1. Betulinic acid protects against N-nitrosodimethylamine-induced redox imbalance in testes of rats
    Gbadebo E. Adeleke et al, 2017, Redox Report CrossRef
  2. Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat
    Varsha Rani et al, 2017, Chemico-Biological Interactions CrossRef
  3. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice
    O. A. Adebayo et al, 2017, Andrologia CrossRef
  4. Natural Products for Prevention and Treatment of Chemical-Induced Liver Injuries
    Xiao Meng et al, 2018, Comprehensive Reviews in Food Science and Food Safety CrossRef
  5. Effects of Centella asiatica extract on antioxidant status and liver metabolome of rotenone-treated rats using GC-MS
    Thidarat Intararuchikul et al, 2018, Biomedical Chromatography CrossRef
  6. Humulus japonicus Extracts Protect Against Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Rats
    Jinhyung Bae et al, 2018, Journal of Medicinal Food CrossRef
  7. Molecular mechanism and research progress on pharmacology of traditional Chinese medicine in liver injury
    Hong Yang Zhang et al, 2018, Pharmaceutical Biology CrossRef
  8. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis
    Joseph George et al, 2019, Cell Death Dis CrossRef
  9. null
    Valdi Ven Japranata et al, 2019 CrossRef
  10. Centella Asiatica Increased the Body Length Through the Modulation of Antioxidant in Rotenone-Induced Zebrafish Larvae
    Husnul Khotimah et al, 2018, Biomed. Pharmacol. J. CrossRef
  11. The Effect of Asiatic Acid and Metformin on The Viability Percentage of Mouse Macrophage Cell Lines RAW264.7 and Mouse Fibroblast Cell Lines NIH3T3
    R Awaluddin et al, 2020, IOP Conf. Ser.: Earth Environ. Sci. CrossRef
  12. null
    Shahid Akbar, 2020 CrossRef
  13. Metabolism of N-nitrosodimethylamine, methylation of macromolecules, and development of hepatic fibrosis in rodent models
    Joseph George et al, 2020, J Mol Med CrossRef
  14. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review
    Boju Sun et al, 2020, Front. Pharmacol. CrossRef
  15. Effects of pegagan (Centella asiatica L.) ethanolic extract SNEDDS (self-nanoemulsifying drug delivery systems) on the development of zebrafish (Danio rerio) Embryos
    Farida Hayati et al, 2020, J Pharm Bioall Sci CrossRef
  16. The Great Healing Potential Hidden in Plant Preparations of Antioxidant Properties: A Return to Nature?
    Małgorzata Kiełczykowska et al, 2020, Oxidative Medicine and Cellular Longevity CrossRef
  17. Impact of potential stimulants on asiaticoside and madecassoside levels and expression of triterpenoid-related genes in axenic shoot cultures of Centella asiatica (L.) Urb
    Gouri Priya Ranjith et al, 2021, Phytochemistry CrossRef
  18. null
    Farshad Abedi Torbati et al, 2021 CrossRef
  19. Insights into antioxidant activities and anti-skin-aging potential of callus extract from Centella asiatica (L.)
    Visarut Buranasudja et al, 2021, Sci Rep CrossRef
  20. Mitoprotective Effects of Centella asiatica (L.) Urb.: Anti-Inflammatory and Neuroprotective Opportunities in Neurodegenerative Disease
    Jia Hui Wong et al, 2021, Front. Pharmacol. CrossRef
  21. A Comparative Study of the Hepatoprotective Effect of Centella asiatica Extract (CA-HE50) on Lipopolysaccharide/d-galactosamine-Induced Acute Liver Injury in C57BL/6 Mice
    Woojae Hong et al, 2021, Nutrients CrossRef
  22. Gardeniae Fructus Attenuates Thioacetamide-Induced Liver Fibrosis in Mice via Both AMPK/SIRT1/NF-κB Pathway and Nrf2 Signaling
    Mi-Rae Shin et al, 2021, Antioxidants CrossRef
  23. Pharmacological Effects of Centella asiatica on Skin Diseases: Evidence and Possible Mechanisms
    Kyoung Sik Park et al, 2021, Evidence-Based Complementary and Alternative Medicine CrossRef
  24. null
    Sudeshna Sarker et al, 2021 CrossRef
  25. Centella asiatica extract protects against cisplatin-induced hepatotoxicity via targeting oxidative stress, inflammation, and apoptosis
    Irmak Ferah Okkay et al, 2022, Environ Sci Pollut Res CrossRef
  26. Preparation and Safety Evaluation of Centella asiatica Total Glycosides Nitric Oxide Gel and Its Therapeutic Effect on Diabetic Cutaneous Ulcers
    Yi-qiu Liu et al, 2022, Evidence-Based Complementary and Alternative Medicine CrossRef
  27. Exploration of hepatoprotective and antidiabetic potential of Senna occidentalis L. and isolation of bioactive compound by column chromatography
    Arun Kumar Mishra et al, 2022, South African Journal of Botany CrossRef
  28. null
    Muhammad Faris Rizqhilmi et al, 2022 CrossRef
  29. null
    Muhammad Yusuf et al, 2022 CrossRef
  30. Granulocyte-macrophage colony-stimulating factor (GM-CSF) shows therapeutic effect on dimethylnitrosamine (DMN)-induced liver fibrosis in rats
    Mrigendra Bir Karmacharya et al, 2022, PLoS ONE CrossRef
  31. In Silico Study of Centella asiatica Derivatives as Antioxidant: Enhancer of Superoxide Dismutase and Glutathione Peroxidase Activity
    Lili Legiawati et al, 2023, RJPT CrossRef
  32. N-nitrosamines in processed meats: Exposure, formation and mitigation strategies
    Yingfeng Xie et al, 2023, Journal of Agriculture and Food Research CrossRef
  33. Asiaticoside Enhances the Osteoblast Potential of LPS-induced Periodontal Ligament Stem Cells through TLR4/NF-κB Pathway
    Xuan Zou et al, 2023, LDDD CrossRef
  34. The standardized extract of Centella asiatica L. Urb attenuates the convulsant effect induced by lithium/pilocarpine without affecting biochemical and haematological parameters in rats
    Eduardo Rivadeneyra-Domínguez et al, 2023, BMC Complement Med Ther CrossRef
  35. Comparison of the Antioxidant Potency of Four Triterpenes of Centella asiatica against Oxidative Stress
    Jinyeong Lim et al, 2024, Antioxidants CrossRef
  36. A systems biology-based mathematical model demonstrates the potential anti-stress effectiveness of a multi-nutrient botanical formulation
    Abha Saxena et al, 2024, Sci Rep CrossRef