; lane 1, F. oxysporum complex IBRC-M 30067; lane 2, F. verticillioides PFCC 15-89; lane 3, F. proliferatum PFCC 48-125; lane 4, F. fujikuroi PTCC 5144; lane 5, F. solani complex PTCC 5284. TEF, transcription elongation factor.

Approaches are their specificity and that they are completely discriminative even for closely associated species (8,9).

The majority of molecular techniques are PCR-based, where the primers are typically directed to conserved regions of the ribosomal DNA gene, particularly towards the internal transcribed spacer (ITS) regions. With regard to Fusarium spp., analysis of ITS sequencing is considered unreliable for detection of strains, as they contain two paralogous, discrepant ITS sequence forms, which may cause confusion (10,11). The TEF-1α gene has shown optimal results for the identification of Fusarium spp. (12-14).

Guevara-Suarez et al (15) used a TEF-1α gene fragment and performed a multi-locus sequence analysis of the ITS region with the RNA-dependent polymerase subunit II (Rpb2) genes, and recognized the phylogenetic species and circulating haplotypes for Fusarium isolates from onychomycosis. The pathogenic isolates to the pecan tree were identified, based on the TEF-1α gene, as belonging to the F. chlamydosporum species complex, F. graminearum species complex, F. proliferatum, and F. oxysporum (16). A TEF-1α-RFLP technique was described for the identification of the three clades of F. oxysporum (17). The particularly effective TEF-1α gene of the Fusarium spp. encouraged the present development of a PCR-RFLP technique as an advanced, simple and reliable method for determination and discrimination of the clinically important Fusarium species.

In the current study, molecular identification was performed using the TEF-1α gene and RFLP, and it was possible to discriminate between all five clinically important Fusarium species. However, further analyses are required for discrimination between other Fusarium species.

The Primer set, TEF-Fu3 resulted in an ~420-bp product for five of the Fusarium species, including F. solani species complex, F. oxysporum species complex, F. verticillioides, F. proliferatum and F. fujikuroi. RFLP, using double digestion with two restriction enzymes, XhoI and Sdul differentiated between the species. This method may facilitate detection, verify the Fusarium genus, and be applied for disease control. This PCR-RFLP method is rapid, economical and efficient for detection and discrimination of the Fusarium genus.

Acknowledgements

The present study was supported by the Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences (Ahvaz, Iran) (grant no. 92118).

References

