Nigella sativa seed extract attenuates the fatigue induced by exhaustive swimming in rats

MAHBUBUR RAHMAN1*, DONG KWON YANG1*, GI-BEUM KIM2, SEI-JIN LEE3 and SHANG-JIN KIM1

1Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan-si, Jeollabuk-do 54596; 2Institute of Jinan Red Ginseng, Jinan-eup, Jinan-gun 55442; 3Korea Basic Science Institute Jeonju Center, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

Received December 30, 2016; Accepted February 13, 2017

DOI: 10.3892/br.2017.866

Correspondence to: Dr Shang-Jin Kim, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
E-mail: abbasj@jbnu.ac.kr

*Contributed equally

Key words: Nigella sativa, fatigue, exhaustive swimming, energy depletion, oxidative stress

Abstract. In previous studies, *Nigella sativa* (NS) has been studied due to its various physiological and pharmacological activities. However, evidence on the effects of NS on physical fatigue following exhaustive swimming remains limited. In the present study, the authors evaluated the potential beneficial effects of NS against the fatigue activity following exhaustive swimming. Rats were orally administered with NS extract (2 g/kg/day) for 21 days, and the anti-fatigue effect was assessed by exhaustive swimming exercise. The presented results indicated that pre-treatment of NS extract significantly increased the time to exhaustion. In hemodynamic parameters, NS extract increased blood pO_2 and O_2sat, but decreased pCO_2. For underlying mechanisms, NS extract protected depletion of energy, indicated by increased levels of blood pH, glucose and tissue glycogen contents, and decreased levels of blood lactate, tissue lactic dehydrogenase and creatine kinase, when the NS extract was pre-treated. In addition, the NS extract inhibited oxidative stress following exhaustive swimming, as reflected by the results of increased levels of superoxide dismutase and redox ratio, and decreased the level of malondialdehyde when the NS extract was pre-treated. Collectively, the present study demonstrated that NS extract has an anti-fatigue activity against exhaustive swimming by energy restoration and oxidative-stress defense.

Introduction

Nigella sativa (NS) seed, commonly known as a black cumin, belongs to the Ranunculaceae family (1). It is an herbaceous plant, which is composed of several constituents, including moisture, oil, proteins, carbohydrates, vitamins and minerals (2,3). Among these, fixed oils and unsaturated fatty acids comprise 30 and 85% of the ingredients in NS seed (2,4). In addition, NS seed contains various chemical compounds with pharmacological properties, including thymoquinone, nigellone, melanthin, damascenone, p-cymene and pinene (5-7). NS seed has been traditionally used as a folk medicine in North Africa, Southeast Asia and Mediterranean countries for many centuries. Indeed, it is used for the treatment of asthma, bronchitis, cough, fever and headaches (8). Previous studies have demonstrated that NS seed has numerous therapeutic activities, such as anti-inflammatory (9), antioxidant (5,10), immune-modulatory (11), cardioprotective (12,13) and hepatoprotective effects (14). However, the effects of NS seed on the fatigue following exercise have not yet been fully elucidated.

Fatigue is defined as a feeling of extreme physical or mental tiredness, resulting from severe stress and hard physical or mental work (15,16). It may be associated with many activities, such as exercise, aging, tumor growth, multiple sclerosis and Parkinson’s disease (17-19). In particular, physical fatigue induced by strenuous exercise is thought to lead to a deterioration in performance, causing a decrease in muscular power and endurance, as well as in mental functions (20,21). The underlying mechanism suggests that strenuous exercise accumulates metabolic products (e.g., reactive oxygen species (ROS), lipid peroxides and lactic acid), and leads to oxidative stress, which can potentially contribute to fatigue (22,23).

Accordingly, many studies have focused on the development of drugs or therapies with respect to fatigue (24,25). In addition, considering the limitations of available therapies for fatigue in modern medicine, potential alternatives from traditional medicine are worth investing because of their safety, availability, and ease of administration (26). In the current study, the authors sought to investigate the anti-fatigue activities of NS seed extract in rats subjected to the exhaustive swimming test as a fatigue model.
Materials and methods

Preparation of NS extract. NS seeds were obtained from a local market in Mymensingh, Bangladesh. The extraction of NS seeds was performed as previously described (27). Briefly, the black seeds were washed with running tap water, air-dried and ground to powder form (0.2-0.3 mm particle size, to ensure homogeneity). A total of 800 g powdered seeds were extracted in a Soxhlet apparatus with petroleum ether. The extract obtained was evaporated to a viscous liquid at 40°C under reduced pressure (yield of 300 ml, 310.7 g and 39.2%). Gas chromatographic analysis of the final extract failed to identify significant amounts of n-hexane and n-heptane (0.1%), which are the major indicators for this distillate.

