1. Novel Mitochondria-Targeted Antioxidant Peptide Ameliorates Burn-Induced Apoptosis and Endoplasmic Reticulum Stress in the Skeletal Muscle of Mice
    Hyung-yul Lee et al, 2011, Shock CrossRef
  2. Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency
    Cloé M. Julienne et al, 2012, Journal of Cachexia, Sarcopenia and Muscle CrossRef
  3. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model
    A. ARIA TZIKA et al, 2013, International Journal of Oncology CrossRef
  4. Respiratory Neuropathy as an Important Component of Critical Illness Polyneuromyopathy
    R. T. Rakhimov et al, 2020, Russian Sklifosovsky Journal "Emergency Medical Care" CrossRef
  5. Mitochondria‐targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed byin vivo31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy
    Valeria Righi et al, 2013, The FASEB Journal CrossRef
  6. A time course study about gene expression of post‐thermal injury with DNA microarray
    Shan Ou et al, 2015, International Journal of Dermatology CrossRef
  7. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury
    CATERINA CONSTANTINOU et al, 2016, International Journal of Molecular Medicine CrossRef
  8. A Critical Update of the Assessment and Acute Management of Patients with Severe Burns
    Thomas Charles Lang et al, 2019, Advances in Wound Care CrossRef
  9. The controversy over H5N1 transmissibility research
    David S. Fedson et al, 2013, Human Vaccines & Immunotherapeutics CrossRef
  10. Burn-induced hypermetabolism and skeletal muscle dysfunction
    Carly M. Knuth et al, 2021, American Journal of Physiology-Cell Physiology CrossRef
  11. Des-acyl-ghrelin (DAG) normalizes hyperlactacidemia and improves survival in a lethal rat model of burn trauma
    Sulaiman Sheriff et al, 2014, Peptides CrossRef
  12. Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia
    Juquan Song et al, 2021, Journal of Parenteral and Enteral Nutrition CrossRef
  13. Role of the PPAR-α agonist fenofibrate in severe pediatric burn
    Itoro E. Elijah et al, 2012, Burns CrossRef
  14. Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods
    Matthew D. Campbell et al, 2016, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease CrossRef
  15. The metabolic stress response to burn trauma: current understanding and therapies
    Craig Porter et al, 2016, The Lancet CrossRef
  16. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill
    O. Friedrich et al, 2015, Physiological Reviews CrossRef
  17. Cardiac Dysfunction after Burn Injury: Role of the AMPK-SIRT1-PGC1α-NFE2L2-ARE Pathway
    Jake J. Wen et al, 2020, Journal of the American College of Surgeons CrossRef
  18. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults
    Craig Porter et al, 2014, American Journal of Physiology-Endocrinology and Metabolism CrossRef