1. Research progress on the regulatory mechanism of integrin‐mediated mechanical stress in cells involved in bone metabolism
    Li Yang et al, 2024, Journal of Cellular and Molecular Medicine CrossRef
  2. Continuous application of compressive force induces fusion of osteoclast-like RAW264.7 cells via upregulation of RANK and downregulation of LGR4
    Rieko Matsuike et al, 2018, Life Sciences CrossRef
  3. Effects of Mechanical Stress Stimulation on Function and Expression Mechanism of Osteoblasts
    Pan Liu et al, 2022, Frontiers in Bioengineering and Biotechnology CrossRef
  4. Effect of the same mechanical loading on osteogenesis and osteoclastogenesis in vitro
    Yong Guo et al, 2015, Chinese Journal of Traumatology CrossRef
  5. Release from optimal compressive force suppresses osteoclast differentiation
    Masaaki Ikeda et al, 2016, Molecular Medicine Reports CrossRef
  6. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells
    Rishikesh N. Kulkarni et al, 2013, Bone CrossRef
  7. Bone cell mechanobiology and bone disease
    Lifang Hu et al, 2024, Bone Cell Biomechanics, Mechanobiology and Bone Diseases CrossRef
  8. Effects of compressive stress combined with mechanical vibration on osteoclastogenesis in RAW 264.7 cells
    Boontida Changkhaokham et al, 2022, The Angle Orthodontist CrossRef
  9. Compressive force regulates orthodontic tooth movement via activating the NLRP3 inflammasome
    Yineng Han et al, 2022, The FASEB Journal CrossRef
  10. Substrate stiffness regulates the differentiation profile and functions of osteoclasts via cytoskeletal arrangement
    Qingxuan Wang et al, 2022, Cell Proliferation CrossRef
  11. Are Osteoclasts Mechanosensitive Cells?
    Qingxuan Wang et al, 2021, Journal of Biomedical Nanotechnology CrossRef
  12. Mechanical loading and the control of stem cell behavior
    Jeeranan Manokawinchoke et al, 2021, Archives of Oral Biology CrossRef
  13. Periosteal CD68+F4/80+ Macrophages Are Mechanosensitive for Cortical Bone Formation by Secretion and Activation of TGF‐β1
    Ruoxian Deng et al, 2022, Advanced Science CrossRef
  14. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head
    Qi Meng et al, 2023, Gene Reports CrossRef
  15. Effects of continuous and released compressive force on osteoclastogenesis in vitro
    Boontida Changkhaokham et al, 2024, Journal of Oral Biology and Craniofacial Research CrossRef
  16. Preclinical anti-arthritic study and pharmacokinetic properties of a potent histone deacetylase inhibitor MPT0G009
    I-N Hsieh et al, 2014, Cell Death & Disease CrossRef
  17. Optimal compressive force accelerates osteoclastogenesis in RAW264.7 cells
    TAKAKO HAYAKAWA et al, 2015, Molecular Medicine Reports CrossRef
  18. Mechanical regulation of macrophage function - cyclic tensile force inhibits NLRP3 inflammasome-dependent IL-1β secretion in murine macrophages
    Kentaro Maruyama et al, 2019, Inflammation and Regeneration CrossRef