Animal models and NS seed extract administration. All experimental protocols employed herein were approved by the Committee on the Care of Laboratory Animal Resources of Chonbuk National University and were conducted in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (Bethesda, MA, USA; NIH Publication no. 85‑23, revised 1996). A total of forty male Sprague-Dawley rats (220-250 g, Samtako Bio Korea Co., Ltd., Daejeon, Korea) were used for all experiments. Animals were housed in cages maintained at 23±2°C with 50±5% humidity and subjected to a 12-h light/dark cycle. Food and water was available ad libitum prior to exercise. The NS extract was freshly dissolved in either distilled water and orally administered using a gavage with a dose of 2 g/kg/day. In addition, NS extract was administered on the 21st day, 1 h orally administered using a gavage with a dose of 2 g/kg/day. Notably, in pre-swimming and post-swimming conditions, the concentrations of glucose, lactate and hemoglobin (Hb) were measured, along with hematocrit (Hct). Serum was immediately separated by centrifugation at 1,500 x g for 10 min following swimming and stored at -80°C until biochemical analysis. A Hitachi 7020 system (Hitachi Corporation, Tokyo, Japan) was used for analyses of total protein (TP), albumin, lactic dehydrogenase (LDH) and creatine kinase (CK) levels.

Effects of NS seed extract on hemodynamic parameters following exhaustive swimming. Exhaustive swimming resulted in significant decreases of pO2 (P<0.001), pCO2 (P<0.001) and O2sat levels (P<0.001), but an increase of pCO2 level (P<0.001), when compared with the pre-swimming control group. However, these changes were significantly attenuated by pre-treatment with NS seed extract compared with the post-swimming control group (P<0.01). Hb and Hct levels were slightly increased (P<0.05) following swimming in the control group. Notably, in pre-swimming and post-swimming
of NS-pre-treated groups, these values had a tendency to increase compared with pre-swimming-control group, even though values in post-swimming group with pre-treatment of NS extract were not significantly changed compared with post-swimming control group (P>0.05; Table I). Finally, TP was markedly elevated in both control and NS-pre-treated groups following exhaustive swimming, when compared with pre-swimming control group. Moreover, there was no obvious difference in albumin levels between control and NS-treated groups following exhaustive swimming (Table I). These data indicated that NS seed extract could maintain the blood homeostasis following exhaustive swimming.

Effects of NS seed extract on fatigue-related serum biomarkers after exhaustive swimming. Fatigue can be evaluated by several important biochemical indicators, including glucose, lactate, LDH and CK. Exhaustive swimming caused depleted glucose, as an energy source, and the accumulation of lactate, LDH and CK (30). Thus, the authors examined the levels of fatigue-related blood biomarkers to test the anti-fatigue effect of NS seed extract. The exhaustive swimming led to a significant decrease in serum glucose level (from 127 to 103.2 mg/dl following exercise; P<0.001) but significant increases in lactate (3.5 to 5.5 mmol/l; P<0.001), LDH (202.4 to 811.6 IU/l; P<0.001) and CK (405.6 to 1288.4 IU/l; P<0.001) levels (Fig. 2) compared with the pre-swimming-control group. However, pre-treatment with NS extract significantly protected these exercise-induced alterations after exhaustive swimming (Fig. 2). The serum glucose level was significantly increased in the NS-treated group compared with control group following exhaustive swimming (P<0.01). Conversely, increased levels of serum lactate, LDH and CK, due to exhaustive swimming, were significantly attenuated by pre-treatment of NS extract (lactate, P<0.05; LDH and CK, P<0.001; Fig. 2). Taken together, the authors also demonstrated the anti-fatigue effects of NS extract on exhaustive swimming from the analysis of typical fatigue-related indicators (e.g., glucose, lactate, LDH and CK).

Table I. Effects of NS extract on blood biochemical parameters after forced-swimming.

