1. Cadmium neurotoxicity and therapeutic strategies
    Shuangquan Wen et al, 2024, Journal of Biochemical and Molecular Toxicology CrossRef
  2. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations
    Bella B. Manshian et al, 2015, Scientific Reports CrossRef
  3. Adoptive Autophagy Activation: a Much-Needed Remedy Against Chemical Induced Neurotoxicity/Developmental Neurotoxicity
    A. Srivastava et al, 2017, Molecular Neurobiology CrossRef
  4. Synergistic effect of copper and arsenic upon oxidative stress, inflammation and autophagy alterations in brain tissues of Gallus gallus
    Xiao Sun et al, 2018, Journal of Inorganic Biochemistry CrossRef
  5. Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429)
    Maria Tsamou et al, 2022, Journal of Alzheimer's Disease Reports CrossRef
  6. Recent insights into autophagy and metals/nanoparticles exposure
    Qiong Li et al, 2023, Toxicological Research CrossRef
  7. Paeonol inhibits apoptosis of vascular smooth muscle cells via up-regulation of autophagy by activating class III PI3K/Beclin-1 signaling pathway
    Yarong Liu et al, 2021, Life Sciences CrossRef
  8. Melatonin antagonizes cadmium‐induced neurotoxicity by activating the transcription factor EB‐dependent autophagy–lysosome machinery in mouse neuroblastoma cells
    Min Li et al, 2016, Journal of Pineal Research CrossRef
  9. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions
    Karina Sánchez-Alegría et al, 2018, International Journal of Molecular Sciences CrossRef
  10. Potentilla anserine L. polysaccharide inhibits cadmium-induced neurotoxicity by attenuating autophagy
    Ju Cheng et al, 2021, Neurochemistry International CrossRef
  11. The mechanistic role of chemically diverse metal ions in the induction of autophagy
    Sumit Sahni et al, 2017, Pharmacological Research CrossRef
  12. MeHg-induced autophagy via JNK/Vps34 complex pathway promotes autophagosome accumulation and neuronal cell death
    Tianji Lin et al, 2019, Cell Death & Disease CrossRef
  13. Cellular Conditions Responsible for Methylmercury-Mediated Neurotoxicity
    Masatake Fujimura et al, 2022, International Journal of Molecular Sciences CrossRef
  14. Arsenic-Induced Autophagy in the Developing Mouse Cerebellum: Involvement of the Blood–Brain Barrier’s Tight-Junction Proteins and the PI3K–Akt–mTOR Signaling Pathway
    Ram Kumar Manthari et al, 2018, Journal of Agricultural and Food Chemistry CrossRef
  15. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity
    Huifeng Pi et al, 2017, Scientific Reports CrossRef
  16. Beclin-1-mediated Autophagy Protects Against Cadmium-activated Apoptosis via the Fas/FasL Pathway in Primary Rat Proximal Tubular Cell Culture
    Gang Liu et al, 2017, Scientific Reports CrossRef
  17. MicroRNA‑30a increases the chemosensitivity of U251 glioblastoma cells to temozolomide by directly targeting beclin�1 and inhibiting autophagy
    Jing Xu et al, 2018, Experimental and Therapeutic Medicine CrossRef
  18. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity
    Yanfeng Wei et al, 2021, Neuroscience CrossRef
  19. Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood–brain barrier’s tight junction proteins
    Ram Kumar Manthari et al, 2018, Archives of Toxicology CrossRef
  20. Activation of autophagy inhibits cadmium-triggered apoptosis in human placental trophoblasts and mouse placenta
    Hua-Long Zhu et al, 2019, Environmental Pollution CrossRef