<table>
<thead>
<tr>
<th></th>
<th>Control (Pre-swimming)</th>
<th>Control (Post-swimming)</th>
<th>NS (Pre-swimming)</th>
<th>NS (Post-swimming)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.30±0.03</td>
<td>7.09±0.03</td>
<td>7.30±0.02</td>
<td>7.13±0.03</td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>12.5±0.5</td>
<td>13.0±0.4</td>
<td>15.5±0.4</td>
<td>15.9±0.4</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>42±1</td>
<td>43±1</td>
<td>45±1</td>
<td>46±1</td>
</tr>
<tr>
<td>pCO₂ (mmHg)</td>
<td>44.8±2.5</td>
<td>78.7±4.9</td>
<td>42.0±2.4</td>
<td>68.2±3.0</td>
</tr>
<tr>
<td>pO₂ (mmHg)</td>
<td>58.6±3.0</td>
<td>24.7±1.7</td>
<td>67.9±2.9</td>
<td>37.9±2.78</td>
</tr>
<tr>
<td>O₂sat (%)</td>
<td>81.6±2.2</td>
<td>33.0±4.9</td>
<td>85.3±3.5</td>
<td>46.4±3.9</td>
</tr>
<tr>
<td>TP (g/dl)</td>
<td>5.0±0.2</td>
<td>6.4±0.3</td>
<td>4.7±0.2</td>
<td>5.6±0.3</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>2.9±0.2</td>
<td>3.1±0.2</td>
<td>2.6±0.1</td>
<td>3.0±0.1</td>
</tr>
</tbody>
</table>

The data are reported as the mean ± standard error of the mean (n=10). Significance was measured via two-way analysis of variance. *P<0.05, †P<0.01 and ‡P<0.001 vs. pre-swimming control group; §P<0.05, ¶P<0.01 and #P<0.001 vs. pre-swimming NS-treated group. Control, control group; NS, NS-treated group; Hb, hemoglobin; Hct, hematocrit; pCO₂, partial pressure of carbon dioxide; pO₂, partial pressure of oxygen; O₂sat, oxygen saturation; TP, total protein.

Effect of NS extract on glycogen contents in liver and muscle. Glycogen content, which is main storage form of glucose, is an integral determining factor in fatigue following exhaustive swimming. Many studies have reported that glycogen is significantly depleted in both liver and muscles during exhaustive swimming (31). In the present study, following exhaustive swimming, glycogen levels in liver and g. muscle were significantly diminished compared with pre-swimming-control group (21.5 and 11.5% decreases in liver and g. muscle vs. control; P<0.001, respectively; Fig. 3). However, in NS extract-treated group, glycogen content was restored in both liver and g. muscle (39.4 and 10.2% increases in liver and g. muscle vs. swimming-control; P<0.001, respectively). In particular, the liver glycogen in NS-pre-treated-swimming group was significantly increased compared with control group (9.5% increase vs. control; P<0.05; Fig. 3A). These results demonstrated that
NS extract administration may reserve glycogen in liver and g. muscle.

Effects of NS seed extract on antioxidant parameters in serum, liver and g. muscle. Oxidative stress occurs following exhaustive swimming, and subsequently may lead to pathology and clinical symptoms of fatigue (32). Therefore, the authors investigated the antioxidant activity of NS extract following exhaustive swimming by examining the SOD, MDA and serum redox ratio (GSH/GSSG) values as typical oxidative stress related parameters. Serum SOD level was significantly decreased in the swimming control group, when compared with the control group (4.9% decrease vs. control; \(P<0.05 \)). As expected, in the NS extract-pre-treated group, serum SOD
level was significantly increased compared with the swimming control-group following exhaustive swimming (5.8% increase vs. swimming-control; P<0.01; Fig. 4A). Serum MDA level was dramatically increased following exhaustive swimming (28.1% increase vs. control; P<0.001). However, pre-treatment with NS extract inhibited the serum MDA level following exhaustive swimming (15.8% decrease vs. swimming-control; P<0.001; Fig. 4B). Similarly, the serum redox ratio (GSH:GSSG) was significantly decreased in the swimming-control group, when compared with the control group (10.8% decrease vs. control; P<0.05), but was increased in the exercise-NS extract-treated group (39.1% increase vs. swimming-control; P<0.001; Fig. 4C).

In addition, SOD levels in liver and g. muscle were significantly decreased compared with the control group following exhaustive swimming (21.9 and 6.0% decreases in liver and g. muscle vs. control; P<0.001, respectively; Fig. 5A and C). Notably, SOD levels in both tissues were significantly increased by pre-treatment of NS extract compared with the swimming-control group (50.5 and 8.0% increases in liver and g. muscle vs. swimming-control; P<0.001, respectively; Fig. 5A and C). MDA levels in liver and g. muscle were significantly increased by pre-treatment of NS extract compared with the control group following exhaustive swimming (58.7 and 36.9% increases, in liver and g. muscle vs. control; P<0.001, respectively). However, when the NS extract was pre-treated, MDA levels in both tissues were significantly inhibited compared with exercise-control group (30.4 and 14.2% decreases in liver and g. muscle vs. swimming-control; P<0.001, respectively; Fig. 5B and D). These data suggested that NS extract may have a beneficial role against oxidative stress to alleviate physical fatigue following exercise.

Discussion
NS seeds possess many pharmacological activities, and are especially well known for their potent antioxidant effects. Many previous studies have reported that NS seeds may reduce toxicity in a number of diseases including diabetes, neural disease, renal disease, cardiovascular disease and cancer, due to their antioxidant activities from both in vitro and in vivo approaches (6,33-36). Therefore, in the present study, the authors focused on determining the protective effects of NS seeds against exhaustive swimming-induced fatigue.

To evaluate the anti-fatigue effects of NS extract in rats, the authors performed the exhaustive swimming, which has been commonly used as a fatigue model (37). The results demonstrated that pre-treatment of NS extract significantly increased the swimming time to exhaustion (Fig. 1). Further, in hemodynamic parameters, NS extract may attenuate decreased values of pO2 and O2sat and decrease values of pCO2, resulting in impaired oxygen supply during fatigue (Table I). Thus, the
presented results indicated that NS extract may improve the swimming capacity against the fatigue.

Main causes of fatigue after exhaustive swimming are the depletion of energy sources and dysregulation of anti-oxidant defenses system (30). Regarding the depletion of energy sources, many studies have demonstrated that energy sources, such as glucose and glycogen are depleted during exhaustive swimming, which in turn cause to physical fatigue (38). Here, it was observed that glycogen contents in both the liver and g. muscle were restored upon administration of NS extract (Figs. 2A and 5). In addition, under normal conditions, ATP, as an energy source, is produced by glycolysis (conversion of glycogen into glucose), which is, in turn, broken down into pyruvate (39). However, the muscles obtain energy from anaerobic glycolysis (conversion of pyruvate to lactate) during intense exercise. This intense exercise leads to accumulation of lactate, and lactate then drops the blood and muscle pH, and consequently, fatigue is occurred (40). The results demonstrated that levels of serum glucose, lactate and LDH (key enzyme for lactate production) were increased following exhaustive swimming. Notably, these increases were dramatically attenuated when NS extract pre-treated (Fig. 2B-D). In addition, it was demonstrated that glycogen contents in liver and g muscle tissues were dramatically preserved when pre-treated NS extract following exhaustive swimming (Fig. 3). Therefore, the authors suggested that NS extracts may contribute to fatigue retardation through preservation of glycogen content and reduction of lactate accumulation.

Secondly, the other important factor in fatigue is dysregulation of the antioxidant defense system (30). Exhaustive swimming may release reactive oxygen species (ROS) due to increased oxygen consumption, resulting in the development of fatigue. Therefore, MDA (an oxidative degradation product of cell membrane lipids) and SOD (major component of anti-oxidant defense system) are considered to be physiological markers relevant for fatigue. In the present study, the results revealed that elevated MDA levels and decreased levels of SOD, as well as the serum redox ratio (GSH:GSSG) in liver and g. muscle tissues were completely reversed by pre-treatment of NS extract (Fig. 4). These findings suggested that anti-fatigue effect of NS extract is involved in the modulation of oxidative stress following exhaustive swimming.

In conclusion, the current study demonstrated that NS may be able to alleviate the physical fatigue by inhibiting energy depletion and oxidative stress. The authors further propose that NS may be a potential strategy for prevention and treatment of physical fatigue.
Acknowledgements

The current research was supported by the research funds of Korean Ministry of Science (grant no. 2011-0013872) and the Brain Korea Plus program. The authors would like to thank Proofreading Service Center of Chonbuk National University and e-World Editing Ltd. for proofreading of the manuscript.

References